A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling
Abstract
1. Introduction
2. GFRP Recycling Techniques
2.1. Mechanical Recycling
2.2. Thermal Recycling
- -
- Pyrolysis
- -
- Fluidized bed (gasification)
- -
- Microwave
2.3. Chemical Recycling
- -
- Low-temperature solvolysis (LTS)
- -
- Sub- and supercritical temperature (solvolysis)
3. Reuse of GFRP in Cementitious Materials
3.1. rGFRP Reaction with Cementitious Matrices
3.2. Benefits and Limits of the Incorporation of rGFRP in Cementitious Materials
3.2.1. Benefits
3.2.2. Limits
Reference | Quantity of rGFRP | Length/Size | Shape | Materials Replaced | Compressive Strength | Flexural Strength | Toughness | Porosity | Shrinkage |
---|---|---|---|---|---|---|---|---|---|
El Bitouri et al. [7] | 0%; 3%; 5%; 10%; 15% | 0.8 mm–2 mm diameter | Mix of powder, particles and small fiber of rGFRP | Sand | Down to 54% | Down to 27% | Up to 83% | - | - |
Haider et al. [2] | 0%; 1%; 2%; 3% | Different lengths 0.51 mm–25 mm 1.07 mm–34.6 mm 8.88 mm–70.45 mm | Sand | Up to 13% | Up to 85% | - | - | - | |
Kaboré et al. [6] | 10% | 0.063 mm–2 mm diameter | Mix of powder, particles and small fiber of rGFRP | Sand | Down to 31% | Down to 9.6% and Up to 2.72% | - | Up to −15% | - |
Oliveira et al. [63] | 0%; 7.5%; 12.5%; 15%; 30.5%; 37.5% | 0.5 mm–3 mm diameter | Powder | Sand | Down around 70% | Down around 30% | - | Increase in voids until 47% | - |
Rodin et al. [56] | - | <0.42 mm 0.42 mm–0.841 mm 1.41 mm–2 mm 2 mm–2.38 mm | Powder, small, medium and large size of rGFRP | Sand | Down to 65% | Up to 60% | Up to 86% | - | - |
Yazdanbakhsh et al. [72] | 40%; 100% | 9.5 mm–25 mm | Coarse cylindric aggregates of rGFRP | Aggregates | Down to 13% and Down to 21% | - | - | - | - |
Zhao et al. [65] | 1%; 3%; 5% | <1.18 mm 1.18 mm–8 mm | Powder and cluster of rGFRP | Fine Aggregates | Down to 11% and Up to 7% | Down to 9% and Up to 4 | - | - | - |
Baturkin et al. [71] | 10%; 20%; 30%; 33%; 66%; 100% | - | Powder and particles of rGFRP | Cement and Aggregates | Down to 67% and Down to 72% | Down to 27% and Down to 57% | - | - | - |
REINFORCEMENT | |||||||||
Baturkin et al. [71] | 1%; 1.75% | - | Fiber of rGFRP | - | Down to 4% | Up to 15% | - | - | - |
Mastali et al. [61] | - | 20 mm length 0.11 mm diameter | Fiber of rGFRP | - | Up to 50% | Up to 23% | Crack impact up to 59.5% | - | - |
Zhou et al. [50] | 2%; 4%; 6% | 0.3 mm–5.3 mm diameter 0.8 mm–23.4 length | Powder and fiber cluster of rGFRP | - | Down to 15% | Up to 21% | - | Increasing pore size (0.5 mm–1.7 mm) | Down to 23% |
4. Potential Applications of Cementitious Materials Containing rGFRP
5. Challenge of Reusing GFRP in Cementitious Materials
6. Perspectives and Recommendations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathishkumar, T.; Satheeshkumar, S.; Naveen, J. Glass fiber-reinforced polymer composites—A review. J. Reinf. Plast. Compos. 2014, 33, 1258–1275. [Google Scholar] [CrossRef]
- Haider, M.; Nassiri, S.; Englund, K.; Li, H.; Chen, Z. An Exploratory Study of Flexural Performance of Mechanically Recycled GFRP Shreds as Reinforcement in Cement Mortar. Transp. Res. Rec. J. Transp. Res. Board 2021, 2675, 1254–1267. [Google Scholar] [CrossRef]
- Pender, K.; Yang, L. Waste glass fibre composites valorization using the fluidised bed: A global warming potential and economic assessment. J. Mater. Cycles Waste Manag. 2024, 27, 343–353. [Google Scholar] [CrossRef]
