The Role of Artificial Intelligence in Biomaterials Science: A Review
Abstract
1. Introduction
2. Methodology
3. Artificial Intelligence: From Data Science to Machine Learning
3.1. Data Collection
Database | Material | Reference |
---|---|---|
PI1M | Polymer | [46] |
PolyInfo | Polymer | [47] |
Khazana | Polymer | [48] |
Polymers: a Property Database | Polymer | [49] |
Polymer Property Predictor and Database | Polymer | [50] |
Block Copolymer Phase Behavior Database | Polymer | [51] |
CAMPUS | Polymer | [52] |
Electron Affinity and Ionization Potential Data | Polymer | [53] |
Silkome | Spider silk | [54] |
SciGlass | Ceramic | [55] |
Interglad | Ceramic | [56] |
The Materials Project | Miscellanea | [57] |
Ansys Granta | Miscellanea | [58] |
MatWeb | Miscellanea | [59] |
Atomly | Miscellanea | [60] |
3.2. Data Translation
3.3. Model Selection
4. Machine Learning for Biomaterials
4.1. Ceramics and Bioactive Glasses
4.2. Polymers
4.3. Metals
4.4. Composites
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADA | Alginate Dialdehyde |
AM | Additive Manufacturing |
AI | Artificial Intelligence |
ANN | Artificial Neural Network |
BG | Bioactive glass |
BMG | Bulk metallic glass |
CALPHAD | Calculation of Phase Diagram |
CNN | Convolutional neural network |
CGCNN | Crystal Graph Convolution Neural Networks |
DL | Deep Learning |
Td | Degradation temperature |
DoE | Design of Experiments |
XGBoost | Extreme gradient boosting |
FAIR | Findable, Accessible, Interoperable, Reusable |
FEM | Finite element method |
GPR | Gaussian process regression |
GA | Genetic algorithm |
GAN | Generative adversarial networks |
Tg | Glass transition temperature |
HA | Hydroxyapatite |
ML | Machine Learning |
Ms | Martensitic transformation start temperature |
MEGNet | MatErials Graph Network |
Dmax | Maximum rod diameter |
Tm | Melting temperature |
MLP | Multilayer perceptron |
PINNs | Physics-Informed Neural Networks |
PCL | Polycaprolactone |
PEG | Polyethylene glycol |
PLA | Polylactic acid |
PVA | Polyvinyl alcohol |
RF | Random forest |
RSM | Response surface methodology |
RMSE | Root mean square error |
SHAP | Shapley Additive exPlanation |
SMILES | Simplified Molecular Input Line system |
SVM | Support vector machine |
SVR | Support vector regression |
ΔTx | Supercooled liquid region |
Ti alloy | Titanium alloy |
UHMWPE | Ultra-high molecular weight polyethylene |
VAE | Variational autoencoders |
β-TCP | β-tricalcium phosphate |
References
- Kerner, J.; Dogan, A.; von Recum, H. Machine Learning and Big Data Provide Crucial Insight for Future Biomaterials Discovery and Research. Acta Biomater. 2021, 130, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Mohanty, S.K.; Gautam, V.; Arora, S.; Saproo, S.; Gupta, R.; Sivakumar, R.; Garg, P.; Aggarwal, A.; Raghavachary, P.; et al. Artificial Intelligence Uncovers Carcinogenic Human Metabolites. Nat. Chem. Biol. 2022, 18, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Smak Gregoor, A.M.; Sangers, T.E.; Bakker, L.J.; Hollestein, L.; Uyl-de Groot, C.A.; Nijsten, T.; Wakkee, M. An Artificial Intelligence Based App for Skin Cancer Detection Evaluated in a Population Based Setting. npj Digit. Med. 2023, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial Intelligence-Enabled Detection and Assessment of Parkinson’s Disease Using Nocturnal Breathing Signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef]
- Cacopardo, L. Biomaterials and Biocompatibility. In Human Orthopaedic Biomechanics: Fundamentals, Devices and Applications; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Eldeeb, A.E.; Salah, S.; Elkasabgy, N.A. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022, 23, 267. [Google Scholar] [CrossRef]
- Farag, M.M. Recent Trends on Biomaterials for Tissue Regeneration Applications: Review. J. Mater. Sci. 2023, 58, 527–558. [Google Scholar] [CrossRef]
- Prem Ananth, K.; Jayram, N.D. A Comprehensive Review of 3D Printing Techniques for Biomaterial-Based Scaffold Fabrication in Bone Tissue Engineering. Ann. 3D Print. Med. 2024, 13, 100141. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, X.; Guo, Q.; Wu, T.; Wang, Y. 3D Bioprinted Scaffolds for Tissue Repair and Regeneration. Front. Mater. 2022, 9, 925321. [Google Scholar] [CrossRef]
- Martelli, A.; Bellucci, D.; Cannillo, V. Additive Manufacturing of Polymer/Bioactive Glass Scaffolds for Regenerative Medicine: A Review. Polymers 2023, 15, 2473. [Google Scholar] [CrossRef]
- Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A.; et al. Metallic Biomaterials: Current Challenges and Opportunities. Materials 2017, 10, 884. [Google Scholar] [CrossRef]
- Vaiani, L.; Boccaccio, A.; Uva, A.E.; Palumbo, G.; Piccininni, A.; Guglielmi, P.; Cantore, S.; Santacroce, L.; Charitos, I.A.; Ballini, A. Ceramic Materials for Biomedical Applications: An Overview on Properties and Fabrication Processes. J. Funct. Biomater. 2023, 14, 146. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Ma, P.X.; Liverani, L. Tissue Engineering Using Ceramics and Polymers, 3rd ed.; Woodhead Publishing: Sawstone, UK, 2021. [Google Scholar]
- Asghari, F.; Samiei, M.; Adibkia, K.; Akbarzadeh, A.; Davaran, S. Biodegradable and Biocompatible Polymers for Tissue Engineering Application: A Review. Artif. Cells Nanomed. Biotechnol. 2017, 45, 185–192. [Google Scholar] [CrossRef]
- Joseph, B.; George, A.; Gopi, S.; Kalarikkal, N.; Thomas, S. Polymer Sutures for Simultaneous Wound Healing and Drug Delivery—A Review. Int. J. Pharm. 2017, 524, 454–466. [Google Scholar] [CrossRef]
