Modelling of Mechanical Response of Weldlines in Injection-Moulded Short Fibre-Reinforced Polymer Components
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Preliminaries—Description of the Implemented Numerical Model
2.1.1. Effective Stiffness Tensor
Mori–Tanaka Homogenisation
Tensorial Description of Fibre Orientation Distribution
Orientation-Averaged Effective Stiffness
Closure Approximation
2.1.2. Approximation of Plastic Material Behaviour
Hill’s Yield Criterion
Orientation-Averaged Plasticity Model
2.1.3. Incorporation of Damage and Failure
2.1.4. Modelling of Mechanical Response of the Weld Area
2.1.5. Calibration Procedure
2.2. Experimental Investigation
2.3. Numerical Modelling
3. Results and Discussion
3.1. Model Calibration
3.2. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SFRP | Short fibre-reinforced polymer |
| FOD | Fibre orientation distribution |
| FE | Finite element |
| DIC | Digital image correlation |
References
- Oumer, A.N.; Mamat, O. A Review of Effects of Molding Methods, Mold Thickness and Other Processing Parameters on Fiber Orientation in Polymer Composites. Asian J. Sci. Res. 2013, 6, 401–410. [Google Scholar] [CrossRef]
- Launay, A.; Marco, Y.; Maitournam, M.H.; Raoul, I. Constitutive behavior of injection molded short glass fiber reinforced thermoplastics: A phenomenological approach. Procedia Eng. 2011, 10, 2003–2008. [Google Scholar] [CrossRef]
- Gupta, M.; Wang, K.K. Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results. Polym. Compos. 1993, 14, 367–382. [Google Scholar] [CrossRef]
- Zainudin, E.S.; Sapuan, S.M.; Sulaiman, S.; Ahmad, M.M.H.M. Fiber orientation of short fiber reinforced injection molded thermoplastic composites: A review. J. Inject. Molding Technol. 2002, 6, 1–10. [Google Scholar]
- Advani, S.G.; Tucker, C.L. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. J. Rheol. 1987, 31, 751–784. [Google Scholar] [CrossRef]
- Cruz, C.A. Integrative Simulation for Assessing the Mechanical Performance of a Weld Line on Injection Moulded Thermoplastic Parts. In Proceedings of the 11th World Congress Computational Mechanics (WCCM XI), Barcelona, Spain, 20–25 July 2014; p. 12. [Google Scholar]
- Zhou, H.; Li, D. Modelling and prediction of weld line location and properties based on injection moulding simulation. Int. J. Mater. Prod. Technol. 2004, 21, 526. [Google Scholar] [CrossRef]
- Fellahi, S.; Meddad, A.; Fisa, B.; Favis, B.D. Weldlines in injection-molded parts: A review. Adv. Polym. Technol. 1995, 14, 169–195. [Google Scholar] [CrossRef]
- Baradi, M.B.; Cruz, C.; Riedel, T.; Régnier, G. Frontal weld lines in injection-molded short fiber-reinforced PBT: Extensive microstructure characterization for mechanical performance evaluation. Polym. Compos. 2019, 40, 4547–4558. [Google Scholar] [CrossRef]
- Bonten, C. Plastics Technology: Introduction and Fundamentals; Carl Hanser Verlag GmbH & Company KG: Munich, Germany, 2019. [Google Scholar]
- Fisa, B.; Rahmani, M. Weldline strength in injection molded glass fiber-reinforced polypropylene. Polym. Eng. Sci. 1991, 31, 1330–1336. [Google Scholar] [CrossRef]
- Digimat 2023.3—Online Help (HTML), Hexagon, E-Xstream Engineering. Available online: https://nexus.hexagon.com/documentationcenter/en-US/bundle/digimat_2023.3/page/digimat_2023.3/Digimat_RG/Digimat_RG_2019/Digimat.RG.2019.xhtml (accessed on 30 August 2025).
