Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Polyelectrolyte–Surfactant Mixtures
2.3. Experimental Techniques
3. Results
3.1. Phase Behavior: A Nonequilibrium Issue
3.2. The Steady State Situation: True Equilibrium?
3.3. Adsorption of the QHECE–SDS Complexes on Negatively Charged Surfaces
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Chen, C.; Cui, G.; Liu, L.; Zhou, C.; Wu, G. Hydroxyethyl Cellulose-Based Stretchable, Antifreeze, Ion-Conductive Hydrogel Sensor. Eur. Polym. J. 2024, 202, 112603. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, J.; Yang, S.; Fu, J.; Lebongo Eteme, Y. Research Progress of Hydroxyethyl Cellulose Materials in Oil and Gas Drilling and Production. Cellulose 2023, 30, 10681–10700. [Google Scholar] [CrossRef]
- Rukmanikrishnan, B.; Ramalingam, S.; Rajasekharan, S.K.; Lee, J.; Lee, J. Binary and Ternary Sustainable Composites of Gellan Gum, Hydroxyethyl Cellulose and Lignin for Food Packaging Applications: Biocompatibility, Antioxidant Activity, UV and Water Barrier Properties. Int. J. Biol. Macromol. 2020, 153, 55–62. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Tabasum, S.; Khalid, S.; Shareef, R. A Review on Grafting of Hydroxyethylcellulose for Versatile Applications. Int. J. Biol. Macromol. 2020, 150, 289–303. [Google Scholar] [CrossRef] [PubMed]
- EL-Haddad, M.N. Hydroxyethylcellulose Used as an Eco-Friendly Inhibitor for 1018 c-Steel Corrosion in 3.5% NaCl Solution. Carbohydr. Polym. 2014, 112, 595–602. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Baghdadli, N.; Luengo, G.S.; Rubio, R.G. Effect of the Molecular Structure on the Adsorption of Conditioning Polyelectrolytes on Solid Substrates. Colloids Surf. A 2011, 375, 209–218. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Guzmán, E.; Oñate-Martínez, T.; Fernández-Pérez, C.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Dilution-Induced Deposition of Concentrated Binary Mixtures of Cationic Polysaccharides and Surfactants. Polymers 2023, 15, 3011. [Google Scholar] [CrossRef]
- Carvalho, J.P.; Martins, M.; Cavaco-Paulo, A. Cellulose Formulations for Hair Modelling. Cellulose 2024, 31, 6897–6909. [Google Scholar] [CrossRef]
- Jilal, I.; El Barkany, S.; Bahari, Z.; Sundman, O.; El Idrissi, A.; Abou-Salama, M.; Romane, A.; Zannagui, C.; Amhamdi, H. New Quaternized Cellulose Based on Hydroxyethyl Cellulose (HEC) Grafted EDTA: Synthesis, Characterization and Application for Pb (II) and Cu (II) Removal. Carbohydr. Polym. 2018, 180, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qin, Z.; Zhang, Y.; Liu, D.; Cao, Y. Complexation between Poly (Styrene-Co-Methacrylic Acid) and Polyquaternium for Use in Shampoo Formulations. J. Mol. Liq. 2023, 379, 121692. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Baghdadli, N.; Cazeneuve, C.; Luengo, G.S.; Rubio, R.G. Adsorption of Conditioning Polymers on Solid Substrates with Different Charge Density. ACS Appl. Mater. Interfaces 2011, 3, 3181–3188. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, J.; Zhu, S.; Wang, B.; Li, J.; Ying, G.; Chen, K. A Gentle Conditioning Agent Consisted of Oppositely-Charged-Induced Cellulose Nanocrystal and Cationic Cellulose: Stability, Conditioning and Delivery. J. Clean. Prod. 2024, 452, 142201. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Q.; Li, S.; Huang, Q.; Liu, Z. Effect of a Newly Synthesized Anionic Gemini Surfactant Composite Fracturing System on the Wettability of Coking Coal. Process Saf. Environ. Prot. 2023, 169, 13–23. [Google Scholar] [CrossRef]
- Abou-alfitooh, S.A.M.; El-hoshoudy, A.N. Eco-Friendly Modified Biopolymers for Enhancing Oil Production: A Review. J. Polym. Environ. 2024, 32, 2457–2483. [Google Scholar] [CrossRef]
- Wang, T.; Ye, J. Rheological and Fracturing Characteristics of a Cationic Guar Gum. Int. J. Biol. Macromol. 2023, 224, 196–206. [Google Scholar] [CrossRef]