- Boccaccini, A.R.; Blaker, J.J. Bioactive Composite Materials for Tissue Engineering Scaffolds. Expert Rev. Med. Devices 2005, 2, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Khanna, C.; Sah, M.K.; Flora, B. Composite Biomaterials in Tissue Engineering: Retrospective and Prospects. In Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches; Springer Nature: Singapore, 2021. [Google Scholar]
- Sha, W.; Guo, Y.; Yuan, Q.; Tang, S.; Zhang, X.; Lu, S.; Guo, X.; Cao, Y.-C.; Cheng, S. Artificial Intelligence to Power the Future of Materials Science and Engineering. Adv. Intell. Syst. 2020, 2, 1900143. [Google Scholar] [CrossRef]
- Gokcekuyu, Y.; Ekinci, F.; Guzel, M.S.; Acici, K.; Aydin, S.; Asuroglu, T. Artificial Intelligence in Biomaterials: A Comprehensive Review. Appl. Sci. 2024, 14, 6590. [Google Scholar] [CrossRef]
- Suwardi, A.; Wang, F.; Xue, K.; Han, M.-Y.; Teo, P.; Wang, P.; Wang, S.; Liu, Y.; Ye, E.; Li, Z.; et al. Machine Learning-Driven Biomaterials Evolution. Adv. Mater. 2022, 34, 2102703. [Google Scholar] [CrossRef]
- Xie, S. Perspectives on Development of Biomedical Polymer Materials in Artificial Intelligence Age. J. Biomater. Appl. 2023, 37, 1355–1375. [Google Scholar] [CrossRef]
- Sarvestani, H.Y.; Singh, A.; Ashrafi, B. Bridging Nature and Technology: A Perspective on Role of Machine Learning in Bioinspired Ceramics. Adv. Eng. Mater. 2024, 2400792. [Google Scholar] [CrossRef]
- Russell, S.; Norivg, P. Artificial Intelligence: A Modern Approach (Global Edition); Pearson: London, UK, 2021. [Google Scholar]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction. IEEE Trans. Neural Netw. 1998, 9, 1054. [Google Scholar] [CrossRef]
- Littman, M.L. Memoryless Policies: Theoretical Limitations and Practical Results. In From Animals to Animats 3; MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Sequeira, P.; Gervasio, M. Interestingness Elements for Explainable Reinforcement Learning: Understanding Agents’ Capabilities and Limitations. Artif. Intell. 2020, 288, 103367. [Google Scholar] [CrossRef]
- Soofi, A.A.; Awan, A. Classification Techniques in Machine Learning: Applications and Issues. J. Basic Appl. Sci. 2017, 13, 459–465. [Google Scholar] [CrossRef]
- Sidey-Gibbons, J.A.M.; Sidey-Gibbons, C.J. Machine Learning in Medicine: A Practical Introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef]
- Choudhary, K.; DeCost, B.; Chen, C.; Jain, A.; Tavazza, F.; Cohn, R.; Park, C.W.; Choudhary, A.; Agrawal, A.; Billinge, S.J.L.; et al. Recent Advances and Applications of Deep Learning Methods in Materials Science. npj Comput. Mater. 2022, 8, 59. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.M.; Suhail Hussain, S.M.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimization Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Karande, P.; Gallagher, B.; Han, T.Y.J. A Strategic Approach to Machine Learning for Material Science: How to Tackle Real-World Challenges and Avoid Pitfalls. Chem. Mater. 2022, 34, 7650–7665. [Google Scholar] [CrossRef]
- Song, Z.; Chen, X.; Meng, F.; Cheng, G.; Wang, C.; Sun, Z.; Yin, W.J. Machine Learning in Materials Design: Algorithm and Application. Chin. Phys. B 2020, 29, 116103. [Google Scholar] [CrossRef]
- Meyer, T.A.; Ramirez, C.; Tamasi, M.J.; Gormley, A.J. A User’s Guide to Machine Learning for Polymeric Biomaterials. ACS Polym. Au 2023, 3, 141–157. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of Machine Learning in Drug Discovery and Development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, N.; Campbell, S.; Carvalho, A.; Harapanahalli, S.; Hernandez, G.V.; Krpalkova, L.; Riordan, D.; Walsh, J. Deep Learning vs. Traditional Computer Vision. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2020; Volume 943. [Google Scholar]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y. A Comparison of Traditional Machine Learning and Deep Learning in Image Recognition. Proc. J. Phys. Conf. Ser. 2019, 1314, 012148. [Google Scholar] [CrossRef]
- Taye, M.M. Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers 2023, 12, 91. [Google Scholar] [CrossRef]
- Cencer, M.M.; Moore, J.S.; Assary, R.S. Machine Learning for Polymeric Materials: An Introduction. Polym. Int. 2022, 71, 537–542. [Google Scholar] [CrossRef]
- McDonald, S.M.; Augustine, E.K.; Lanners, Q.; Rudin, C.; Catherine Brinson, L.; Becker, M.L. Applied Machine Learning as a Driver for Polymeric Biomaterials Design. Nat. Commun. 2023, 14, 4838. [Google Scholar] [CrossRef]
- Mateu-Sanz, M.; Fuenteslópez, C.V.; Uribe-Gomez, J.; Haugen, H.J.; Pandit, A.; Ginebra, M.P.; Hakimi, O.; Krallinger, M.; Samara, A. Redefining Biomaterial Biocompatibility: Challenges for Artificial Intelligence and Text Mining. Trends Biotechnol. 2024, 42, 402–417. [Google Scholar] [CrossRef]
- Ma, R.; Luo, T. PI1M: A Benchmark Database for Polymer Informatics. J. Chem. Inf. Model. 2020, 60, 4684–4690. [Google Scholar] [CrossRef]
- Otsuka, S.; Kuwajima, I.; Hosoya, J.; Xu, Y.; Yamazaki, M. PoLyInfo: Polymer Database for Polymeric Materials Design. In Proceedings of the 2011 International Conference on Emerging Intelligent Data and Web Technologies, EIDWT 2011, Tirana, Albania, 7–9 September 2011. [Google Scholar]
- R. Ramprasad Group Khazana. A Computational Materials Knowledgebase. Available online: https://khazana.gatech.edu/ (accessed on 26 January 2024).