- Yang, L.; Sáez, E.; Nagel, U.; Thomason, J. Can thermally degraded glass fibre be regenerated for closed-loop recycling of thermosetting composites? Compos. Part A Appl. Sci. Manuf. 2015, 72, 167–174. [Google Scholar] [CrossRef]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind turbine blade end-of-life options: An eco-audit comparison. J. Clean. Prod. 2019, 212, 1268–1281. [Google Scholar] [CrossRef]
- Kaboré, M.W.; El Bitouri, Y.; Lharti, H.; Salgues, M.; Frugier, J.; Léger, R.; Perrin, D.; Ienny, P.; Garcia-Diaz, E. Insights into the Effect of Recycled Glass Fiber Reinforced Polymer on the Mechanical Strengths of Cement Mortar. Eng 2024, 5, 2966–2977. [Google Scholar] [CrossRef]
- El Bitouri, Y.; Fofana, B.; Léger, R.; Perrin, D.; Ienny, P. The Effects of Replacing Sand with Glass Fiber-Reinforced Polymer (GFRP) Waste on the Mechanical Properties of Cement Mortars. Eng 2024, 5, 266–281. [Google Scholar] [CrossRef]
- Tao, Y.; Hadigheh, S.; Wei, Y. Recycling of glass fibre reinforced polymer (GFRP) composite wastes in concrete: A critical review and cost benefit analysis. Structures 2023, 53, 1540–1556. [Google Scholar] [CrossRef]
- Palmer, J.; Ghita, O.; Savage, L.; Evans, K. Composites: Part A Successful closed-loop recycling of thermoset composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 490–498. [Google Scholar] [CrossRef]
- Bream, C.E.; Hornsby, P.R. Comminuted thermoset recyclate as a reinforcing Part I Characterisation of recyclate feedstocks. J. Mater. Sci. 2001, 6, 2965–2975. [Google Scholar] [CrossRef]
- Kouparitsas, C.E.; Kartalis, C.N.; Varelidis, P.C.; Tsenoglou, C.J.; Papaspyrides, C.D. Recycling of the Fibrous Fraction of Reinforced Thermoset Composites. Polym. Compos. 2002, 23, 682–689. [Google Scholar] [CrossRef]
- Gopalraj, S.K.; Kärki, T. A review on the recycling of waste carbon fibre/glass fibre—Reinforced composites: Fibre recovery, properties and life—Cycle analysis. SN Appl. Sci. 2020, 2, 433. [Google Scholar] [CrossRef]
- Hadigheh, S.; Wei, Y.; Kashi, S. Optimisation of CFRP composite recycling process based on energy consumption, kinetic behaviour and thermal degradation mechanism of recycled carbon fi bre. J. Clean. Prod. 2021, 292, 125994. [Google Scholar] [CrossRef]
- Oliveux, G.; Dandy, L.O.; Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015, 72, 61–99. [Google Scholar] [CrossRef]
- Rodrigues, G.G.M.; de Paiva, J.M.F.; Carmo, J.B.D.; Botaro, V.R. Recycling of carbon fi bers inserted in composite of DGEBA epoxy matrix by thermal degradation. Polym. Degrad. Stab. 2014, 109, 50–58. [Google Scholar] [CrossRef]
- Xu, M.-X.; Ji, H.-W.; Wu, Y.-C.; Meng, X.-X.; Di, J.-Y.; Yang, J.; Lu, Q. Recovering glass fibers from waste wind turbine blades: Recycling methods, fiber properties, and potential utilization. Renew. Sustain. Energy Rev. 2024, 202, 114690. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Recycling Methods for Fibre Reinforced Polymer Composites. Sustainability 2022, 14, 16855. [Google Scholar] [CrossRef]
- Pimenta, S.; Pinho, S.T. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook. Waste Manag. 2015, 31, 378–392. [Google Scholar] [CrossRef]
- Gharde, S.; Kandasubramanian, B. Mechanothermal and chemical recycling methodologies for the Fibre Reinforced Plastic (FRP). Environ. Technol. Innov. 2019, 14, 100311. [Google Scholar] [CrossRef]
- Torres, A. Recycling by pyrolysis of thermoset composites: Characteristics of the liquid and gaseous fuels obtained. Fuel 2000, 79, 897–902. [Google Scholar] [CrossRef]
