Application of Post-Industrial Leather Waste for the Development of Sustainable Rubber Composites
Abstract
:1. Introduction
2. Materials and Methods
Rheological Properties
3. Results
3.1. Rheometry and Crosslinking Density of Composites
3.2. Determining Crosslinking Density
3.3. Analysis of Rubber/Fiber Interactions Using the Lorenz–Park Equation
- Q = the weight of toluene absorbed per gram of rubber, where subscripts l and r denote the composites vulcanized with a loading and pure rubber, respectively;
- z = the ratio of filling mass per unit mass of rubber;
- a and b = constants.
- Ws = the weight of the swollen composite when the balance between the organic solvent and the polymer is achieved;
- wd = the weight of the dry composite;
- wr = the weight of the rubber in the dry composite;
- wF = the total weight of the formulation.
3.4. Analysis of Rubber/Loading Interactions Using the Lorentz–Park Equation
3.5. Relative Density
3.6. Hardness (Shore A)
3.7. Abrasion Resistance
3.8. Tensile Strength/Deformation Test
3.9. Thermogravimetric Analysis
Morphological Evaluation: Fiber–Rubber Interaction
4. Final Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elías, C.; Jiménez, J.; Montón, J.; Muñoz, P.; Serrano, J.P.Y.F. Ciencias para el mundo contemporáneo 1 de 5. In Impacto Ambiental. El Planeta Herido; McGraw-Hill: Madrid, Germany, 2010. [Google Scholar]
- Chojnacka, K.; Skrzypczak, D.; Mikula, K.; Witek-Krowiak, A.; Izydorczyk, G.; Kuligowski, K.; Bandrow, P.; Kułażyński, M. Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. J. Clean. Prod. 2021, 313, 127902. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, H.; Zeng, Y.; Zhou, J.; Zhang, Y.; Shi, B.; Wang, Y.N. Biomass-derived polycarboxylate–aluminum–zirconium complex tanning system: A sustainable and practical approach for chrome-free eco-leather manufacturing. J. Clean. Prod. 2024, 452, 142261. [Google Scholar] [CrossRef]
- Shi, J.; Sheng, L.; Salmi, O.; Masi, M.; Puig, R. Life cycle assessment insights into nanosilicates-based chrome-free tanning processing towards eco-friendly leather manufacture. J. Clean. Prod. 2024, 434, 139892. [Google Scholar] [CrossRef]
- Zhang, B.; Guan, X.; Han, Q.; Guo, H.; Zheng, S.; Sun, X.; El-Gowily, A.H.; Abosheasha, M.A.; Zhu, Y.; Ueda, M.; et al. Rational design of natural leather-based water evaporator for electricity generation and functional applications. J. Energy Chem. 2024, 96, 129–144. [Google Scholar] [CrossRef]
- ONU. Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. Available online: https://sdgs.un.org/sites/default/files/publications/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 12 June 2024).
- OECD Due Diligence Guidance for: Responsible Supply Chains in the Garment and Footwear Sector. 2017. Available online: https://mneguidelines.oecd.org/OECD-Due-Diligence-Guidance-Garment-Footwear.pdf (accessed on 12 June 2024).
- European Commission. Final Report. Study on Due Diligence Requirements Through the Supply Chain. 2020. Available online: https://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/COMMITTEES/DROI/DV/2020/06-22/Studyonduediligencerequirements_pdf (accessed on 10 January 2025).