- CHEMnetBASE Products. Polymers: A Property Database. Available online: https://poly.chemnetbase.com/polymers/PolymerSearch.xhtml?dswid=2933 (accessed on 26 January 2024).
- Center for Hierarchical Material Design. Polymer Property Predictor and Database. Available online: https://pppdb.uchicago.edu/ (accessed on 26 January 2024).
- Rebello, N.; Arora, A.; Mochigase, H.; Lin, T.-S.L.; Audus, D.; Olsen, B. Block Copolymer Phase Behavior Database (BCDB). Available online: https://github.com/olsenlabmit/BCDB (accessed on 26 January 2024).
- CAMPUS. Available online: https://www.campusplastics.com/campus/ (accessed on 26 January 2024).
- Aldeghi, M.; Coley, C.W. A Graph Representation of Molecular Ensembles for Polymer Property Prediction. Chem. Sci. 2022, 13, 10486–10498. [Google Scholar] [CrossRef]
- Arakawa, K.; Kono, N.; Malay, A.D.; Tateishi, A.; Ifuku, N.; Masunaga, H.; Sato, R.; Tsuchiya, K.; Ohtoshi, R.; Pedrazzoli, D.; et al. 1000 Spider Silkomes: Linking Sequences to Silk Physical Properties. Sci. Adv. 2022, 8, eabo6043. [Google Scholar] [CrossRef]
- iScienceSearch. SciGlass. Available online: https://www.akoscheminformatics.de/sciglass/sciglass.htm (accessed on 13 February 2024).
- International Glass Database System Interglad Ver. 8. Available online: https://www.newglass.jp/interglad_n/gaiyo/info_e.html (accessed on 13 February 2024).
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- ANSYS Inc. Ansys GRANTA EduPack Software. Available online: www.ansys.com/materials (accessed on 12 February 2024).
- MatWeb. Material Property Data. Available online: https://www.matweb.com/index.aspx (accessed on 26 January 2024).
- Miao, L.; Sheng, M. Atomly. Available online: https://atomly.net/#/ (accessed on 4 April 2024).
- Brauer, D.S.; Rüssel, C.; Kraft, J. Solubility of Glasses in the System P2O5-CaO-MgO-Na2O-TiO2: Experimental and Modeling Using Artificial Neural Networks. J. Non Cryst. Solids 2007, 353, 263–270. [Google Scholar] [CrossRef]
- Ege, D.; Boccaccini, A.R. Investigating the Effect of Processing and Material Parameters of Alginate Dialdehyde-Gelatin (ADA-GEL)-Based Hydrogels on Stiffness by XGB Machine Learning Model. Bioengineering 2024, 11, 415. [Google Scholar] [CrossRef]
- Kuenneth, C.; Rajan, A.C.; Tran, H.; Chen, L.; Kim, C.; Ramprasad, R. Polymer Informatics with Multi-Task Learning. Patterns 2021, 2, 100238. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Xie, Z.; Yang, S.; Wu, H.; Bi, Z.; Zhang, Q.; Xiao, Y. Machine Learning Approach to Investigating Macrophage Polarization on Various Titanium Surface Characteristics. BME Front. 2025, 6, 0100. [Google Scholar] [CrossRef] [PubMed]
- Douest, Y.; Forrest, R.M.; Ter-Ovanessian, B.; Courtois, N.; Tancret, F.; Greer, A.L.; Chevalier, J.; Fabrègue, D. Machine Learning-Guided Exploration and Experimental Assessment of Unreported Compositions in the Quaternary Ti-Zr-Cu-Pd Biocompatible Metallic Glass System. Acta Biomater. 2024, 175, 411–421. [Google Scholar] [CrossRef]
- Xu, P.; Ji, X.; Li, M.; Lu, W. Small Data Machine Learning in Materials Science. npj Comput. Mater. 2023, 9, 42. [Google Scholar] [CrossRef]
- Yu, Z.; Ye, S.; Sun, Y.; Zhao, H.; Feng, X.Q. Deep Learning Method for Predicting the Mechanical Properties of Aluminum Alloys with Small Data Sets. Mater. Today Commun. 2021, 28, 102570. [Google Scholar] [CrossRef]
- St John, P.C.; Phillips, C.; Kemper, T.W.; Wilson, A.N.; Guan, Y.; Crowley, M.F.; Nimlos, M.R.; Larsen, R.E. Message-Passing Neural Networks for High-Throughput Polymer Screening. J. Chem. Phys. 2019, 150, 234111. [Google Scholar] [CrossRef]
- Kumar, J.N.; Li, Q.; Jun, Y. Challenges and Opportunities of Polymer Design with Machine Learning and High Throughput Experimentation. MRS Commun. 2019, 9, 537–544. [Google Scholar] [CrossRef]
- Reis, M.; Gusev, F.; Taylor, N.G.; Chung, S.H.; Verber, M.D.; Lee, Y.Z.; Isayev, O.; Leibfarth, F.A. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J. Am. Chem. Soc. 2021, 143, 17677–17689. [Google Scholar] [CrossRef]
- Oliver, S.; Zhao, L.; Gormley, A.J.; Chapman, R.; Boyer, C. Living in the Fast Lane—High Throughput Controlled/Living Radical Polymerization. Macromolecules 2018, 52, 3–23. [Google Scholar] [CrossRef]
- Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Cent. Sci. 2019, 5, 1717–1730. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Damewood, J.; Karaguesian, J.; Lunger, J.R.; Tan, A.R.; Xie, M.; Peng, J.; Gómez-Bombarelli, R. Representations of Materials for Machine Learning. Annu. Rev. Mater. Res. 2023, 53, 399–426. [Google Scholar] [CrossRef]
- Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98, 146401. [Google Scholar] [CrossRef]
- Isayev, O.; Oses, C.; Toher, C.; Gossett, E.; Curtarolo, S.; Tropsha, A. Universal Fragment Descriptors for Predicting Properties of Inorganic Crystals. Nat. Commun. 2017, 8, 15679. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Yang, Q.; Yang, J.D.; Zhang, L.; Luo, S. Prediction of Bond Dissociation Energy for Organic Molecules Based on a Machine-Learning Approach. Chin. J. Chem. 2024, 42, 1967–1974. [Google Scholar] [CrossRef]
- Rupp, M.; Tkatchenko, A.; Müller, K.R.; Von Lilienfeld, O.A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 2012, 108, 058301. [Google Scholar] [CrossRef]
- Halldin Stenlid, J.; Abild-Pedersen, F. Revealing Local and Directional Aspects of Catalytic Active Sites by the Nuclear and Surface Electrostatic Potential. J. Phys. Chem. C 2024, 128, 4544–4558. [Google Scholar] [CrossRef]
- Carlsson, G. Topological Methods for Data Modelling. Nat. Rev. Phys. 2020, 2, 697–708. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, D.; Chen, X.; Li, T.; Wei, G.W.; Pan, F. Topological Representations of Crystalline Compounds for the Machine-Learning Prediction of Materials Properties. npj Comput. Mater. 2021, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Grossman, J.C. Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties. Phys. Rev. Lett. 2018, 120, 145301. [Google Scholar] [CrossRef]
- Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S.P. Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals. Chem. Mater. 2019, 31, 3564–3572. [Google Scholar] [CrossRef]
- Weininger, D. SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Lin, T.S.; Coley, C.W.; Mochigase, H.; Beech, H.K.; Wang, W.; Wang, Z.; Woods, E.; Craig, S.L.; Johnson, J.A.; Kalow, J.A.; et al. BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules. ACS Cent. Sci. 2019, 5, 1523–1531. [Google Scholar] [CrossRef]
- Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials. NPJ Comput. Mater. 2016, 2, 16028. [Google Scholar] [CrossRef]
- Stuart, S.; Watchorn, J.; Gu, F.X. Sizing up Feature Descriptors for Macromolecular Machine Learning with Polymeric Biomaterials. npj Comput. Mater. 2023, 9, 102. [Google Scholar] [CrossRef]
- Himanen, L.; Jäger, M.O.J.; Morooka, E.V.; Federici Canova, F.; Ranawat, Y.S.; Gao, D.Z.; Rinke, P.; Foster, A.S. DScribe: Library of Descriptors for Machine Learning in Materials Science. Comput. Phys. Commun. 2020, 247, 106949. [Google Scholar] [CrossRef]
- Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; van Hoesel, C.; Schopmans, H.; Sommer, T.; et al. Graph Neural Networks for Materials Science and Chemistry. Commun. Mater. 2022, 3, 93. [Google Scholar] [CrossRef]
- Liang, Y.; Wei, X.; Peng, Y.; Wang, X.; Niu, X. A Review on Recent Applications of Machine Learning in Mechanical Properties of Composites. Polym. Compos. 2025, 46, 1939–1960. [Google Scholar] [CrossRef]
- Menon, D.; Ranganathan, R. A Generative Approach to Materials Discovery, Design, and Optimization. ACS Omega 2022, 7, 25958–25973. [Google Scholar] [CrossRef] [PubMed]
- Dan, Y.; Zhao, Y.; Li, X.; Li, S.; Hu, M.; Hu, J. Generative Adversarial Networks (GAN) Based Efficient Sampling of Chemical Composition Space for Inverse Design of Inorganic Materials. npj Comput. Mater. 2020, 6, 84. [Google Scholar] [CrossRef]
- Zeni, C.; Pinsler, R.; Zügner, D.; Fowler, A.; Horton, M.; Fu, X.; Shysheya, S.; Crabbé, J.; Sun, L.; Smith, J.; et al. MatterGen: A Generative Model for Inorganic Materials Design. Nature 2023, 639, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Khatamsaz, D.; Neuberger, R.; Roy, A.M.; Zadeh, S.H.; Otis, R.; Arróyave, R. A Physics Informed Bayesian Optimization Approach for Material Design: Application to NiTi Shape Memory Alloys. NPJ Comput. Mater. 2023, 9, 221. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Li, Q.; Fu, N.; Omee, S.S.; Hu, J. MD-HIT: Machine Learning for Materials Property Prediction with Dataset Redundancy Control. npj Comput. Mater. 2024, 10, 245. [Google Scholar] [CrossRef]
- Pyzer-Knapp, E.O.; Manica, M.; Staar, P.; Morin, L.; Ruch, P.; Laino, T.; Smith, J.R.; Curioni, A. Foundation Models for Materials Discovery—Current State and Future Directions. npj Comput. Mater. 2025, 11, 61. [Google Scholar] [CrossRef]
- Javaid, S.; Gorji, H.T.; Soulami, K.B.; Kaabouch, N. Identification and Ranking Biomaterials for Bone Scaffolds Using Machine Learning and PROMETHEE. Res. Biomed. Eng. 2023, 39, 129–138. [Google Scholar] [CrossRef]