- Cunliffe, A.M.; Jones, N.; Williams, P.T. Pyrolysis of composite plastic waste. Environ. Technol. 2003, 24, 653–663. [Google Scholar] [CrossRef]
- Gonçalves, R.M.; Martinho, A.; Oliveira, J.P. Recycling of Reinforced Glass Fibers Waste: Current Status. Materials 2022, 15, 1596. [Google Scholar] [CrossRef]
- Obunai, K.; Fukuta, T.; Ozaki, K. Carbon fiber extraction from waste CFRP by microwave irradiation. Compos. Part A Appl. Sci. Manuf. 2015, 78, 160–165. [Google Scholar] [CrossRef]
- Åkesson, D.; Foltynowicz, Z.; Christéen, J.; Skrifvars, M. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines. J. Reinf. Plast. Compos. 2012, 31, 1136–1142. [Google Scholar] [CrossRef]
- Lester, E.; Kingman, S.; Wong, K.H.; Rudd, C.; Pickering, S.; Hilal, N. Microwave heating as a means for carbon fibre recovery from polymer composites: A technical feasibility study. Mater. Res. Bull. 2004, 39, 1549–1556. [Google Scholar] [CrossRef]
- Bowlby, L.K.; Saha, G.C.; Afzal, M.T. Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis. Compos. Part A Appl. Sci. Manuf. 2018, 110, 190–196. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Jiang, H.; Zhang, X.; Shang, Y.; Jiang, C.; Wang, X.; Qi, G.; Li, B.; Xu, P.; et al. Upcycling of carbon fiber-reinforced polymer composites. Compos. Sci. Technol. 2022, 231, 109824. [Google Scholar] [CrossRef]
- Lee, S.-H.; Choi, H.-O.; Kim, J.-S.; Lee, C.-K.; Kim, Y.-K.; Ju, C.-S. Circulating flow reactor for recycling of carbon fiber from carbon fiber reinforced epoxy composite. Korean J. Chem. Eng. 2011, 28, 449–454. [Google Scholar] [CrossRef]
- Okajima, I.; Yamada, K.; Sugeta, T.; Sako, T. Waste Treatment Technologies. Decomposition of Epoxy Resin and Recycling of CFRP with Sub- and Supercritical Water. Kagaku Kogaku Ronbunshu 2002, 28, 553–558. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; Dodds, C.; Hyde, J.; García-Serna, J.; Poliakoff, M.; Lester, E.; Cocero, M.J.; Kingman, S.; Pickering, S.; Wong, K.H. Chemical recycling of carbon fibre reinforced composites in nearcritical and supercritical water. Compos. Part A Appl. Sci. Manuf. 2008, 39, 454–461. [Google Scholar] [CrossRef]
- Piñero-Hernanz, R.; García-Serna, J.; Dodds, C.; Hyde, J.; Poliakoff, M.; Cocero, M.J.; Kingman, S.; Pickering, S.; Lester, E. Chemical recycling of carbon fibre composites using alcohols under subcritical and supercritical conditions. J. Supercrit. Fluids 2008, 46, 83–92. [Google Scholar] [CrossRef]
- Yuyan, L.; Guohua, S.; Linghui, M. Recycling of carbon fibre reinforced composites using water in subcritical conditions. Mater. Sci. Eng. A 2009, 520, 179–183. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Z.; Feng, L. Chemical recycling of carbon fibers reinforced epoxy resin composites in oxygen in supercritical water. Mater. Des. 2010, 31, 999–1002. [Google Scholar] [CrossRef]
- Okajima, I.; Hiramatsu, M.; Sako, T. Recycling of Carbon Fiber Reinforced Plastics Using Subcritical Water. Adv. Mater. Res. 2011, 222, 243–246. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamada, K.; Kuratani, T.; Taguchi, Y.; Tomonaga, F. Effective depolymerization waste FRPs by treatment with DMAP and supercritical alcohol. Chem. Lett. 2006, 35, 586–587. [Google Scholar] [CrossRef]
- Kamimura, A.; Yamada, K.; Kuratani, T.; Oishi, Y.; Watanabe, T.; Yoshida, T.; Tomonaga, F. DMAP as an effective catalyst to accelerate the solubilization of waste fiber-reinforced plastics. ChemSusChem 2008, 1, 845–850. [Google Scholar] [CrossRef]
