Flame-Retardant Polyvinyl Alcohol Materials: Mechanisms, Design Strategies, and Multifunctional Applications
Abstract
1. Introduction
2. Flame-Retarding Mechanisms for PVA
2.1. The Combustion Properties of PVA
2.2. The Mechanism of Flame Retardants in PVA
2.2.1. Gas-Phase Flame Retardant Mechanism
2.2.2. Condensed-Phase Flame Retardant Mechanism
2.2.3. Synergistic Flame-Retardant Mechanism
3. Design Strategies for Flame-Retardant PVA
3.1. Physical Blending Modification of PVA
3.1.1. Hydrogen Bond Association
3.1.2. Electrostatic Interactions
3.1.3. Van Der Waals Interactions
3.2. Chemical Modification of PVA
3.2.1. Esterification
3.2.2. Acetalization or Ketalization
3.2.3. Cross-Linking Strategy
3.3. Surface Engineering of PVA
3.3.1. Plasma Treatment
3.3.2. Layer-by-Layer (LbL) Assembly
3.3.3. Surface Graft Method
4. Various Applications of PVA
4.1. Optical Applications
4.2. Energy Applications
4.3. Sensors Applications
4.4. Biomedical Applications
5. Concluding Remarks and Future Aspects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Xiong, Y.; Li, X.; Zhang, S.; Xu, W.; Chen, H.; Xu, L. Oxidization and Salting Out Synergistically Induced Highly Elastic, Conductive, and Sensitive Polyvinyl Alcohol Hydrogels. Adv. Funct. Mater. 2025, 35, 2415207. [Google Scholar] [CrossRef]
- Kanazawa, T.; Nishikawa, T.; Ouchi, M. Radical Polymerization of Vinyl Boronate Involving Backbiting Chain Transfer and Postpolymerization Oxidation Affording Branched Poly (vinyl alcohol) s. Macromolecules 2024, 57, 6750–6758. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, J.; Wu, L.; Zhang, S.; Li, J.; Du, K. Construction of high strength, tough, self-healing polyvinyl alcohol materials based on triazolinedione-indole dynamic covalent cross-linking. J. Mater. Sci. 2025, 60, 12157–12171. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Liang, J.; Zhang, T.; Jiang, X.; Liu, P. Synthesis of PVA@ S-BNNSs flexible fiber backbone by electrostatic spinning assisting the construction of excellent ductile epoxy thermal interface materials. Compos. Sci. Technol. 2024, 247, 110435. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, H.; Chen, J.; Wang, W.; Sun, F.; Cao, Y. Effect of crosslinking conditions on the transport of protons and methanol in crosslinked polyvinyl alcohol membranes containing the phosphoric acid group. Polymers 2023, 15, 4198. [Google Scholar] [CrossRef]
- Li, Y.; Xie, J.; Cheng, H.; Wei, X.; Chen, J.; You, L.; Chen, W. Polyvinyl alcohol-based polarizers for new displays: Molecules, processing and properties. Soft Matter 2025, 21, 3148–3167. [Google Scholar] [CrossRef]
- Li, H.; Zhang, W.; Xu, W.; Zhang, X. Hydrogen bonding governs the elastic properties of poly (vinyl alcohol) in water: Single-molecule force spectroscopic studies of PVA by AFM. Macromolecules 2000, 33, 465–469. [Google Scholar] [CrossRef]
- Wang, N.; Feng, Y.; Zheng, Y.; Zhang, L.; Feng, M.; Li, X.; Zhou, F.; Wang, D. New hydrogen bonding enhanced polyvinyl alcohol based self-charged medical mask with superior charge retention and moisture resistance performances. Adv. Funct. Mater. 2021, 31, 2009172. [Google Scholar] [CrossRef]
- Fu, Z.-z.; Guo, S.-j.; Li, C.-x.; Wang, K.; Zhang, Q.; Fu, Q. Hydrogen-bond-dominated mechanical stretchability in PVA films: From phenomenological to numerical insights. Phys. Chem. Chem. Phys. 2022, 24, 1885–1895. [Google Scholar] [CrossRef]