- Agarwal, R.; Singh, J.; Gupta, V. Predicting the Compressive Strength of Additively Manufactured PLA-Based Orthopedic Bone Screws: A Machine Learning Framework. Polym. Compos. 2022, 43, 5663–5674. [Google Scholar] [CrossRef]
- Yang, J.; Hao, Z.; Xu, J.; Wang, J.; Jiang, X. Fusion Machine Learning Model Predicts CAD-CAM Ceramic Colors and the Corresponding Minimal Thicknesses over Various Clinical Backgrounds. Dent. Mater. 2023, 40, 285–296. [Google Scholar] [CrossRef]
- Shi, H.; Zhou, Z.; Li, W.; Fan, Y.; Li, Z.; Wei, J. Hydroxyapatite Based Materials for Bone Tissue Engineering: A Brief and Comprehensive Introduction. Crystals 2021, 11, 149. [Google Scholar] [CrossRef]
- Ibrahimi, S.; D’Andrea, L.; Gastaldi, D.; Rivolta, M.W.; Vena, P. Machine Learning Approaches for the Design of Biomechanically Compatible Bone Tissue Engineering Scaffolds. Comput. Methods Appl. Mech. Eng. 2024, 423, 116842. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Y.; Dai, Z.; Yang, F.; Fallahpour, A.; Nasiri-Tabrizi, B. Structural Features Modeling of Substituted Hydroxyapatite Nanopowders as Bone Fillers via Machine Learning. Ceram. Int. 2021, 47, 9034–9047. [Google Scholar] [CrossRef]
- Cassar, D.R.; Mastelini, S.M.; Botari, T.; Alcobaça, E.; de Carvalho, A.C.P.L.F.; Zanotto, E.D. Predicting and Interpreting Oxide Glass Properties by Machine Learning Using Large Datasets. Ceram. Int. 2021, 47, 23958–23972. [Google Scholar] [CrossRef]
- Wu, C.; Entezari, A.; Zheng, K.; Fang, J.; Zreiqat, H.; Steven, G.P.; Swain, M.V.; Li, Q. A Machine Learning-Based Multiscale Model to Predict Bone Formation in Scaffolds. Nat. Comput. Sci. 2021, 1, 532–541. [Google Scholar] [CrossRef]
- Motojima, K.; Shiratsuchi, R.; Suzuki, K.; Aizawa, M.; Kaneko, H. Machine Learning Model for Predicting the Material Properties and Bone Formation Rate and Direct Inverse Analysis of the Model for New Synthesis Conditions of Bioceramics. Ind. Eng. Chem. Res. 2023, 62, 5898–5906. [Google Scholar] [CrossRef]
- Horikawa, S.; Suzuki, K.; Motojima, K.; Nakano, K.; Nagaya, M.; Nagashima, H.; Kaneko, H.; Aizawa, M. Material Design of Porous Hydroxyapatite Ceramics via Inverse Analysis of an Estimation Model for Bone-Forming Ability Based on Machine Learning and Experimental Validation of Biological Hard Tissue Responses. Materials 2024, 17, 571. [Google Scholar] [CrossRef]
- Lin, S.; Zhuang, Y.; Chen, K.; Lu, J.; Wang, K.; Han, L.; Li, M.; Li, X.; Zhu, X.; Yang, M.; et al. Osteoinductive Biomaterials: Machine Learning for Prediction and Interpretation. Acta Biomater. 2024, 187, 422–433. [Google Scholar] [CrossRef]
- Han, T.; Stone-Weiss, N.; Huang, J.; Goel, A.; Kumar, A. Machine Learning as a Tool to Design Glasses with Controlled Dissolution for Healthcare Applications. Acta Biomater. 2020, 107, 286–298. [Google Scholar] [CrossRef]
- Anand, A.; Sengupta, S.; Kaňková, H.; Švančárková, A.; Beltrán, A.M.; Galusek, D.; Boccaccini, A.R.; Galusková, D. Influence of Copper-Strontium Co-Doping on Bioactivity, Cytotoxicity and Antibacterial Activity of Mesoporous Bioactive Glass. Gels 2022, 8, 743. [Google Scholar] [CrossRef]
- Pajares-Chamorro, N.; Wagley, Y.; Maduka, C.V.; Youngstrom, D.W.; Yeger, A.; Badylak, S.F.; Hammer, N.D.; Hankenson, K.; Chatzistavrou, X. Silver-Doped Bioactive Glass Particles for in Vivo Bone Tissue Regeneration and Enhanced Methicillin-Resistant Staphylococcus Aureus (MRSA) Inhibition. Mater. Sci. Eng. C 2021, 120, 111693. [Google Scholar] [CrossRef]
- Echezarreta-López, M.M.; Landin, M. Using Machine Learning for Improving Knowledge on Antibacterial Effect of Bioactive Glass. Int. J. Pharm. 2013, 453, 641–647. [Google Scholar] [CrossRef]
- Sedigh, A.; Ghelich, P.; Quint, J.; Mollocana-Lara, E.C.; Samandari, M.; Tamayol, A.; Tomlinson, R.E. Approximating Scaffold Printability Utilizing Computational Methods. Biofabrication 2023, 15, 025014. [Google Scholar] [CrossRef]
- Wu, C.; Wan, B.; Entezari, A.; Fang, J.; Xu, Y.; Li, Q. Machine Learning-Based Design for Additive Manufacturing in Biomedical Engineering. Int. J. Mech. Sci. 2024, 266, 108828. [Google Scholar] [CrossRef]
- Kalirajan, C.; Dukle, A.; Nathanael, A.J.; Oh, T.H.; Manivasagam, G. A Critical Review on Polymeric Biomaterials for Biomedical Applications. Polymers 2021, 13, 3015. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.N.; Nyrkova, I.A. 1.02–Statistical Description of Chain Molecules. In Polymer Science: A Comprehensive Reference; Elsevier Science: Amsterdam, The Netherlands, 2012; Volume 1–10. [Google Scholar]
- Kuenneth, C.; Schertzer, W.; Ramprasad, R. Copolymer Informatics with Multitask Deep Neural Networks. Macromolecules 2021, 54, 5957–5961. [Google Scholar] [CrossRef]