- Organización de las Naciones Unidas. Cumbre de Rio; united nations organization: New York, NY, USA, 1992. [Google Scholar]
- Organización de las Naciones Unidas para el Desarrollo Industrial—ONUDI. Transferencia o Desarrollo de Tecnología de la Industria 4.0 Para Establecer Modelos de Producción más Limpia; UEESMUN: Guayaquil, Ecuador, 2015. [Google Scholar]
- Buenos Aires produce más limpio. Producción más Limpia, Concepto y Antecedentes; Buenos Aires, Argentina, 2016. [Google Scholar]
- Lee, S.Y.; Rhee, S.K. From end-of-pipe technology towards pollution preventive approach: The evolution of corporate environmentalism in Korea. J. Clean. Prod. 2003, 13, 387–395. [Google Scholar] [CrossRef]
- Eisen, C.; Schenten, J.; Theis, A.; Rehn-Groenendijk, J.; Helferich, M.; Müller, H.; Hanss, D. Toward system innovation for more sustainable chemistry: Insights into consumers’ perceptions, knowledge, and behavior related to traceability and product design strategies along leather supply chains. Front. Sustain. 2024, 5, 1351638. [Google Scholar] [CrossRef]
- Shi, L.; Liu, J.; Wang, Y.; Chiu, A. Cleaner production progress in developing and transition countries. J. Clean. Prod. 2021, 278, 123763. [Google Scholar] [CrossRef]
- ONU. Sustainable Development Goals (ODS). Available online: https://www.un.org/sustainabledevelopment/ (accessed on 12 June 2024).
- Available online: https://mahileather.com/blogs/news/where-does-leather-come-from (accessed on 13 January 2025).
- Shi, J.; Zhang, R.; Mi, Z.; Lyu, S.; Ma, J. Engineering a sustainable chrome-free leather processing based on novel lightfast wet-white tanning system towards eco-leather manufacture. J. Clean. Prod. 2021, 282, 124504. [Google Scholar] [CrossRef]
- Kanagaraj, J.; Velappan, K.C.; Babu, N.K.; Sadulla, S. Solid wastes generation in the leather industry and its utilization for cleaner environment—A review. J. Sci. Ind. Res. 2006, 65, 541–548. [Google Scholar]
- Koppiahraj, K.; Bathrinath, S.; Saravanasankar, S. Leather Waste Management Scenario in Developed and Developing Nations. Int. J. Eng. Adv. Technol. 2019, 9, 852–857. [Google Scholar] [CrossRef]
- Rippel, M.M.; Bragança, F.D.C. Bragança Borracha natural e nano compósitos com argila. Química Nova 2009, 32, 818–826. [Google Scholar] [CrossRef]
- Torres, G.B.; Hiranobe, C.T.; da Silva, E.A.; Cardim, G.P.; Cardim, H.P.; Cabrera, F.C.; Lozada, E.R.; Gutierrez-Aguilar, C.M.; Sánchez, J.C.; Carvalho, J.A.J.; et al. Eco-Friendly Natural Rubber–Jute Composites for the Footwear Industry. Polymers 2023, 15, 4183. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.J.; Hiranobe, C.T.; Dognani, G.; Silva, M.J.; Paim, L.L.; Cabrera, F.C.; Torres, G.B.; Job, A.E. Using the Lorenz–Park, Mooney–Rivlin, and dynamic mechanical analysis relationship on natural rubber/leather shavings composites. J. Appl. Polym. Sci. 2021, 139, 51880. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Ribeiro, G.D.; Torres, G.B.; Reis, E.A.P.D.; Cabrera, F.C.; Job, A.E.; Paim, L.L.; Santos, R.J.D. Cross-Linked Density Determination of Natural Rubber Compounds by Different Analytical Techniques. Mater. Res. 2021, 24 (Suppl. S1), e20210041. [Google Scholar] [CrossRef]