- Mitani, E.; Ozaki, Y.; Sato, H. Two types of CO⋯ HO hydrogen bonds and OH⋯ OH (dimer, trimer, oligomer) hydrogen bonds in PVA with 88% saponification/PMMA and PVA with 99% saponification/PMMA blends and their thermal behavior studied by infrared spectroscopy. Polymer 2022, 246, 124725. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, X.; Xu, J.; Cui, S. Effect of intramolecular hydrogen bonds on the single-chain elasticity of poly (vinyl alcohol): Evidencing the synergistic enhancement effect at the single-molecule level. Macromolecules 2021, 54, 7314–7320. [Google Scholar] [CrossRef]
- Chen, J.; Dong, Z.; Li, M.; Li, X.; Chen, K.; Yin, P. Ultra-strong and proton conductive aqua-based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters. Adv. Funct. Mater. 2022, 32, 2111892. [Google Scholar] [CrossRef]
- Liu, L.; Wei, M.; Li, H.; Chen, Y.; Jiang, Y.; Ju, T.; Lu, Z.; Mu, G.; Cai, L.; Min, D. Polyvinyl alcohol solvent-free adhesives for biomass bonding via rapid water activation and heat treatment. Green Chem. 2024, 26, 11873–11884. [Google Scholar] [CrossRef]
- Vineeth, S.; Gadhave, R.V. Corn starch blended polyvinyl alcohol adhesive chemically modified by crosslinking and its applicability as polyvinyl acetate wood adhesive. Polym. Bull. 2024, 81, 811–825. [Google Scholar] [CrossRef]
- Deng, H.; Su, J.; Zhang, W.; Khan, A.; Sani, M.A.; Goksen, G.; Kashyap, P.; Ezati, P.; Rhim, J.-W. A review of starch/polyvinyl alcohol (PVA) blend film: A potential replacement for traditional plastic-based food packaging film. Int. J. Biol. Macromol. 2024, 273, 132926. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, M.C. Recent progress in polyvinyl alcohol (PVA)/nanocellulose composite films for packaging applications: A comprehensive review of the impact on physico-mechanical properties. Food Bio-Eng. 2024, 3, 189–209. [Google Scholar] [CrossRef]
- Zhang, W.; Khan, A.; Ezati, P.; Priyadarshi, R.; Sani, M.A.; Rathod, N.B.; Goksen, G.; Rhim, J.-W. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films. Food Chem. 2024, 443, 138506. [Google Scholar] [CrossRef]
- Šubrová, T.; Wiener, J.; Khan, M.Z.; Šlamborová, I.; Mullerova, S. Development of novel eco-friendly polyvinyl alcohol-based coating for antibacterial textiles. Colloids Surf. A Physicochem. Eng. Asp. 2024, 680, 132719. [Google Scholar] [CrossRef]
- Mizrahi, L.; Kelman, R.; Shtriker, E.; Meridor, D.; Cohen, D.; Portugal-Cohen, M.; Amir, E. Controlled Release of Hydrophilic Active Agent from Textile Using Crosslinked Polyvinyl Alcohol Coatings. J. Funct. Biomater. 2025, 16, 216. [Google Scholar] [CrossRef]
- Cao, C.; Cai, M.; Zhao, L.; Li, G. Improving Water Stability of Soil Aggregates with Polyvinyl Alcohol as a Polymeric Binder. Polymers 2024, 16, 1758. [Google Scholar] [CrossRef]
- Dong, D.; Huang, Y.; Gao, X.; Bian, Y.; Zhu, J.; Hou, P.; Chen, H.; Zhao, P.; Wang, S.; Lu, L. Effect of polyvinyl alcohol powder on the impermeability, frost resistance and pore structure of calcium sulfoaluminate cement concrete. Constr. Build. Mater. 2023, 409, 133858. [Google Scholar] [CrossRef]
- Zhang, Y.; Aslani, F. Development of fibre reinforced engineered cementitious composite using polyvinyl alcohol fibre and activated carbon powder for 3D concrete printing. Constr. Build. Mater. 2021, 303, 124453. [Google Scholar] [CrossRef]
- Song, S.; Liu, X.; Ding, L.; Liu, Z.; Abubaker, M.A.; Xu, Y.; Zhang, J. A bacterial cellulose/polyvinyl alcohol/nitro graphene oxide double layer network hydrogel efficiency antibacterial and promotes wound healing. Int. J. Biol. Macromol. 2024, 269, 131957. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Yang, W.; Liu, S.; Xu, J.; Cheng, X.; Xu, S.; Li, J.; Wang, L. A fluorescent polyvinyl alcohol film with efficient photodynamic antimicrobial performance enabled by Berberine/Phytic acid salt for food preservation. Adv. Funct. Mater. 2025, 35, 2411314. [Google Scholar] [CrossRef]