- Lindman, B.; Antunes, F.; Aidarova, S.; Miguel, M.; Nylander, T. Polyelectrolyte-Surfactant Association—From Fundamentals to Applications. Colloid J. 2014, 76, 585–594. [Google Scholar] [CrossRef]
- Gradzielski, M. Polymer–Surfactant Interaction for Controlling the Rheological Properties of Aqueous Surfactant Solutions. Curr. Opin. Colloid Interface Sci. 2023, 63, 101662. [Google Scholar] [CrossRef]
- Luengo, G.S.; Leonforte, F.; Greaves, A.; Rubio, R.G.; Guzman, E. Physico-Chemical Challenges on the Self-Assembly of Natural and Bio-Based Ingredients on Hair Surfaces: Towards Sustainable Haircare Formulations. Green Chem. 2023, 25, 7863–7882. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Prolongo, M.G.; Starov, V.M.; Rubio, R.G. Influence of the Molecular Architecture on the Adsorption onto Solid Surfaces: Comb-like Polymers. Phys. Chem. Chem. Phys. 2011, 13, 16416–16423. [Google Scholar] [CrossRef]
- Breakspear, S.; Smith, J.R.; Luengo, G. Effect of the Covalently Linked Fatty Acid 18-MEA on the Nanotribology of Hair’s Outermost Surface. J. Struct. Biol. 2005, 149, 235–242. [Google Scholar] [CrossRef]
- Korte, M.; Akari, S.; Kühn, H.; Baghdadli, N.; Möhwald, H.; Luengo, G.S. Distribution and Localization of Hydrophobic and Ionic Chemical Groups at the Surface of Bleached Human Hair Fibers. Langmuir 2014, 30, 12124–12129. [Google Scholar] [CrossRef] [PubMed]
- Robbins, C.R. Chemical and Physical Behavior of Human Hair; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-25610-3. [Google Scholar]
- Baghdadli, N.; Luengo, G.S.; Recherche, L. A Closer Look at the Complex Hydrophilic/Hydrophobic Interactions Forces at the Human Hair Surface. J. Phys. Conf. Ser. 2008, 100, 052034. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, Z.; Li, X.; Zeng, G.; Xiao, R.; Yang, Z.; Xu, H.; Chen, H.; Cao, J.; Zhou, C.; et al. Ni-Doped MIL-53(Fe) Nanoparticles for Optimized Doxycycline Removal by Using Response Surface Methodology from Aqueous Solution. Chemosphere 2019, 232, 186–194. [Google Scholar] [CrossRef]
- Xiong, W.; Zeng, G.; Yang, Z.; Zhou, Y.; Zhang, C.; Cheng, M.; Liu, Y.; Hu, L.; Wan, J.; Zhou, C.; et al. Adsorption of Tetracycline Antibiotics from Aqueous Solutions on Nanocomposite Multi-Walled Carbon Nanotube Functionalized MIL-53(Fe) as New Adsorbent. Sci. Total Environ. 2018, 627, 235–244. [Google Scholar] [CrossRef]
- Cao, J.; Xu, B.; Lin, H.; Luo, B.; Chen, S. Chemical Etching Preparation of BiOI/BiOBr Heterostructures with Enhanced Photocatalytic Properties for Organic Dye Removal. Chem. Eng. J. 2012, 185–186, 91–99. [Google Scholar] [CrossRef]
- Bain, C.D.; Claesson, P.M.; Langevin, D.; Meszaros, R.; Nylander, T.; Stubenrauch, C.; Titmuss, S.; von Klitzing, R. Complexes of Surfactants with Oppositely Charged Polymers at Surfaces and in Bulk. Adv. Colloid Interface Sci. 2010, 155, 32–49. [Google Scholar] [CrossRef] [PubMed]
- Naderi, A.; Claesson, P.M.; Bergström, M.; Dėdinaitė, A. Trapped Non-Equilibrium States in Aqueous Solutions of Oppositely Charged Polyelectrolytes and Surfactants: Effects of Mixing Protocol and Salt Concentration. Colloids Surf. A 2005, 253, 83–93. [Google Scholar] [CrossRef]
- Varga, I.; Campbell, R.A. General Physical Description of the Behavior of Oppositely Charged Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface. Langmuir 2017, 33, 5915–5924. [Google Scholar] [CrossRef]
- Puente-Santamaría, A.; Ortega, F.; Maestro, A.; Rubio, R.G.; Guzmán, E. Non-Equilibrium States in Polyelectrolyte-Surfactant Systems at Fluid Interfaces: A Critical Review. Curr. Opin. Colloid Interface Sci. 2024, 71, 101804. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Abelenda-Nuñez, I.; Hernández-Rivas, M.; Ortega, F.; Rubio, R.G.; Guzmán, E. Impact of the Bulk Aggregation on the Adsorption of Oppositely Charged Polyelectrolyte-Surfactant Mixtures onto Solid Surfaces. Adv. Colloid Interface Sci. 2020, 282, 102203. [Google Scholar] [CrossRef]