- Cavalcante, D.G.; Gomes, A.S.; Santos, R.J.; Kerche-Silva, L.E.; Danna, C.S.; Yoshihara, E.; Job, A.E. Composites Produced from Natural Rubber and Chrome-Tanned Leather Wastes: Evaluation of their In Vitro Toxicological Effects for Application in Footwear and Textile Industries. J. Polym. Environ. 2018, 26, 980–988. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Z.D.; Guo, Y.Q.; Huang, X.H.; Hu, Z.W.; Dong, Y.R.; Shah, A.A.; Dai, J.; Xu, C. Investigation of the Dynamic Properties of Viscoelastic Dampers with Three-Chain Micromolecular Configurations and Tube Constraint Effects. J. Aerosp. Eng. 2025, 38, 04024122. [Google Scholar] [CrossRef]
- Masłowski, M.; Miedzianowska, J.; Strąkowska, A.; Strzelec, K.; Szynkowska, M.I. The Use of Rye, Oat and Triticale Straw as Fillers of Natural Rubber Composites. Polym. Bull. 2018, 75, 4607–4626. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Chang, B.P.; Mohanty, A.K.; Misra, M. Studies on Durability of Sustainable Biobased Composites: A Review. RSC Adv. 2020, 10, 17955–17999. [Google Scholar] [CrossRef] [PubMed]
- Barrera Torres, G.; Dognani, G.; da Silva Agostini, D.L.; dos Santos, R.J.; Camargo Cabrera, F.; Gutierrez Aguilar, C.M.; de Paiva, F.F.G.; Rainho Teixeira, S.; Job, A.E. Potential Eco-Friendly Application of Sugarcane Bagasse Ash in the Rubber Industry. Waste Biomass Valorization 2021, 12, 4599–4613. [Google Scholar] [CrossRef]
- Masłowski, M.; Miedzianowska, J.; Strzelec, K. Influence of Wheat, Rye, and Triticale Straw on the Properties of Natural Rubber Composites. Adv. Polym. Technol. 2018, 37, 2866–2878. [Google Scholar] [CrossRef]
- Roy, K.; Debnath, S.C.; Potiyaraj, P. A Review on Recent Trends and Future Prospects of Lignin Based Green Rubber Composites. J. Polym. Environ. 2020, 28, 367–387. [Google Scholar] [CrossRef]
- Ministerio del Medio Ambiente—MMA. Política Nacional de Producción Más Limpia; Ministerio del Medio Ambiente—MMA: Bogotá, DC, USA, 1997. [Google Scholar]
- Razzaq, M.A.; Lyzu, C.; Parveen, S.; Uddin, M.T.; Shaikh, M.A.A.; Chowdhury, M.J.; Jamal, A.S.I.M.; Al-Mansur, M.A. Fatliquor for fungus resistant leather-a sustainable ecofriendly approach. Heliyon 2024, 10, e31598. [Google Scholar] [CrossRef] [PubMed]
- Rebelato, M.G.; Rodrigues, A.M.; Ferreira, B.S. Proposal of an environmental performance index to assess leather-manufacturing companies. Green Technol. Sustain. 2024, 1, 100106. [Google Scholar] [CrossRef]
- Senthil, R. Regenerated products from leather industrial solid waste: Future perspective and current ad vances. J. Hazard. Mater. Lett. 2024, 5, 100112. [Google Scholar] [CrossRef]
- Ma, S.; Ding, W.; Liu, Y.; Zhang, Y.; Ren, S.; Kong, X.; Leng, J. Industry 4.0 and cleaner production: A comprehensive review of sustainable and intelligent manu facturing for energy-intensive manufacturing industries. J. Clean. Prod. 2024, 467, 142879. [Google Scholar] [CrossRef]
- La Grega, M.D.; Buckingham, P.L.; Evans, J.C. The Environmental Resources Management Group. In Hazardous Waste Management; McGraw-Hill: Singapore, 1994. [Google Scholar]