- Autodesk Inc. Autodesk Knowledge Network-Helius PFA. Available online: https://knowledge.autodesk.com/support/helius-pfa?sort=score (accessed on 11 August 2020).
- de Gennes, P.G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. J. Chem. Phys. 1971, 55, 572–579. [Google Scholar] [CrossRef]
- Baradi, M.B.; Cruz, C.; Riedel, T.; Régnier, G. Mechanical and microstructural characterization of flowing weld lines in injection-molded short fiber-reinforced PBT. Polym. Test. 2019, 74, 152–162. [Google Scholar] [CrossRef]
- Baradi, M.B. A Step Towards Predicting the Mechanical Properties of Weld Lines in Injection-Molded Short Fiber-Reinforced Thermoplastics. Doctoral Thesis, Ecole Nationale Supérieure des Arts Et Métiers, Paris, France, 2019; p. 189. [Google Scholar]
- Kammoun, S.; Doghri, I.; Brassart, L.; Delannay, L. Micromechanical modeling of the progressive failure in short glass–fiber reinforced thermoplastics–First Pseudo-Grain Damage model. Compos. Part A Appl. Sci. Manuf. 2015, 73, 166–175. [Google Scholar] [CrossRef]
- Kaiser, J.-M.; Stommel, M. Micromechanical modeling and strength prediction of short fiber reinforced polymers. J. Polym. Eng. 2012, 32, 43–52. [Google Scholar] [CrossRef]
- Vogler, M.; Ernst, G.; Rolfes, R. Invariant Based Transversely-Isotropic Material and Failure Model for Fiber-Reinforced Polymers. Comput. Mater. Contin. 2010, 16, 25–50. [Google Scholar] [CrossRef]
- Dean, A.; Sahraee, S.; Reinoso, J.; Rolfes, R. A new invariant-based thermo-plastic model for finite deformation analysis of short fibre reinforced composites: Development and numerical aspects. Compos. Part B Eng. 2017, 125, 241–258. [Google Scholar] [CrossRef]
- Dean, A.; Grbic, N.; Rolfes, R.; Behrens, B. Macro-mechanical modeling and experimental validation of anisotropic, pressure- and temperature-dependent behavior of short fiber composites. Compos. Struct. 2019, 211, 630–643. [Google Scholar] [CrossRef]
- Notta-Cuvier, D.; Lauro, F.; Bennani, B. An original approach for mechanical modelling of short-fibre reinforced composites with complex distributions of fibre orientation. Compos. Part A Appl. Sci. Manuf. 2014, 62, 60–66. [Google Scholar] [CrossRef]
- Amiri-Rad, A.; Pastukhov, L.V.; Govaert, L.E.; van Dommelen, J.A.W. An anisotropic viscoelastic-viscoplastic model for short-fiber composites. Mech. Mater. 2019, 137, 103141. [Google Scholar] [CrossRef]
- Chebbi, E.; Wali, M.; Dammak, F. An anisotropic hyperelastic constitutive model for short glass fiber-reinforced polyamide. Int. J. Eng. Sci. 2016, 106, 262–272. [Google Scholar] [CrossRef]
- Launay, A.; Maitournam, M.H.; Marco, Y.; Raoult, I. Multiaxial fatigue models for short glass fiber reinforced polyamide—Part I: Nonlinear anisotropic constitutive behavior for cyclic response. Int. J. Fatigue 2013, 47, 382–389. [Google Scholar] [CrossRef]
- Jansson, J.; Gustafsson, T.; Salomonsson, K.; Olofsson, J.; Johansson, J.; Appelsved, P.; Palm, M. An anisotropic non-linear material model for glass fibre reinforced plastics. Compos. Struct. 2018, 195, 93–98. [Google Scholar] [CrossRef]
- Schulenberg, L.; Seelig, T.; Andrieux, F.; Sun, D.-Z. An anisotropic elasto-plastic material model for injection-molded long fiber-reinforced thermoplastics accounting for local fiber orientation distributions. J. Compos. Mater. 2017, 51, 2061–2078. [Google Scholar] [CrossRef]