- Batra, R.; Dai, H.; Huan, T.D.; Chen, L.; Kim, C.; Gutekunst, W.R.; Song, L.; Ramprasad, R. Polymers for Extreme Conditions Designed Using Syntax-Directed Variational Autoencoders. Chem. Mater. 2020, 32, 10489–10500. [Google Scholar] [CrossRef]
- Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer Design Using Genetic Algorithm and Machine Learning. Comput. Mater. Sci. 2021, 186, 110067. [Google Scholar] [CrossRef]
- Khalvandi, A.; Tayebi, L.; Kamarian, S.; Saber-Samandari, S.; Song, J. il Data-Driven Supervised Machine Learning to Predict the Compressive Response of Porous PVA/Gelatin Hydrogels and in-Vitro Assessments: Employing Design of Experiments. Int. J. Biol. Macromol. 2023, 253, 126906. [Google Scholar] [CrossRef]
- Das, R.; Karthika, S.; Bhasarkar, J.; Bal, D.K. GA-Coupled ANN Model for Predicting Porosity in Alginate Gel Scaffolds. J. Mech. Behav. Biomed. Mater. 2023, 148, 106204. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.-L.; Lin, X.; Gowen, A.A. Combining Machine Learning with Meta-Analysis for Predicting Cytotoxicity of Micro- and Nanoplastics. J. Hazard. Mater. Adv. 2022, 8, 100175. [Google Scholar] [CrossRef]
- Hao, H.; Xue, Y.; Wu, Y.; Wang, C.; Chen, Y.; Wang, X.; Zhang, P.; Ji, J. A Paradigm for High-Throughput Screening of Cell-Selective Surfaces Coupling Orthogonal Gradients and Machine Learning-Based Cell Recognition. Bioact. Mater. 2023, 28, 1–11. [Google Scholar] [CrossRef]
- Crupi, A.; Costa, A.; Tarnok, A.; Melzer, S.; Teodori, L. Inflammation in Tissue Engineering: The Janus between Engraftment and Rejection. Eur. J. Immunol. 2015, 45, 3222–3236. [Google Scholar] [CrossRef]
- Akkache, A.; Clavier, L.; Mezhenskyi, O.; Andriienkova, K.; Soubrié, T.; Lavalle, P.; Vrana, N.E.; Gribova, V. Machine Learning-Based Prediction of Immunomodulatory Properties of Polymers: Toward a Faster and Easier Development of Anti-Inflammatory Biomaterials. Adv. Nanobiomed Res. 2024, 4, 2300085. [Google Scholar] [CrossRef]
- Gong, D.; Ben-Akiva, E.; Singh, A.; Yamagata, H.; Est-Witte, S.; Shade, J.K.; Trayanova, N.A.; Green, J.J. Machine Learning Guided Structure Function Predictions Enable in Silico Nanoparticle Screening for Polymeric Gene Delivery. Acta Biomater. 2022, 154, 349–358. [Google Scholar] [CrossRef]
- Olmos, D.; González-benito, J. Polymeric Materials with Antibacterial Activity: A Review. Polymers 2021, 13, 613. [Google Scholar] [CrossRef]
- Huang, J.; Xu, Y.; Xue, Y.; Huang, Y.; Li, X.; Chen, X.; Xu, Y.; Zhang, D.; Zhang, P.; Zhao, J.; et al. Identification of Potent Antimicrobial Peptides via a Machine-Learning Pipeline That Mines the Entire Space of Peptide Sequences. Nat. Biomed. Eng. 2023, 7, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Zulkifli, M.Z.A.; Nordin, D.; Shaari, N.; Kamarudin, S.K. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023, 15, 2418. [Google Scholar] [CrossRef]
- Reddy, B.S.; In, K.H.; Panigrahi, B.B.; Paturi, U.M.R.; Cho, K.K.; Reddy, N.S. Modeling Tensile Strength and Suture Retention of Polycaprolactone Electrospun Nanofibrous Scaffolds by Artificial Neural Networks. Mater. Today Commun. 2021, 26, 102115. [Google Scholar] [CrossRef]
- López-Flores, F.J.; Ornelas-Guillén, J.A.; Pérez-Nava, A.; González-Campos, J.B.; Ponce-Ortega, J.M. Data-Driven Machine Learning Approach for Modeling the Production and Predicting the Characteristics of Aligned Electrospun Nanofibers. Ind. Eng. Chem. Res. 2024, 63, 9904–9913. [Google Scholar] [CrossRef]
- Ege, D.; Sertturk, S.; Acarkan, B.; Ademoglu, A. Machine Learning Models to Predict the Relationship between Printing Parameters and Tensile Strength of 3D Poly (Lactic Acid) Scaffolds for Tissue Engineering Applications. Biomed. Phys. Eng. Express 2023, 9, 065014. [Google Scholar] [CrossRef]
- Nasiri, H.; Dadashi, A.; Azadi, M. Machine Learning for Fatigue Lifetime Predictions in 3D-Printed Polylactic Acid Biomaterials Based on Interpretable Extreme Gradient Boosting Model. Mater. Today Commun. 2024, 39, 109054. [Google Scholar] [CrossRef]
- Mohammadrezaei, D.; Podina, L.; Silva, J.D.; Kohandel, M. Cell Viability Prediction and Optimization in Extrusion-Based Bioprinting via Neural Network-Based Bayesian Optimization Models. Biofabrication 2024, 16, 025016. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Gao, R.X. Deep Learning-Based Tensile Strength Prediction in Fused Deposition Modeling. Comput. Ind. 2019, 107, 11–21. [Google Scholar] [CrossRef]
- Yan, C.; Li, G. The Rise of Machine Learning in Polymer Discovery. Adv. Intell. Syst. 2023, 5, 2200243. [Google Scholar] [CrossRef]