- Ramesan, M.; Labeeba Abdulla, A.; Kalladi, A.J.; Sunojkumar, P. Biopolymer blend composite films based on polyvinyl alcohol/chitosan/grape seed extract via green approach for flexible optoelectronic devices. J. Thermoplast. Compos. Mater. 2024, 37, 3697–3714. [Google Scholar] [CrossRef]
- Al-Muntaser, A.; Al-Ghamdi, S.; Alzahrani, E.; Rajeh, A.; Asnag, G.; Al-Harthi, A.M.; Alwafi, R.; Saeed, A.; Aldwais, S.; Yassin, A. Investigation of structural and optical characteristics of PVA/crystal violet dye composites for flexible smart optoelectronic applications. J. Polym. Res. 2024, 31, 311. [Google Scholar] [CrossRef]
- Yu, J.; Chen, C.; Gilchrist, J.B.; Buffet, J.-C.; Wu, Z.; Mo, G.; Xie, F.; O’Hare, D. Aged layered double hydroxide nanosheet–polyvinyl alcohol dispersions for enhanced gas barrier coating performance. Mater. Horiz. 2021, 8, 2823–2833. [Google Scholar] [CrossRef]
- Nuruddin, M.; Chowdhury, R.A.; Szeto, R.; Howarter, J.A.; Erk, K.A.; Szczepanski, C.R.; Youngblood, J.P. Structure–property relationship of cellulose nanocrystal-polyvinyl alcohol thin films for high barrier coating applications. ACS Appl. Mater. Interfaces 2021, 13, 12472–12482. [Google Scholar] [CrossRef]
- Wang, W.; Wang, C.; Yuen, A.C.Y.; Li, A.; Lin, B.; Yuan, Y.; Ma, C.; Han, Y.; Yeoh, G.H. 3D MXene frameworks for flame retardant hydrophobic polymer nanocomposites. Compos. Part A Appl. Sci. Manuf. 2023, 173, 107673. [Google Scholar] [CrossRef]
- Zahid, M.; Ali, S.; Saleem, S.; Salman, M.; Khan, M. Carbon nanoparticles/polyvinyl alcohol composites with enhanced optical, thermal, mechanical, and flame-retardant properties. J. Appl. Polym. Sci. 2020, 137, 49261. [Google Scholar] [CrossRef]
- Lin, J.S.; Chen, L.; Liu, Y.; Wang, Y.Z. Flame-retardant and physical properties of poly (vinyl alcohol) chemically modified by diethyl chlorophosphate. J. Appl. Polym. Sci. 2012, 125, 3517–3523. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, W.; Shi, Y.; Song, L.; Ma, C.; Hu, Y. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam. J. Hazard. Mater. 2020, 382, 121028. [Google Scholar] [CrossRef]
- Tan, W.; Zuo, C.; Liu, X.; Tian, Y.; Bai, L.; Ren, Y.; Liu, X. Developing flame retardant, smoke suppression and self-healing polyvinyl alcohol composites by dynamic reversible cross-linked chitosan-based macromolecule. Int. J. Biol. Macromol. 2024, 280, 135734. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, A.; Menazea, A.; Ismail, A. Synthesis, characterization and antimicrobial activity of Chitosan/Polyvinyl Alcohol blend doped with Hibiscus sabdariffa L. extract. J. Mol. Struct. 2019, 1197, 603–609. [Google Scholar] [CrossRef]
- Pencheva, D.; Bryaskova, R.; Kantardjiev, T. Polyvinyl alcohol/silver nanoparticles (PVA/AgNps) as a model for testing the biological activity of hybrid materials with included silver nanoparticles. Mater. Sci. Eng. C 2012, 32, 2048–2051. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, Y.; Wang, Z.; Zhang, X.; Zhao, Y.; Sun, L. Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. Mater. Sci. Eng. C 2017, 78, 706–714. [Google Scholar] [CrossRef]
- Xu, X.J.; Huang, S.M.; Zhang, L.H. Biodegradability, antibacterial properties, and ultraviolet protection of polyvinyl alcohol-natural polyphenol blends. Polym. Compos. 2009, 30, 1611–1617. [Google Scholar] [CrossRef]