- Mori, T.; Tanaka, K. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 1973, 21, 571–574. [Google Scholar] [CrossRef]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. 1957, 376–396. [Google Scholar]
- Chung, D.H.; Kwon, T.H. Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J. Rheol. 2002, 46, 169–194. [Google Scholar] [CrossRef]
- Doghri, I.; Ouaar, A. Homogenization of two-phase elasto-plastic composite materials and structures. Int. J. Solids Struct. 2003, 40, 1681–1712. [Google Scholar] [CrossRef]
- Doghri, I.; Friebel, C. Effective elasto-plastic properties of inclusion-reinforced composites. Study of shape, orientation and cyclic response. Mech. Mater. 2005, 37, 45–68. [Google Scholar] [CrossRef]
- Doghri, I.; Tinel, L. Micromechanics of inelastic composites with misaligned inclusions: Numerical treatment of orientation. Comput. Methods Appl. Mech. Eng. 2006, 195, 1387–1406. [Google Scholar] [CrossRef]
- Doghri, I.; Brassart, L.; Adam, L.; Gérard, J.-S. A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int. J. Plast. 2011, 27, 352–371. [Google Scholar] [CrossRef]
- Nghiep Nguyen, B.; Bapanapalli, S.K.; Kunc, V.; Phelps, J.H.; Tucker, C.L. Prediction of the Elastic—Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics. J. Compos. Mater. 2009, 43, 217–246. [Google Scholar] [CrossRef]
- Nghiep Nguyen, B.; Kunc, V. An Elastic-plastic Damage Model for Long-fiber Thermoplastics. Int. J. Damage Mech. 2010, 19, 691–725. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Bapanapalli, S.K.; Holbery, J.D.; Smith, M.T.; Kunc, V.; Frame, B.J.; Phelps, J.H.; Tucker, C.L. Fiber Length and Orientation in Long-Fiber Injection-Molded Thermoplastics—Part I: Modeling of Microstructure and Elastic Properties. J. Compos. Mater. 2008, 42, 1003–1029. [Google Scholar] [CrossRef]
- Hill, R. A theory of the yielding and plastic flow of anisotropi metals. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 1984, 281–297. [Google Scholar] [CrossRef]
- Aravas, N. Finite elastoplastic transformations of transversely isotropic metals. Int. J. Solids Struct. 1992, 29, 2137–2157. [Google Scholar] [CrossRef]
- Murakami, S. Solid Mechanics and Its Applications. In Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Plastum.cz. Plastum, “Technical Data Sheet PA 66”. Available online: https://www.plastum.cz/download/matlist/PA_66%28EN%29.pdf (accessed on 25 August 2025).
- Seldén, R. Effect of processing on weld line strength in five thermoplastics: Effect of Processing on Weld Line Strength in Five Thermoplastics. Polym. Eng. Sci. 1997, 37, 205–218. [Google Scholar] [CrossRef]
- Tomari, K.; Takashima, H.; Hamada, H. Improvement of weldline strength of fiber reinforced polycarbonate injection molded articles using simultaneous composite injection molding. Adv. Polym. Technol. 1995, 14, 25–34. [Google Scholar] [CrossRef]
- Malguarnera, S.C.; Manisali, A. The effects of processing parameters on the tensile properties of weld lines in injection molded thermoplastics. Polym. Eng. Sci. 1981, 21, 586–593. [Google Scholar] [CrossRef]
- Hashemi, S. Effect of temperature on weldline integrity of injection moulded short glass fibre and glass bead filled ABS hybrids. Polym. Test. 2010, 29, 327–336. [Google Scholar] [CrossRef]