- Li, S.; Lee, W.T.; Yeom, J.T.; Kim, J.G.; Oh, J.S.; Lee, T.; Liu, Y.; Nam, T.H. Towards Bone-like Elastic Modulus in Ti[Sbnd]Nb[Sbnd]Sn Alloys with Large Recovery Strain for Biomedical Applications. J. Alloys Compd. 2022, 925, 166724. [Google Scholar] [CrossRef]
- Guo, S.; Meng, Q.; Zhao, X.; Wei, Q.; Xu, H. Design and Fabrication of a Metastable β-Type Titanium Alloy with Ultralow Elastic Modulus and High Strength. Sci. Rep. 2015, 5, 14688. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L. Vanadium and Tungsten Derivatives as Antidiabetic Agents. Biol. Trace Elem. Res. 2002, 88, 97–112. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.T.; Chang, H.T.; Wu, C.Y.; Chen, S.W.; Huang, S.Y.; Huang, M.; Pan, Y.T.; Bradbury, P.; Chou, J.; Yen, H.W. Machine Learning Recommends Affordable New Ti Alloy with Bone-like Modulus. Mater. Today 2020, 34, 41–50. [Google Scholar] [CrossRef]
- Kanapaakala, G.; Subramani, V. Predictive Modeling for Design of Low Elastic Modulus and Biocompatible β-Ti Alloys: A Comprehensive Machine Learning-Data Driven Approach with XGBoost as the Key Predictor. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2024, 238, 9338–9360. [Google Scholar] [CrossRef]
- Jha, R.; Dulikravich, G.S. Discovery of New Ti-Based Alloys Aimed at Avoiding/Minimizing Formation of α” and ω-Phase Using Calphad and Artificial Intelligence. Metals 2021, 11, 15. [Google Scholar] [CrossRef]
- Raj, A.C.A.; Datta, S. Designing Ti Alloy for Hard Tissue Implants: A Machine Learning Approach. J. Mater. Eng. Perform. 2023, 32, 11205–11216. [Google Scholar] [CrossRef]
- Sultana, N.; Sikdar, S.; Chattopadhyay, P.P.; Datta, S. Informatics Based Design of Prosthetic Ti Alloys. Mater. Technol. 2014, 29, B69–B75. [Google Scholar] [CrossRef]
- Noori Banu, P.S.; Devaki Rani, S. Artificial Neural Network Based Optimization of Prerequisite Properties for the Design of Biocompatible Titanium Alloys. Comput. Mater. Sci. 2018, 149, 259–266. [Google Scholar] [CrossRef]
- Li, A.; Li, X.; Zhang, Z.; Huang, Z.; He, L.; Yang, Y.; Dong, J.; Cai, S.; Liu, X.; Zhao, H.; et al. Deep Learning Assisted Prediction of Osteogenic Capability of Orthopedic Implant Surfaces Based on Early Cell Morphology. Acta Biomater. 2025, 195, 559–568. [Google Scholar] [CrossRef]
- Li, H.F.; Zheng, Y.F. Recent Advances in Bulk Metallic Glasses for Biomedical Applications. Acta Biomater. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Vinoth, A.; Dey, S.; Datta, S. Designing UHMWPE Hybrid Composites Using Machine Learning and Metaheuristic Algorithms. Compos. Struct. 2021, 267, 113898. [Google Scholar] [CrossRef]
- Shokrollahi, Y.; Dong, P.; Gamage, P.T.; Patrawalla, N.; Kishore, V.; Mozafari, H.; Gu, L. Finite Element-Based Machine Learning Model for Predicting the Mechanical Properties of Composite Hydrogels. Appl. Sci. 2022, 12, 10835. [Google Scholar] [CrossRef]
- Gholami, K.; Ege, F.; Barzegar, R. Prediction of Composite Mechanical Properties: Integration of Deep Neural Network Methods and Finite Element Analysis. J. Compos. Sci. 2023, 7, 54. [Google Scholar] [CrossRef]
- Ye, S.; Li, M.; Zhang, K.; Zhao, H.P.; Feng, X.Q. Extracting the Properties of Constituent Phases from the Overall Response of Composites: A Deep Neural Network Method. Compos. Struct. 2022, 293, 115707. [Google Scholar] [CrossRef]
- Ye, S.; Huang, W.Z.; Li, M.; Feng, X.Q. Deep Learning Method for Determining the Surface Elastic Moduli of Microstructured Solids. Extreme Mech. Lett. 2021, 44, 101226. [Google Scholar] [CrossRef]
- Joorabloo, A.; Khorasani, M.T.; Adeli, H.; Mansoori-Moghadam, Z.; Moghaddam, A. Fabrication of Heparinized Nano ZnO/Poly(Vinylalcohol)/Carboxymethyl Cellulose Bionanocomposite Hydrogels Using Artificial Neural Network for Wound Dressing Application. J. Ind. Eng. Chem. 2019, 70, 253–263. [Google Scholar] [CrossRef]
- Shera, S.S.; Sahu, S.; Banik, R.M. Preparation of Drug Eluting Natural Composite Scaffold Using Response Surface Methodology and Artificial Neural Network Approach. Tissue Eng. Regen. Med. 2018, 15, 131–143. [Google Scholar] [CrossRef]
- Boztepe, C.; Künkül, A.; Yüceer, M. Application of Artificial Intelligence in Modeling of the Doxorubicin Release Behavior of PH and Temperature Responsive Poly(NIPAAm-Co-AAc)-PEG IPN Hydrogel. J. Drug Deliv. Sci. Technol. 2020, 57, 101603. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, T.; Wei, Q.; Mai, J.; Yang, H.; Zhang, H.; Shimada, T.; Kitamura, T.; Zhang, T.Y. Linear-Superelastic Ti-Nb Nanocomposite Alloys with Ultralow Modulus via High-Throughput Phase-Field Design and Machine Learning. npj Comput. Mater. 2021, 7, 205. [Google Scholar] [CrossRef]