- Zhao, Z.; Mao, A.; Gao, W.; Bai, H. A facile in situ method to fabricate transparent, flexible polyvinyl alcohol/ZnO film for UV-shielding. Compos. Commun. 2018, 10, 157–162. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Zhu, K.; Peng, F.; Guo, L.; Qi, H. Facile fabrication of a polyvinyl alcohol-based hydrophobic fluorescent film via the Hantzsch reaction for broadband UV protection. Mater. Horiz. 2022, 9, 815–824. [Google Scholar] [CrossRef]
- Pan, Z.; Wu, C.; Liu, J.; Wang, W.; Liu, J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Constr. Build. Mater. 2015, 78, 397–404. [Google Scholar] [CrossRef]
- Si, W.; Cao, M.; Li, L. Establishment of fiber factor for rheological and mechanical performance of polyvinyl alcohol (PVA) fiber reinforced mortar. Constr. Build. Mater. 2020, 265, 120347. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, J.; Zhang, M.; Dong, J.; Gao, J.; Gao, J.; Tang, J.; Yan, Y.; Lu, C. Reinforced polyvinyl alcohol/polyvinylpyrrolidone fertilizer coatings via tortuous diffusion and hydrogen bonding from layered double hydroxides. Chem. Eng. Sci. 2025, 315, 121892. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Su, X. Poly (vinyl alcohol)/laponite/layered double hydroxide/hydroxyapatite nanocomposite hydrogels for stimulus-responsive devices. ACS Appl. Nano Mater. 2024, 7, 2270–2279. [Google Scholar] [CrossRef]
- Shi, S.; Peng, X.; Liu, T.; Chen, Y.-N.; He, C.; Wang, H. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties. Polymer 2017, 111, 168–176. [Google Scholar] [CrossRef]
- Dai, Z.-H.; Li, T.; Gao, Y.; Xu, J.; Weng, Y.; He, J.; Guo, B.-H. Improved dielectric and energy storage properties of poly (vinyl alcohol) nanocomposites by strengthening interfacial hydrogen-bonding interaction. Colloids Surf. A Physicochem. Eng. Asp. 2018, 548, 179–190. [Google Scholar] [CrossRef]
- Rizwan, M.; Yao, Y.; Gorbet, M.B.; Tse, J.W.; Anderson, D.E.; Hinds, M.T.; Yim, E.K. One-pot covalent grafting of gelatin on poly (vinyl alcohol) hydrogel to enhance endothelialization and hemocompatibility for synthetic vascular graft applications. ACS Appl. Bio Mater. 2019, 3, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Liu, B.; Wang, Y. Effects of covalent bond interactions on properties of polyimide grafting sulfonated polyvinyl alcohol proton exchange membrane for vanadium redox flow battery applications. J. Power Sources 2019, 433, 126680. [Google Scholar] [CrossRef]
- Ji, N.; Luo, J.; Zhang, W.; Sun, J.; Wang, J.; Qin, C.; Zhuo, Q.; Dai, L. A novel polyvinyl alcohol-based hydrogel with ultra-fast self-healing ability and excellent stretchability based on multi dynamic covalent bond cross-linking. Macromol. Mater. Eng. 2023, 308, 2200525. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, H.; Yu, Y.; Yan, M.; Liu, L.; Zhu, H.; Ye, Y.; Zhao, Y.; Wang, Y.; Xia, Y. Dynamic formation of calcium alginate/polyethylene glycol acrylate dual network fibers enhanced by polyvinyl alcohol microcrystalline cross-linking. New J. Chem. 2020, 44, 17431–17441. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, Y.; Li, X.; Liu, Y.; Duan, Y.; Yang, K. Transparent and mechanically robust Polyvinyl-alcohol nanocomposites based on multiple cross-linked networks for paper-reinforcement Technology. Chem. Eng. J. 2022, 446, 136896. [Google Scholar] [CrossRef]
- Wen, C.; Xu, D.; Wang, Q. Preparation of bio-based flame-retardant poly (vinyl alcohol) foams with improved cell structure and mechanical performance. Eur. Polym. J. 2025, 223, 113670. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, C.; Du, C.; Xu, K.; Li, Y.; Xu, M.; Bourbigot, S.; Fontaine, G.; Li, B.; Liu, L. High-strength, thermal-insulating, fire-safe bio-based organic lightweight aerogel based on 3D network construction of natural tubular fibers. Compos. Part B-Eng. 2023, 261, 110809. [Google Scholar] [CrossRef]