- Okajima, I.; Hiramatsu, M.; Shimamura, Y.; Awaya, T.; Sako, T. Chemical recycling of carbon fiber reinforced plastic using supercritical methanol. J. Supercrit. Fluids 2014, 91, 68–76. [Google Scholar] [CrossRef]
- Hyde, J.R.; Lester, E.; Kingman, S.; Pickering, S.; Wong, K.H. Supercritical propanol, a possible route to composite carbon fibre recovery: A viability study. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2171–2175. [Google Scholar] [CrossRef]
- Jiang, G.; Pickering, S.; Lester, E.; Turner, T.; Wong, K.; Warrior, N. Characterisation of carbon fibres recycled from carbon fibre/epoxy resin composites using supercritical n-propanol. Compos. Sci. Technol. 2009, 69, 192–198. [Google Scholar] [CrossRef]
- Knight, C.C.; Zeng, C.; Zhang, C.; Wang, B. Recycling of woven carbon-fibre-reinforced polymer composites using supercritical water. Environ. Technol. 2011, 33, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Chikha, I.; Bouzidi, Y.; Tazi, N.; Baklouti, S.; Idir, R. Potential recovery of glass and carbon fibers from wind turbine blades through different valorization techniques. Wind. Eng. 2023, 49, 897–909. [Google Scholar] [CrossRef]
- Paulsen, E.B.; Enevoldsen, P. A Multidisciplinary Review of Recycling Methods for End-of-Life Wind Turbine Blades. Energies 2021, 14, 4247. [Google Scholar] [CrossRef]
- Farinha, C.B.; de Brito, J.; Veiga, R. Assessment of glass fibre reinforced polymer waste reuse as filler in mortars. J. Clean. Prod. 2019, 210, 1579–1594. [Google Scholar] [CrossRef]
- Liu, T.; Paraskevoulakos, C.; Mughal, U.A.; Tyurkay, A.; Lushnikova, N.; Song, H.; Duyal, C.; Karnick, S.T.; Gauvin, F.; Lima, A.T. Mechanisms and applications of wind turbine blade waste in cementitious composites: A review. Mater. Des. 2025, 251, 113732. [Google Scholar] [CrossRef]
- Liu, T.; Yu, Q.; Brouwers, H. In-situ formation of layered double hydroxides (LDHs) in sodium aluminate activated slag: The role of Al-O tetrahedra. Cem. Concr. Res. 2022, 153, 106697. [Google Scholar] [CrossRef]
- Liu, T.; Li, S.; Chen, Y.; Brouwers, H.; Yu, Q. In-situ formation of layered double hydroxides in MgO–NaAlO2-activated GGBS/MSWI BA: Impact of Mg2+ on reaction mechanism and leaching behavior. Cem. Concr. Compos. 2023, 140, 105114. [Google Scholar] [CrossRef]
- Bertelsen, I.; Ottosen, L.; Fischer, G. Influence of fibre characteristics on plastic shrinkage cracking in cement-based materials: A review. Constr. Build. Mater. 2020, 230, 116769. [Google Scholar] [CrossRef]
- Tittarelli, F.; Moriconi, G. Use of GRP industrial by-products in cement based composites. Cem. Concr. Compos. 2010, 32, 219–225. [Google Scholar] [CrossRef]
- Tittarelli, F.; Kawashima, S.; Tregger, N.; Moriconi, G.; Shah, S.P. Effect of GRP by-product addition on plastic and hardened properties of cement mortars. In Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; pp. 677–687. [Google Scholar]
- Zhou, B.; Zhang, M.; Wang, L.; Ma, G. Experimental study on mechanical property and microstructure of cement mortar reinforced with elaborately recycled GFRP fiber. Cem. Concr. Compos. 2020, 117, 103908. [Google Scholar] [CrossRef]
- Tao, Y.; Hadigheh, S. Enhancing the strength, microstructural integrity, and shrinkage performance of cement-based mortar using pulverised carbon and glass FRP composite waste. J. Build. Eng. 2024, 94, 110053. [Google Scholar] [CrossRef]