- Wang, F.; Semirumi, D.T.; He, A.; Pan, Z.; Alizadeh, A. Physical, Mechanical Characterization, and Artificial Neural Network Modeling of Biodegradable Composite Scaffold for Biomedical Applications. Eng. Appl. Artif. Intell. 2024, 136, 108889. [Google Scholar] [CrossRef]
- Chen, H.; Liu, Y.; Balabani, S.; Hirayama, R.; Huang, J. Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing. Research 2023, 6, 0197. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, A.; Ezati, M.; Zumberg, I.; Vicar, T.; Chmelikova, L.; Cmiel, V.; Provaznik, V. Characterization and Optimization of a Biomaterial Ink Aided by Machine Learning-Assisted Parameter Suggestion. Mater. Today Commun. 2024, 40, 109777. [Google Scholar] [CrossRef]
- Ruberu, K.; Senadeera, M.; Rana, S.; Gupta, S.; Chung, J.; Yue, Z.; Venkatesh, S.; Wallace, G. Coupling Machine Learning with 3D Bioprinting to Fast Track Optimisation of Extrusion Printing. Appl. Mater. Today 2021, 22, 100914. [Google Scholar] [CrossRef]
- Lee, J.; Oh, S.J.; An, S.H.; Kim, W.D.; Kim, S.H.; Kim, S.H. Machine Learning-Based Design Strategy for 3D Printable Bioink: Elastic Modulus and Yield Stress Determine Printability. Biofabrication 2020, 12, 035018. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Deep, A.; Tamayol, A.; Kamaraj, A.; Mahajan, C.; Madihally, S. Advancing 3D Bioprinting through Machine Learning and Artificial Intelligence. Bioprinting 2024, 38, e00331. [Google Scholar] [CrossRef]
- Mozafari, M. How Artificial Intelligence Shapes the Future of Biomaterials? Next Mater. 2025, 7, 100381. [Google Scholar] [CrossRef]
- Bonatti, A.F.; Vozzi, G.; De Maria, C. Enhancing Quality Control in Bioprinting through Machine Learning. Biofabrication 2024, 16, 022001. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Artificial Intelligence-Enabled Device Software Functions: Lifecycle Management and Marketing Submission Recommendations. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/artificial-intelligence-enabled-device-software-functions-lifecycle-management-and-marketing (accessed on 10 May 2025).
Traditional Algorithms | Artificial Intelligence Algorithms | ||
---|---|---|---|
Pros | Cons | Pros | Cons |
Transparent process | Limited versatility | Free from assumption | Lack of interpretability of the process |
High efficiency for well-defined problems | Human-dependency | High adaptability and scalability | Data-dependency |
Low computational requirements | - | - | High computational requirements |
Model | Requirements | Advantages | Limitations | Ref. |
---|---|---|---|---|
Classical ML (RF, SVM, GPR, etc.) | Effective on small to medium-sized datasets (ranging from tens to thousands of samples) when using structured, curated features. | Easier interpretation. Fast training on structured data. | Requires manual feature engineering. Limited generalization and sensitive to data redundancy. | [19,96] |
Graph Neural Networks (CGCNN, MEGNet, etc.) | Require large graph-based datasets. | Can capture complex relational/structural information. | Computationally demanding. Sensitive to training quality. Poor performance on limited data. | [89] |
Deep learning (ANN, CNN, etc.) | Requires large, high-dimensional datasets (e.g., images, spectra). Benefits from pre-training. | Can learn complex, non-linear relationships. Flexible input types. | Requires tuning and high compute resources. Black box. Overfitting on small data. | [32] |
Generative models (GAN, VAE, etc.) | Requires large datasets (often >104 samples). Typically uses composition matrices or structural encodings derived from large databases. | Can generate novel materials and expand datasets. | Generated structures may violate chemical or stability constraints. Difficult to train. | [91,92,93,97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martelli, A.; Bellucci, D.; Cannillo, V. The Role of Artificial Intelligence in Biomaterials Science: A Review. Polymers 2025, 17, 2668. https://doi.org/10.3390/polym17192668
Martelli A, Bellucci D, Cannillo V. The Role of Artificial Intelligence in Biomaterials Science: A Review. Polymers. 2025; 17(19):2668. https://doi.org/10.3390/polym17192668
Chicago/Turabian StyleMartelli, Andrea, Devis Bellucci, and Valeria Cannillo. 2025. "The Role of Artificial Intelligence in Biomaterials Science: A Review" Polymers 17, no. 19: 2668. https://doi.org/10.3390/polym17192668
APA StyleMartelli, A., Bellucci, D., & Cannillo, V. (2025). The Role of Artificial Intelligence in Biomaterials Science: A Review. Polymers, 17(19), 2668. https://doi.org/10.3390/polym17192668