- Ma, Z.; Meng, D.; Zhang, Z.; Wang, Y. Synergistic effect of green phosphorus-containing bio-based material and two-dimensional layered material composite on flame-retardant property of polyvinyl alcohol. Thermochim. Acta 2022, 707, 179118. [Google Scholar] [CrossRef]
- Yu, J.; Xu, X.; Zhuang, Z.; Tan, J.; Huang, W.; Ou, R.; Liu, Z.; Liu, T.; Wang, Q. Double-crosslinked polyvinyl alcohol/starch bioplastic with superior water-resistance and flame retardancy. Int. J. Biol. Macromol. 2024, 281, 136139. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tan, W.; Ye, Z.; Zhang, Y.; Ren, Y.; Liu, X. Lignin-based flame retardants chelated with Fe3+: Facilitating the development of flame retardant, UV resistant and antibacterial properties polyvinyl alcohol composites. Int. J. Biol. Macromol. 2025, 286, 138182. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Zhao, H.-B.; Degracia, K.; Han, L.-X.; Sun, H.; Sun, M.; Wang, Y.-Z.; Schiraldi, D.A. Green approach to improving the strength and flame retardancy of poly (vinyl alcohol)/clay aerogels: Incorporating biobased gelatin. ACS Appl. Mater. Interfaces 2017, 9, 42258–42265. [Google Scholar] [CrossRef]
- Ingtipi, K.; Choudhury, B.J.; Moholkar, V.S. Development of NaOH-borax crosslinked PVA-xanthan gum-lignin hydrogel as green fire retardant coating. Prog. Org. Coat. 2023, 174, 107268. [Google Scholar] [CrossRef]
- Yang, H.; Yu, B.; Xu, X.; Bourbigot, S.; Wang, H.; Song, P. Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chem. 2020, 22, 2129–2161. [Google Scholar] [CrossRef]
- Ning, Y.; Liu, R.; Chi, W.; An, X.; Zhu, Q.; Xu, S.; Wang, L. A chitosan derivative/phytic acid polyelectrolyte complex endowing polyvinyl alcohol film with high barrier, flame-retardant, and antibacterial effects. Int. J. Biol. Macromol. 2024, 259, 129240. [Google Scholar] [CrossRef]
- Kumar, S.; Shukla, S.K. Synergistic evolution of flame-retardant hybrid structure of poly vinyl alcohol, starch and kaolin for coating on wooden substrate. J. Polym. Res. 2023, 30, 71. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Ji, Q.; Xing, Y.; Ma, X.; Xia, Y. Multi-crosslinked, ecofriendly flame-retardant starch-based composite aerogels with high compression-resistance. Polym. Eng. Sci. 2023, 63, 154–166. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Z.; Huang, J.; Wang, Y. A flame retardant poly vinyl alcohol/graphene oxide/phytic acid composite for a quick response and ultra-long fire alarm. J. Mater. Chem. A 2024, 12, 6050–6066. [Google Scholar] [CrossRef]
- Xu, J.; Ao, X.; de la Vega, J.; Guo, F.; Xie, Z.; Liang, F.; Wang, D.-Y.; Wu, J. Poly (vinyl alcohol) composite aerogel toward lightweight, remarkable flame retardancy, and thermal insulation properties by incorporating carbon nanohorns and phytic acid. ACS Appl. Polym. Mater. 2024, 6, 8027–8039. [Google Scholar] [CrossRef]
- Wu, H.; Lai, D.; Nan, M.; Cao, W.; Liu, L.; Liu, Y.; Yang, J. Flame retardant polyvinyl alcohol film with self-releasing carbon dioxide and ammonia from phytic acid and urea. J. Appl. Polym. Sci. 2024, 141, e56258. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, W.; Xiao, Y.; Yu, B.; Wang, W. Flame-retardant epoxy thermosets derived from renewable resources: Research development and future perspectives. J. Mater. Sci. Technol. 2024, 195, 29–40. [Google Scholar] [CrossRef]