- Al-Jabari, M.; Sawalha, H.; Pugazhendhi, A.; Rene, E.R. Cleaner production and resource recovery opportunities in leather tanneries: Technological applications and perspectives. Bioresour. Technol. Rep. 2021, 16, 100815. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xiang, N.; Xu, F.; Li, X. Dynamic Optimized Cleaner Production Strategies to Improve Water Environment and Economic Development in Leather Industrial Parks: A Case Study in Xinji, China. Sustainability 2019, 11, 6828. [Google Scholar] [CrossRef]
- Gonçales Filho, M.; Nunhes, T.V.; Barbosa, L.C.F.M.; de Campos, F.C.; de Oliveira, O.J. Opportunities and challenges for the use of cleaner production to reduce water consumption in Brazilian sugar-energy plants. J. Clean. Prod. 2018, 186, 353–363. [Google Scholar] [CrossRef]
- Ribeiro, G.D.; Hiranobe, C.T.; da Silva Araújo, S.; da Silva Filgueira, M.; Rocha, J.A.; Mukuno, J.S.; Salmazo, L.O.; Gomes, A.S.; Tolosa, G.R.; Gennaro, E.M.; et al. Sustainable construction materials for low-cost housing: Thermal insulation potential of expanded SBR composites with leather waste. J. Mater. Res. Technol. 2024, 30, 5590–5604. [Google Scholar] [CrossRef]
- Hiranobe, C.T.; Tolosa, G.R.; de Almeida Santos, G.T.; de Oliveira, J.P.J.; Budemberg, E.R.; da Silva, M.J.; Cabrera, F.C.; Job, A.E.; Paim, L.L.; Torres, G.B.; et al. Recycling waste polyurethane from the refrigeration industry as filler in SBR/NR composites for industrial applications. J. Appl. Polym. Sci. 2023, 140, e53709. [Google Scholar] [CrossRef]
- ASTM 3182; Designation: D 3182-89 (Reapproved 1994) Standard Practice for Rubber—Materials, Equipment, and Procedures for Mixing Standard Compounds and Preparing Standard Vulcanized Sheets. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM 5289; Standard Test Method for Rubber Property—Vulcanization Using Rotorless Cure Meters. ASTM: West Conshohocken, PA, USA, 2019.
- ASTM D 3184-07; Standard Test Methods for Rubber—Evaluation of NR (Natural Rubber). ASTM: West Conshohocken, PA, USA, 2007.
- ASTM D 2084-01; Standard Test Method for Rubber Property-Vulcanization Using Oscillating Disk Cure Meter. American Society for Testing Materials (ASTM): West Conshohocken, PA, USA, 2020.
- Vieyres, A.; Pérez-Aparicio, R.; Albouy, P.A.; Sanseau, O.; Saalwächter, K.; Long, D.R.; Sotta, P. Sulfur-Cured Natural Rubber Elastomer Networks: Correlating Cross-Link Density, Chain Orientation, and Mechanical Response by Combined Techniques. Macromolecules 2013, 46, 889–899. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity. J. Chem. Phys. 1943, 11, 512–520. [Google Scholar] [CrossRef]
- UNE-ISO 2781:2015; Method A Standard. Rubber, Vulcanized or Thermoplastic. Determination of Density. Asociacion Espanola de Normalizacion: Madrid, Spain, 2015.
- ASTM D 412-06a; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. American Society for Testing Materials (ASTM): West Conshohocken, PA, USA, 2019.
- ASTM D5963; Test Method for Rubber Property—Abrasion Resistance (Rotary Drum Abrader). American Society for Testing Materials (ASTM): West Conshohocken, PA, USA, 2010.
- ASTM D2240; Test Method for Rubber Property—Durometer Hardness. American Society for Testing Materials (ASTM): West Conshohocken, PA, USA, 2010.