- Dehghan, A.; Peterson, K.; Shvarzman, A. Recycled glass fiber reinforced polymer additions to Portland cement concrete. Constr. Build. Mater. 2017, 146, 238–250. [Google Scholar] [CrossRef]
- Zhang, F.; Zheng, R.; Liao, G.; Wang, D.; Lu, Z.; Meng, H. Axial compressive and long-term shrinkage behaviors of self-compacting recycled concrete reinforced with recycled glass fiber. Constr. Build. Mater. 2024, 455, 139158. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Zhao, Y.; Ai, H. Study on the Performance and Mechanism of Glass Fiber-Reinforced MgO-SiO2-H2O Cement. Materials 2023, 16, 6668. [Google Scholar] [CrossRef]
- García, D.; Vegas, I.; Cacho, I. Mechanical recycling of GFRP waste as short-fiber reinforcements in microconcrete. Constr. Build. Mater. 2014, 64, 293–300. [Google Scholar] [CrossRef]
- Rodin, H.; Nassiri, S.; Englund, K.; Fakron, O.; Li, H. Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance. Constr. Build. Mater. 2018, 187, 738–751. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A.R.; Abdollahnejad, Z. Effect of different lengths and dosages of recycled glass fibres on the fresh and hardened properties of SCC. Mag. Concr. Res. 2018, 70, 1175–1188. [Google Scholar] [CrossRef]
- Ma, C.; Chen, G.; Jiang, Z.; Zhou, H.; Yao, H.; Zhou, R.; Ren, W. Rheological properties of magnesium phosphate cement with different M/P ratios. Constr. Build. Mater. 2021, 282, 122657. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Rieder, K.-A.; Tian, Y.; Chen, C. Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resour. Conserv. Recycl. 2018, 128, 11–21. [Google Scholar] [CrossRef]
- Patel, K.; Gupta, R.; Garg, M.; Wang, B.; Dave, U. Development of FRC Materials with Recycled Glass Fibers Recovered from Industrial GFRP-Acrylic Waste. Adv. Mater. Sci. Eng. 2019, 2019, 4149708. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A.; Sattarifard, A. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers. J. Clean. Prod. 2016, 124, 312–324. [Google Scholar] [CrossRef]
- Asokan, P.; Osmani, M.; Price, A. Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. J. Clean. Prod. 2009, 17, 821–829. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Antunes, M.L.P.; da Cruz, N.C.; Rangel, E.C.; de Azevedo, A.R.G.; Durrant, S.F. Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. J. Clean. Prod. 2020, 274, 122948. [Google Scholar] [CrossRef]
- Coppola, L.; Cadoni, E.; Forni, D.; Buoso, A. Mechanical characterization of cement composites reinforced with fiberglass, carbon nanotubes or glass reinforced plastic (GRP) at high strain rates. Appl. Mech. Mater. 2011, 82, 190–195. [Google Scholar] [CrossRef]
- Zhao, T.; Lv, Y.; Chen, J.; Song, P.; Sun, M.; Zhang, X.; Huang, L. Effect of Glass Fiber-Reinforced Plastic Waste on the Mechanical Properties of Concrete and Evaluation of Its Feasibility for Reuse in Concrete Applications. Materials 2023, 16, 6772. [Google Scholar] [CrossRef] [PubMed]
- El Bitouri, Y.; Perrin, D. Compressive and Flexural Strengths of Mortars Containing ABS and WEEE Based Plastic Aggregates. Polymers 2022, 14, 3914. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.; Meira-Castro, A.; Silva, F.; Santos, J.; Meixedo, J.; Fiúza, A.; Dinis, M.; Alvim, M. Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes. Resour. Conserv. Recycl. 2015, 104, 417–426. [Google Scholar] [CrossRef]
- Correia, J.R.; Almeida, N.M.; Figueira, J.R. Recycling of FRP composites: Reusing fi ne GFRP waste in concrete mixtures. J. Clean. Prod. 2011, 19, 1745–1753. [Google Scholar] [CrossRef]