- Wang, W.; Yuen, A.C.Y.; Long, H.; Yang, W.; Li, A.; Song, L.; Hu, Y.; Yeoh, G.H. Random nano-structuring of PVA/MXene membranes for outstanding flammability resistance and electromagnetic interference shielding performances. Compos. Part B-Eng. 2021, 224, 109174. [Google Scholar] [CrossRef]
- Channa, I.A.; Ashfaq, J.; Gilani, S.J.; Shah, A.A.; Chandio, A.D.; Jumah, M.N.b. UV blocking and oxygen barrier coatings based on polyvinyl alcohol and zinc oxide nanoparticles for packaging applications. Coatings 2022, 12, 897. [Google Scholar] [CrossRef]
- Park, Y.; You, M.; Shin, J.; Ha, S.; Kim, D.; Heo, M.H.; Nah, J.; Kim, Y.A.; Seol, J.H. Thermal conductivity enhancement in electrospun poly (vinyl alcohol) and poly (vinyl alcohol)/cellulose nanocrystal composite nanofibers. Sci. Rep. 2019, 9, 3026. [Google Scholar] [CrossRef]
- Pan, X.; Debije, M.G.; Schenning, A.P.; Bastiaansen, C.W. Enhanced thermal conductivity in oriented polyvinyl alcohol/graphene oxide composites. ACS Appl. Mater. Interfaces 2021, 13, 28864–28869. [Google Scholar] [CrossRef]
- Lei, Y.; Chan, Q.N.; Xu, L.; Lee, E.W.M.; Lee, Y.X.; Agarwal, V.; Yeoh, G.H.; Wang, W. Smart retardant materials for fire alarm systems: Integrating flame retardancy and early detection technologies. Adv. Compos. Hybrid Mater. 2025, 8, 112. [Google Scholar] [CrossRef]
- Hu, S.; Song, L.; Hu, Y. Preparation and characterization of chitosan-based flame retardant and its thermal and combustible behavior on polyvinyl alcohol. Polym.-Plast. Technol. Eng. 2013, 52, 393–399. [Google Scholar]
- Voronova, M.I.; Surov, O.V.; Guseinov, S.S.; Barannikov, V.P.; Zakharov, A.G. Thermal stability of polyvinyl alcohol/nanocrystalline cellulose composites. Carbohydr. Polym. 2015, 130, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Bao, Q.; Liu, Y.; Wen, H.; Wang, Q. Hydrogen bond association to prepare flame retardant polyvinyl alcohol film with high performance. ACS Appl. Mater. Interfaces 2021, 13, 5508–5517. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, X.; Deng, J.; Yang, W.; Zeng, Y.; Rao, Z.; Kong, F.; Li, Y. The flame retardant mechanism of composite phase change materials for battery thermal safety: A review. Energy Storage Mater. 2025, 80, 104344. [Google Scholar] [CrossRef]
- Chen, W.; Fu, X.; Ge, W.; Xu, J.; Jiang, M. Microencapsulation of bisneopentyl glycol dithiopyrophosphate and its flame retardant effect on polyvinyl alcohol. Polym. Degrad. Stab. 2014, 102, 81–87. [Google Scholar] [CrossRef]
- Yuan, Y.; Xu, L.; Wang, W. Tri-phase flame retardant system towards advanced energy-saving building materials with highly efficient fire and smoke toxicity reductions. Constr. Build. Mater. 2024, 433, 136719. [Google Scholar]
- Gao, Z.; Zhu, Y.; Liu, X.; Yuan, B.; Shen, R.; Li, K.; Yin, Y.; Zhang, Z. Copper oxide decorated one-dimensional mineral nanorods: Construction of strengthened gas-phase and condensed-phase coupled intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108373. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, B.; Wang, W. The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system. J. Colloid Interface Sci. 2022, 622, 367–377. [Google Scholar]
- Yuan, Y.; Shi, Y.; Yu, B.; Zhan, J.; Zhang, Y.; Song, L.; Ma, C.; Hu, Y. Facile synthesis of aluminum branched oligo (phenylphosphonate) submicro-particles with enhanced flame retardance and smoke toxicity suppression for epoxy resin composites. J. Hazard. Mater. 2020, 381, 121233. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, H.; Yu, B.; Shi, Y.; Wang, W.; Song, L.; Hu, Y.; Zhang, Y. Phosphorus and nitrogen-containing polyols: Synergistic effect on the thermal property and flame retardancy of rigid polyurethane foam composites. Ind. Eng. Chem. Res. 2016, 55, 10813–10822. [Google Scholar] [CrossRef]