- Quintana, M.C.; Frontini, P. Weld line strength factors in a reinforced injection molded part: Relationship with predicted fiber orientation. J. Reinf. Plast. Compos. 2020, 39, 219–230. [Google Scholar] [CrossRef]













| Melt Temperature [°C] | Mould Temperature [°C] | Injection Pressure [bar] | Screw Speed [mm/s] | Packing Pressure [bar] |
|---|---|---|---|---|
| 290 | 54 | 550 | 30 | 410 |
| Company | Dantec Dynamics GmbH (Ulm, Germany) |
| Model | Q-400 |
| Cameras | Manta G-507 (3 pieces) |
| Image resolution | 2464 × 2056 pixel |
| Objective focal distance | 35 mm |
| Field of view | approx. 100 mm × 25 mm (1), 70 mm × 25 mm (2), 15 mm × 25 mm (3) |
| Patterning technique | matt white spray paint speckles |
| Pattern feature size | approx. 3 pixels |
| DIC software | DANTEC Dynamics, Istra 4D (ver. 4.6) |
| Facet size | 19 pixels |
| Grid spacing | 12 pixels |
| Spatial smoothing | none |
| Temporal smoothing | none |
| Number of acquired data points | 7500 (1), 3300 (2), 4000 (3) |
| FE Model | Sample (Figure 5) | Dimension [mm] | Discretisation C3D8R | Mesh Size [mm] | Symmetry Plane |
|---|---|---|---|---|---|
| a | 20 × 10 × 2.3 | 975 | 0.8 (3 layers across section) | xz | |
| b | 30 × 10 × 2.3 | 1104 | 0.8 (3 layers across section) | xz | |
| c | 4 × 20 × 2.3 | 1600 | 0.5 (5 layers across section) | yz | |
| d | 15 × 20 × 2.3 | 5370 | 0.5 (5 layers across section) | yz |
| Parameter | Value | Parameters of/for |
|---|---|---|
| Ep: Polyamide 66 Young’s modulus [GPa] | 3.7 (1) | isotropic elasticity of base materials |
| νp: Polyamide 66 Poisson’s ratio | 0.3 (1) | |
| Ef: Glass fibre Young’s modulus [GPa] | 70 (1) | |
| νf: Glass fibre Poisson’s ratio | 0.2 (1) | |
| λ: Glass fibre aspect ratio | 28 (1) | |
| mf: Glass fibre mass percentage [%] | 25 (1) | |
| : hardening parameter [MPa] | 50 (2) | plasticity |
| h: hardening parameter [MPa] | 1400 (2) | |
| q: hardening parameter | 0.45 (2) | |
| F: Hill’s yield criterion parameter | 2.4 (2) | |
| G: Hill’s yield criterion parameter | 0.42 (2) | |
| M: Hill’s yield criterion parameter | 1.5 (2) | |
| : failure strain | 0.15 (3) | damage outside the weld area |
| g: damage evolution exponent | 0.58 (3) | |
| : weldline-influenced area [mm] | 4 (4) | damage in the weld area |
| : initial weld damage | 0.43 (5) | |
| : weld damage evolution | 0.833 (5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nabergoj, M.; Urevc, J.; Halilovič, M. Modelling of Mechanical Response of Weldlines in Injection-Moulded Short Fibre-Reinforced Polymer Components. Polymers 2025, 17, 2712. https://doi.org/10.3390/polym17192712
Nabergoj M, Urevc J, Halilovič M. Modelling of Mechanical Response of Weldlines in Injection-Moulded Short Fibre-Reinforced Polymer Components. Polymers. 2025; 17(19):2712. https://doi.org/10.3390/polym17192712
Chicago/Turabian StyleNabergoj, Matija, Janez Urevc, and Miroslav Halilovič. 2025. "Modelling of Mechanical Response of Weldlines in Injection-Moulded Short Fibre-Reinforced Polymer Components" Polymers 17, no. 19: 2712. https://doi.org/10.3390/polym17192712
APA StyleNabergoj, M., Urevc, J., & Halilovič, M. (2025). Modelling of Mechanical Response of Weldlines in Injection-Moulded Short Fibre-Reinforced Polymer Components. Polymers, 17(19), 2712. https://doi.org/10.3390/polym17192712