- Valeika, V. Low-pickle processing of leather: Assessment of leather tanning quality by methods of thermal analysis. Medziagotyra 2020, 26, 333–336. [Google Scholar] [CrossRef]
- Bellucci, F.S.; Salmazo, L.O.; Budemberg, E.R.; Da Silva, M.R.; Rodríguez-Pérez, M.A.; Nobre, M.A.L.; Job, A.E. Preparation and structural characterization of vulcanized natural rubber nanocomposites containing nickel-zinc ferrite nanopowders. J. Nanosci. Nanotechnol. 2012, 12, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.J.D.; Agostini, D.L.S.; Cabrera, F.C.; Budemberg, E.R.; Job, A.E. Recycling leather waste: Preparing and studying on the microstructure, mechanical, and rheological properties of leather waste/rubber composite. Polym. Compos. 2015, 36, 2275–2281. [Google Scholar] [CrossRef]
- Ravichandran, K.; Natchimuthu, N. Vulcanization characteristics and mechanical properties of natural rubber-scrap rubber compositions filled with leather particles. Polym. Int. 2005, 54, 553–559. [Google Scholar] [CrossRef]
- Zeng, S.; Ren, Y.; Liu, P.; Wang, Q.; He, L.; Wang, Q. Facile fabrication of chrome-tanned leather wastes/natural rubber composite: Mechanochemical de-crosslinking effect on collagen fibers and chrome complexation enabled in-situ compatibilization. Compos. Sci. Technol. 2021, 214, 108998. [Google Scholar] [CrossRef]
- de Paiva, F.F.G.; de Maria, V.P.K.; Torres, G.B.; Dognani, G.; dos Santos, R.J.; Cabrera, F.C.; Job, A.E. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J. Mater. Cycles Waste Manag. 2019, 21, 326–335. [Google Scholar] [CrossRef]
- Malini, K.A.; Mohammed, E.M.; Sindhu, S.; Kurian, P.; Anantharaman, M.R. Dielectric and mechanical properties of rubber ferrite composites. Plast. Rubber Compos. 2002, 31, 449–457. [Google Scholar] [CrossRef]
- El-Sabbagh, S.H.; Mohamed, O.A. Recycling of chrome-tanned leather waste in acrylonitrile butadiene rubber. J. Appl. Polym. Sci. 2011, 121, 979–988. [Google Scholar] [CrossRef]
- Hang, L.T.; Do, Q.-V.; Hoang, L.; Nguyen, L.T.; Linh, N.P.D.; Doan, V.A. Mechanical Properties of Ternary Composite from Waste Leather Fibers and Waste Polyamide Fibers with Acrylonitrile-Butadiene Rubber. Polymers 2023, 15, 2453. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, O.; Parks, C.R. The Crosslinking Efficiency of Some Vulcanizing Agents in Natural Rubber. J. Polym. Sci. 1961, 50, 299–312. [Google Scholar] [CrossRef]
- Haseena, A.P.; Dasan, K.P.; Namitha, R.; Unnikrishnan, G.; Thomas, S. Investigation on Interfacial Adhesion of Short Sisal/Coir Hybrid Fibre Reinforced Natural Rubber Composites by Restricted Equilibrium Swelling Technique. Compos. Interfaces 2004, 11, 489–513. [Google Scholar] [CrossRef]
- Kanagy, J.R.; Wallace, E.L. Density of Leather and Its Significance. 1943. Available online: https://archive.org/details/jresv31n3p169/page/n1/mode/2up (accessed on 30 July 2024).
- Guo, J.; Dai, R.; Chen, H.; Liang, Y.; Shan, Z. Research on the composite and functional characteristics of leather fiber mixed with nitrile rubber. J. Leather Sci. Eng. 2021, 3, 10. [Google Scholar] [CrossRef]
- Papagiannis, P.; Azariadis, P.; Papanikos, P. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 162010. [Google Scholar] [CrossRef]