- Tittarelli, F.; Shah, S.P. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 1. Constr. Build. Mater. 2013, 47, 1532–1538. [Google Scholar] [CrossRef]
- Zhou, Y.; Weng, Y.; Li, L.; Hu, B.; Huang, X.; Zhu, Z. Recycled GFRP Aggregate Concrete Considering Aggregate Grading: Compressive Behavior and Stress–Strain Modeling. Polymers 2022, 14, 581. [Google Scholar] [CrossRef]
- Baturkin, D.; Hisseine, O.A.; Masmoudi, R.; Tagnit-Hamou, A.; Massicotte, L. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour. Conserv. Recycl. 2021, 174, 105807. [Google Scholar] [CrossRef]
- Yazdanbakhsh, A.; Bank, L.C.; Chen, C. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Constr. Build. Mater. 2016, 121, 278–284. [Google Scholar] [CrossRef]
- Selvan, R.T.; Raja, P.V.; Mangal, P.; Mohan, N.; Bhowmik, S. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles. J. Compos. Mater. 2021, 55, 3281–3292. [Google Scholar] [CrossRef]
- Tittarelli, F. Effect of low dosages of waste GRP dust on fresh and hardened properties of mortars: Part 2. Constr. Build. Mater. 2013, 47, 1539–1543. [Google Scholar] [CrossRef]
- Guo, P.; Meng, W.; Nassif, H.; Gou, H.; Bao, Y. New perspectives on recycling waste glass in manufacturing concrete for sustainable civil infrastructure. Constr. Build. Mater. 2020, 257, 119579. [Google Scholar] [CrossRef]
- Lalitha, G.; Sashidhar, C.; Ramachandrudu, C. Durability performance of concrete (M-60) fine aggregate partially replaced with crushed waste glass. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 1818–1822. [Google Scholar] [CrossRef]
- Mustafa, M.A.-T.; Hanafi, I.; Mahmoud, R.; Tayeh, B. Effect of partial replacement of sand by plastic waste on impact resistance of concrete: Experiment and simulation. Structures 2019, 20, 519–526. [Google Scholar] [CrossRef]
Management Route | Advantages | Disadvantages | Essential Points |
---|---|---|---|
Landfill |
|
|
|
Incineration |
|
|
|
Incineration or processing in cement kiln |
|
|
|
Mechanical recycling |
|
|
|
Thermal recycling: pyrolysis |
|
|
|
Chemical recycling: solvolysis |
|
|
|
Recycling Technique | Energy Demand MJ/kg | Fiber Recovery Rate (%) | Tensile Strength Maintained (%) |
---|---|---|---|
Mechanical | 0.4–4.8 | 58–89 | 79 |
Pyrolysis | 10–36 | 55–83 | 35–80 |
Fluidized Bed | 30–40 | 66 | 50 |
Solvolysis | 26–91 | 45–95 | 31–58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaboré, M.W.; Perrin, D.; Idir, R.; Ienny, P.; Garcia-Diaz, É.; El Bitouri, Y. A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling. Polymers 2025, 17, 2664. https://doi.org/10.3390/polym17192664
Kaboré MW, Perrin D, Idir R, Ienny P, Garcia-Diaz É, El Bitouri Y. A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling. Polymers. 2025; 17(19):2664. https://doi.org/10.3390/polym17192664
Chicago/Turabian StyleKaboré, Mohamed Wendlassida, Didier Perrin, Rachida Idir, Patrick Ienny, Éric Garcia-Diaz, and Youssef El Bitouri. 2025. "A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling" Polymers 17, no. 19: 2664. https://doi.org/10.3390/polym17192664
APA StyleKaboré, M. W., Perrin, D., Idir, R., Ienny, P., Garcia-Diaz, É., & El Bitouri, Y. (2025). A Review on the Valorization of Recycled Glass Fiber-Reinforced Polymer (rGFRP) in Mortar and Concrete: A Sustainable Alternative to Landfilling. Polymers, 17(19), 2664. https://doi.org/10.3390/polym17192664