- Tang, X.; Alavi, S. Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydr. Polym. 2011, 85, 7–16. [Google Scholar] [CrossRef]
- Xie, W.; Han, Z.; Zhang, Z.; Liu, Y.; Wang, Q. Hydrogen bond complexasion to prepare guanidine phosphate flame retardant poly (vinyl alcohol) membrane with high transparency. Compos. Part B-Eng. 2019, 176, 107265. [Google Scholar] [CrossRef]
- Attia, N.F.; Nour, M.A.; Elashery, S.E. Innovative engineering of scalable, renewable and spherical organic nanoparticles for high fire safety, UV protection and antibacterial properties of polyvinyl alcohol nanocomposites films. Sci. Rep. 2024, 14, 28841. [Google Scholar] [CrossRef] [PubMed]
- Song, P.a.; Xu, Z.; Lu, Y.; Guo, Q. Bioinspired strategy for tuning thermal stability of PVA via hydrogen-bond crosslink. Compos. Sci. Technol. 2015, 118, 16–22. [Google Scholar] [CrossRef]
- Yu, X.; Huang, J.; Wu, C.; Zhang, W. Biocompatible autonomous self-healing PVA-CS/TA hydrogels based on hydrogen bonding and electrostatic interaction. Sci. Rep. 2025, 15, 1893. [Google Scholar] [CrossRef]
- Nguyen, T.A. High-Performance Flame-Retardant PVA/Nanoclay/MWCNTs Composite Films: Fabrication, Multifunctional Properties, and Advanced Characterization. Trends Sci. 2025, 22, 10219. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, L.; Song, L.; Hu, Y.; Jiang, S.; Zhao, H. Reinforcement of layer-by-layer self-assembly coating modified cellulose nanofibers to reduce the flammability of polyvinyl alcohol. Cellulose 2019, 26, 3183–3192. [Google Scholar] [CrossRef]
- Tan, W.; Gao, L.; Su, J.; Zuo, C.; Ren, Y.; Liu, X. Phosphonitrile-modified biomass multi-crosslinking strategy: Construction of flame retardant, smoke suppressive and antibacterial polyvinyl alcohol composites. Compos. Part A Appl. Sci. Manuf. 2024, 177, 107897. [Google Scholar] [CrossRef]
- Qiu, S.; Zhou, Y.; Ren, X.; Zou, B.; Guo, W.; Song, L.; Hu, Y. Construction of hierarchical functionalized black phosphorus with polydopamine: A novel strategy for enhancing flame retardancy and mechanical properties of polyvinyl alcohol. Chem. Eng. J. 2020, 402, 126212. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Liu, Y.; Wang, Q. Efficient flame retardant polyvinyl alcohol membrane through surface graft method. RSC Adv. 2016, 6, 35051–35057. [Google Scholar] [CrossRef]
- Qiao, J.; Dong, Y.; Chen, C.; Xie, J. Development and characterization of starch/PVA antimicrobial active films with controlled release property by utilizing electrostatic interactions between nanocellulose and lauroyl arginate ethyl ester. Int. J. Biol. Macromol. 2024, 261, 129415. [Google Scholar] [CrossRef]
- Roosta, H.; Dashti, A.; Mazloumi, S.H.; Varaminian, F. Effects of chemical modification of PVA by acrylamide, methacrylamide and acrylonitrile on the growth rate of gas hydrate in methane-propane-water system. J. Mol. Liq. 2018, 253, 259–269. [Google Scholar]
- Liu, T.; Peng, X.; Chen, Y.; Zhang, J.; Jiao, C.; Wang, H. Solid-phase esterification between poly (vinyl alcohol) and malonic acid and its function in toughening hydrogels. Polym. Chem. 2020, 11, 4787–4797. [Google Scholar] [CrossRef]
- Saucă, S.; Giamberini, M.; Reina, J.A. Flame retardant phosphorous-containing polymers obtained by chemically modifying poly (vinyl alcohol). Polym. Degrad. Stab. 2013, 98, 453–463. [Google Scholar] [CrossRef]