- Golubeva, O.; Pogorelova, A. Analysis of the dependence of stresses and deformations on the surfaces of shoe soles of different thicknesses and materials. E3S Web Conf. 2021, 273, 05001. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Almeida, M.F.; Freitas, F. Formulation and characterization of leather and rubber wastes composites. Polym. Eng. Sci. 2011, 51, 1418–1427. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Freitas, F.; Almeida, M.F. The Effect of leather fibers on the properties of rubber-leather composites. J. Compos. Mater. 2010, 44, 2801–2817. [Google Scholar] [CrossRef]
- Garcia, N.G.; dos Reis, E.A.P.; Budemberg, E.R.; Agostini, D.L.D.S.; Salmazo, L.O.; Cabrera, F.C.; Job, A.E. Natural rubber/leather waste composite foam: A new eco-friendly material and recycling ap proach. J. Appl. Polym. Sci. 2015, 132, 41636. [Google Scholar] [CrossRef]
- Ravichandran, K.; Natchimuthu, N. Natural rubber—Leather composites. Polímeros Ciência E Tecnol. 2005, 15, 102–108. Available online: https://www.redalyc.org/articulo.oa?id=47015207 (accessed on 12 July 2024). [CrossRef]
- Sui, G.; Zhong, W.H.; Yang, X.P.; Yu, Y.H.; Zhao, S.H. Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes. Polym. Adv. Technol. 2008, 19, 1543–1549. [Google Scholar] [CrossRef]
- Thomas, S.; Grohens, Y.; Jyotishkumar, P. Characterization of Polymer Blends; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2014. [Google Scholar] [CrossRef]
- Terada, N.; Kouge, K.; Komaguchi, K.; Hayakawa, S.; Tsutsumi, H. Thermal Stability Change of Insoluble Sulphur by a Heat Treatment and Its Mechanism Study. Anal. Sci. 2020, 36, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Bañón, E.; García, A.N.; Marcilla, A. Thermogravimetric analysis and Py-GC/MS for discrimination of leather from different animal species and tanning processes. J. Anal. Appl. Pyrolysis 2021, 159, 105244. [Google Scholar] [CrossRef]
- Islam, M.H.; Islam, M.R.; Dulal, M.; Afroj, S.; Karim, N. The effect of surface treatments and graphene-based modifications on mechanical properties of natural jute fiber composites: A review. iScience 2022, 25, 103597. [Google Scholar] [CrossRef]
- Teklay, A.; Gebeyehu, G.; Getachew, T.; Yaynshet, T.; Sastry, T.P. Preparation of value added composite boards using finished leather waste and plant fibers—A waste utilization effort in Ethiopia. Clean Technol. Env. Policy 2017, 19, 1285–1296. [Google Scholar] [CrossRef]
- Falkiewicz-Dulík, M. leather and leather products. In Handbook of Material Biodegradation, Biodeterioration and Biostablization; Elsevier: Amsterdam, The Netherlands, 2015; pp. 133–256. [Google Scholar] [CrossRef]
- Hoinacki, E. Peles e Couros: Origens, Defeitos e Industrialização, 2nd ed.; CIENTC/Novo Hamburgo: Hamburgo, Germany, 1989; Available online: https://books.google.com.co/books/about/Peles_e_couros.html?id=iinOZwEACAAJ&redir_esc=y (accessed on 22 September 2023).
- Gutterres, M.; Da, T.; Osório, S. Métodos analíticos especiales aplicados al cuero. Bol. De La Asoc. Química Esp. De La Ind. Del Cuero 2005, 56, 71–80. [Google Scholar]