- Guzmán, E.; Fernández-Peña, L.; Ortega, F.; Rubio, R.G. Equilibrium and Kinetically Trapped Aggregates in Polyelectrolyte–Oppositely Charged Surfactant Mixtures. Curr. Opin. Colloid Interface Sci. 2020, 48, 91–108. [Google Scholar] [CrossRef]
- Guzmán, E.; Maestro, A.; Ortega, F.; Rubio, R.G. Association of Oppositely Charged Polyelectrolyte and Surfactant in Solution: Equilibrium and Nonequilibrium Features. J. Phys. Cond. Matter 2023, 35, 323001. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Jamadagni, S.N.; Johnson, E.S.; Larson, R.G. A Molecular Thermodynamic Model of Coacervation in Solutions of Polycations and Oppositely Charged Micelles. Langmuir 2023, 39, 10335–10351. [Google Scholar] [CrossRef]
- Roa, K.; Boulett, A.; Oyarce, E.; Sánchez, J. Removal of Cr(VI) by Ultrafiltration Enhanced by a Cellulose-Based Soluble Polymer. J. Water Proc. Eng. 2023, 51, 103478. [Google Scholar] [CrossRef]
- Akanno, A.; Guzmán, E.; Fernández-Peña, L.; Llamas, S.; Ortega, F.; Rubio, R.G. Equilibration of a Polycation—Anionic Surfactant Mixture at the Water/Vapor Interface. Langmuir 2018, 34, 7455–7464. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Guzmán, E.; Leonforte, F.; Serrano-Pueyo, A.; Regulski, K.; Tournier-Couturier, L.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Effect of Molecular Structure of Eco-Friendly Glycolipid Biosurfactants on the Adsorption of Hair-Care Conditioning Polymers. Colloids Surf. B Biointerfaces 2020, 185, 110578. [Google Scholar] [CrossRef]
- Ravera, F.; Santini, E.; Loglio, G.; Ferrari, M.; Liggieri, L. Effect of Nanoparticles on the Interfacial Properties of Liquid/Liquid and Liquid/Air Surface Layers. J. Phys. Chem. B 2006, 110, 19543–19551. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, R.; Thompson, L.; Bos, M.; Varga, I.; Gilányi, T. Interaction of Sodium Dodecyl Sulfate with Polyethyleneimine: Surfactant-Induced Polymer Solution Colloid Dispersion Transition. Langmuir 2003, 19, 609–615. [Google Scholar] [CrossRef]
- Smoluchowski, M. Handbuch Der Elektrizität Und Des Magnetismus; Barth-Verlag: Leipzig, Germany, 1921. [Google Scholar]
- Voinova, M.V.; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach. Phys. Script. 1999, 59, 391–396. [Google Scholar] [CrossRef]
- Fernández-Peña, L.; Guzmán, E.; Ortega, F.; Bureau, L.; Leonforte, F.; Velasco, D.; Rubio, R.G.; Luengo, G.S. Physico-Chemical Study of Polymer Mixtures Formed by a Polycation and a Zwitterionic Copolymer in Aqueous Solution and upon Adsorption onto Negatively Charged Surfaces. Polymer 2021, 217, 123442. [Google Scholar] [CrossRef]
- Johannsmann, D.; Reviakine, I.; Richter, R.P. Dissipation in Films of Adsorbed Nanospheres Studied by Quartz Crystal Microbalance (QCM). Anal. Chem. 2009, 81, 8167–8176. [Google Scholar] [CrossRef] [PubMed]
- Konyalı, E.; Cengiz, H.Y.; Müftüler, A.; Deligöz, H. Monitoring the Salt Stability and Solvent Swelling Behavior of PAH-based Polyelectrolyte Multilayers by Quartz Crystal Microbalance with Dissipation. Polym. Eng. Sci. 2023, 63, 3328–3342. [Google Scholar] [CrossRef]
- Davantès, A.; Nigen, M.; Sanchez, C.; Renard, D. Impact of Hydrophobic and Electrostatic Forces on the Adsorption of Acacia Gum on Oxide Surfaces Revealed by QCM-D. Colloids Interfaces 2023, 7, 26. [Google Scholar] [CrossRef]
- Reviakine, I.; Johannsmann, D.; Richter, R.P. Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Anal. Chem. 2011, 83, 8838–8848. [Google Scholar] [CrossRef] [PubMed]
- Regismond, S.T.A.; Winnik, F.M.; Goddard, E.D. Surface Viscoelasticity in Mixed Polycation Anionic Surfactant Systems Studied by a Simple Test. Colloids Surf. A 1996, 119, 221–228. [Google Scholar] [CrossRef]
- Goddard, E.D.; Hannan, R.B. Polymer/Surfactant Interactions. J. Am. Oil Chem. Soc. 1977, 54, 561–566. [Google Scholar] [CrossRef]
- Goddard, E.D.; Hannan, R.B. Cationic Polymer/Anionic Surfactant Interactions. J. Colloid Interface Sci. 1976, 55, 73–79. [Google Scholar] [CrossRef]
- Li, D.; Kelkar, M.S.; Wagner, N.J. Phase Behavior and Molecular Thermodynamics of Coacervation in Oppositely Charged Polyelectrolyte/Surfactant Systems: A Cationic Polymer JR 400 and Anionic Surfactant SDS Mixture. Langmuir 2012, 28, 10348–10362. [Google Scholar] [CrossRef]
- Neitzel, A.E.; Fang, Y.N.; Yu, B.; Rumyantsev, A.M.; de Pablo, J.J.; Tirrell, M.V. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021, 54, 6878–6890. [Google Scholar] [CrossRef]
- Kogej, K.; Škerjanc, J. Fluorescence and Conductivity Studies of Polyelectrolyte-Induced Aggregation of Alkyltrimethylammonium Bromides. Langmuir 1999, 15, 4251–4258. [Google Scholar] [CrossRef]
- Svensson, A.V.; Johnson, E.S.; Nylander, T.; Piculell, L. Surface Deposition and Phase Behavior of Oppositely Charged Polyion−Surfactant Ion Complexes. 2. A Means to Deliver Silicone Oil to Hydrophilic Surfaces. ACS Appl. Mater. Interfaces 2010, 2, 143–156. [Google Scholar] [CrossRef]
- Svensson, A.V.; Huang, L.; Johnson, E.S.; Nylander, T.; Piculell, L. Surface Deposition and Phase Behavior of Oppositely Charged Polyion/Surfactant Ion Complexes. 1. Cationic Guar versus Cationic Hydroxyethylcellulose in Mixtures with Anionic Surfactants. ACS Appl. Mater. Interfaces 2009, 1, 2431–2442. [Google Scholar] [CrossRef]
- Clauzel, M.; Johnson, E.S.; Nylander, T.; Panandiker, R.K.; Sivik, M.R.; Piculell, L. Surface Deposition and Phase Behavior of Oppositely Charged Polyion–Surfactant Ion Complexes. Delivery of Silicone Oil Emulsions to Hydrophobic and Hydrophilic Surfaces. ACS Appl. Mater. Interfaces 2011, 3, 2451–2462. [Google Scholar] [CrossRef]
- Puente-Santamaría, A.; Monge-Corredor, J.; Ortega, F.; Rubio, R.G.; Guzmán, E. Dilution-Controlled Deposition of Mixtures of a Synthetic Polycation and a Natural Origin Polyelectrolyte with Anionic Surfactants on Negatively Charged Surfaces. Colloids Surf. A 2024, 685, 133137. [Google Scholar] [CrossRef]
- Miyake, M.; Kakizawa, Y. Study on the Interaction between Polyelectrolytes and Oppositely Charged Ionic Surfactants. Solubilized State of the Complexes in the Postprecipitation Region. Colloid Polym. Sci. 2002, 280, 18–23. [Google Scholar] [CrossRef]
- Miyake, M. Recent Progress of the Characterization of Oppositely Charged Polymer/Surfactant Complex in Dilution Deposition System. Adv. Colloid Interface Sci. 2017, 239, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Hössel, P.; Dieing, R.; Nörenberg, R.; Pfau, A.; Sander, R. Conditioning Polymers in Today’s Shampoo Formulations—Efficacy, Mechanism and Test Methods. Int. J. Cosmet. Sci. 2000, 22, 1–10. [Google Scholar] [CrossRef]
- Kakizawa, Y.; Miyake, M. Creation of New Functions by Combination of Surfactant and Polymer—Complex Coacervation with Oppositely Charged Polymer and Surfactant for Shampoo and Body Wash. J. Oleo Sci. 2019, 68, 525–539. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nivard, M.; Ortega, F.; Rubio, R.G.; Guzmán, E. Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates. Polymers 2025, 17, 207. https://doi.org/10.3390/polym17020207
Nivard M, Ortega F, Rubio RG, Guzmán E. Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates. Polymers. 2025; 17(2):207. https://doi.org/10.3390/polym17020207
Chicago/Turabian StyleNivard, Maud, Francisco Ortega, Ramón G. Rubio, and Eduardo Guzmán. 2025. "Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates" Polymers 17, no. 2: 207. https://doi.org/10.3390/polym17020207
APA StyleNivard, M., Ortega, F., Rubio, R. G., & Guzmán, E. (2025). Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose–Anionic Surfactant Complexes on Negatively Charged Substrates. Polymers, 17(2), 207. https://doi.org/10.3390/polym17020207