Function | Materials | phr |
---|---|---|
Matrix | Natural rubber (NR) | 100 |
Filler | Leather residue (LR) | 0, 10, 20, 30, 40, 50, 60 |
Activator | Zinc oxide (ZnO) | 5 |
Activator | Stearic acid | 2 |
Curing agent | Sulfur (S) | 2.5 |
Lubricant | * Oleic acid | 6 |
Secondary accelerator | ** TMTM | 0.5 |
Primary accelerator | *** MBTS | 1.25 |
Composite (100 phr) | MH (dNm) | ML (dNm) | ΔM (dNm) | t90 (dNm) |
---|---|---|---|---|
NR 0 | 0.68 ± 0.12 | 0.05 ± 0.12 | 0.63 ± 0.12 | 6.336 ± 0.12 |
NR/LR 10 | 0.88 ± 0.12 | 0.09 ± 0.14 | 0.79 ± 0.13 | 9.65 ± 0.12 |
NR/LR 20 | 1.27 ± 0.13 | 0.12 ± 0.15 | 1.15 ± 0.14 | 10.618 ± 0.14 |
NR/LR 30 | 1.03 ± 0.14 | 0.14 ± 0.13 | 0.89 ± 0.11 | 8.952 ± 0.13 |
NR/LR 40 | 1.49 ± 0.13 | 0.24 ± 0.11 | 1.25 ± 0.12 | 8.216 ± 0.13 |
NR/LR 50 | 1 ± 0.14 | 0.2 ± 0.12 | 0.8 ± 0.13 | 6.554 ± 0.12 |
NR/LR 60 | 1.77 ± 0.13 | 0.26 ± 0.11 | 1.51 ± 0.11 | 6.098 ± 0.14 |
Composite (phr) | Density (g/cm3) |
---|---|
Pure gum (NR 0) | 0.98 ± 2 |
NR/LR 10 | 1.0 ± 2 |
NR/LR 20 | 1.01 ± 2 |
NR/LR 30 | 1.02 ± 2 |
NR/LR 40 | 1.04 ± 3 |
NR/LR 50 | 1.06 ± 3 |
NR/LR 60 | 1.07 ± 3 |
Composite (phr) | Loss Volume (mm3) | Abrasion Resistance (%) |
---|---|---|
NR | 264.2 ± 2.4 | 59 ± 3 |
NR/LR 10 | 214.2 ± 1.4 | 72.6 ± 2 |
NR/LR 20 | 213.6 ± 2.8 | 72.9 ± 2 |
NR/LR 30 | 251.6 ± 9.6 | 61.9 ± 3.3 |
NR/LR 40 | 245.5 ± 8.4 | 63.5 ± 2.3 |
NR/LR 50 | 258.4 ± 8.9 | 60.4 ± 3.9 |
NR/LR 60 | 422.5 ± 7.6 | 36.8 ± 2.3 |
Composite (phr) | Tensile Strength (MPa) | Deformation (%) |
---|---|---|
NR | 2.27 ± 0.41 | 212 ± 0.39 |
NR/LR 10 | 4.38 ± 1.16 | 168 ± 1.12 |
NR/LR 20 | 5.18 ± 0.27 | 54 ± 0.08 |
NR/LR 30 | 3.72 ± 0.69 | 76 ± 0.46 |
NR/LR 40 | 3.76 ± 0.86 | 67 ± 0.15 |
NR/LR 50 | 4.2 ± 0.4 | 45 ± 0.08 |
NR/LR 60 | 3.85 ± 0.29 | 23 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrera Torres, G.; Gutierrez Aguilar, C.M.; R. Lozada, E.; Tabares Montoya, M.J.; Ángel Álvarez, B.E.; Sánchez, J.C.; Jaramillo Carvalho, J.A.; Santos, R.J. Application of Post-Industrial Leather Waste for the Development of Sustainable Rubber Composites. Polymers 2025, 17, 190. https://doi.org/10.3390/polym17020190
Barrera Torres G, Gutierrez Aguilar CM, R. Lozada E, Tabares Montoya MJ, Ángel Álvarez BE, Sánchez JC, Jaramillo Carvalho JA, Santos RJ. Application of Post-Industrial Leather Waste for the Development of Sustainable Rubber Composites. Polymers. 2025; 17(2):190. https://doi.org/10.3390/polym17020190
Chicago/Turabian StyleBarrera Torres, G., Carlos M. Gutierrez Aguilar, Elizabeth R. Lozada, Manuel J. Tabares Montoya, Beatriz E. Ángel Álvarez, Juan C. Sánchez, Jaime A. Jaramillo Carvalho, and Renivaldo J. Santos. 2025. "Application of Post-Industrial Leather Waste for the Development of Sustainable Rubber Composites" Polymers 17, no. 2: 190. https://doi.org/10.3390/polym17020190
APA StyleBarrera Torres, G., Gutierrez Aguilar, C. M., R. Lozada, E., Tabares Montoya, M. J., Ángel Álvarez, B. E., Sánchez, J. C., Jaramillo Carvalho, J. A., & Santos, R. J. (2025). Application of Post-Industrial Leather Waste for the Development of Sustainable Rubber Composites. Polymers, 17(2), 190. https://doi.org/10.3390/polym17020190