- Gousse, C.; Gandini, A. Acetalization of polyvinyl alcohol with furfural. Eur. Polym. J. 1997, 33, 667–671. [Google Scholar] [CrossRef]
- Piluso, P.; Da-Cruz Boisson, F.; Bounor-Legaré, V.; Espuche, E. Acetalization of poly (vinyl alcohol) by a fatty aldehyde in water medium: Model study, kinetics, and structure analysis. J. Polym. Sci. A Polym. Chem. 2018, 56, 661–671. [Google Scholar]
- Su, Y.-K.; Coxwell, C.M.; Shen, S.; Miller, S.A. Polyvinyl alcohol modification with sustainable ketones. Polym. Chem. 2021, 12, 4961–4973. [Google Scholar] [CrossRef]
- Vlad-Bubulac, T.; Serbezeanu, D.; Perju, E.; Suflet, D.M.; Rusu, D.; Lisa, G.; Filip, T.-A.; Olariu, M.-A. Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights. Nanomaterials 2025, 15, 1251. [Google Scholar] [CrossRef]
- Serbezeanu, D.; Vlad-Bubulac, T.; Onofrei, M.D.; Doroftei, F.; Hamciuc, C.; Ipate, A.-M.; Anisiei, A.; Lisa, G.; Anghel, I.; Şofran, I.-E. Phosphorylated poly (vinyl alcohol) electrospun mats for protective equipment applications. Nanomaterials 2022, 12, 2685. [Google Scholar] [CrossRef]
- Shang, K.; Ye, D.-D.; Kang, A.-H.; Wang, Y.-T.; Liao, W.; Xu, S.; Wang, Y.-Z. Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer 2017, 131, 111–119. [Google Scholar] [CrossRef]
- Montallana, A.D.S.; Lai, B.-Z.; Chu, J.P.; Vasquez, M.R., Jr. Enhancement of photodegradation efficiency of PVA/TiO2 nanofiber composites via plasma treatment. Mater. Today Commun. 2020, 24, 101183. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, G.; Long, Z.; Yang, G.; Wang, B. Controllable layer-by-layer assembly of PVA and phenylboronic acid-derivatized chitosan. Carbohydr. Polym. 2016, 140, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Guo, W.; Gill, R.; Xin, W.; Hu, Y. Chitin based multi-layered coatings with flame retardancy an approach to mimic nacre: Synthesis, characterization and mechanical properties. Carbohydr. Polym. 2022, 291, 119488. [Google Scholar] [CrossRef] [PubMed]
- Rashad, M. Tuning optical properties of polyvinyl alcohol doped with different metal oxide nanoparticles. Opt. Mater. 2020, 105, 109857. [Google Scholar] [CrossRef]
- Khalil, M.M.; El-Sayed, A.H.; Masoud, M.; Mahmoud, E.; Hamad, M.A. Synthesis and optical properties of alizarin yellow GG-Cu (II)-PVA nanocomposite film as a selective filter for optical applications. J. Mater. Res. Technol. 2021, 11, 33–39. [Google Scholar] [CrossRef]
- Abdelhamied, M.; Atta, A.; Abdelreheem, A.; Farag, A.; El Okr, M. Synthesis and optical properties of PVA/PANI/Ag nanocomposite films. J. Mater. Sci. Mater. Electron. 2020, 31, 22629–22641. [Google Scholar] [CrossRef]
- Saikia, D.; Saikia, P.; Gogoi, P.; Das, M.; Sengupta, P.; Shelke, M. Synthesis and characterization of CdS/PVA nanocomposite thin films from a complexing agent free system. Mater. Chem. Phys. 2011, 131, 223–229. [Google Scholar] [CrossRef]
- Mohanapriya, M.; Deshmukh, K.; Chidambaram, K.; Ahamed, M.B.; Sadasivuni, K.K.; Ponnamma, D.; AlMaadeed, M.A.-A.; Deshmukh, R.; Pasha, S.K. Polyvinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device applications. J. Mater. Sci. Mater. Electron. 2017, 28, 6099–6111. [Google Scholar] [CrossRef]
- Xue, S.; Qin, W.; Gu, C.; Chen, M.; Zhai, H.; Zhao, X.; Li, X.; Wang, Y.; Ge, L.; Li, S. Zr4+-doped PVA-based fiber films: Enhanced mechanical properties, degradability, and applications in green energy. Chem. Eng. J. 2025, 503, 158406. [Google Scholar] [CrossRef]
- Lim, S.K.; Hwang, S.-H.; Chang, D.; Kim, S. Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens. Actuators B Chem. 2010, 149, 28–33. [Google Scholar] [CrossRef]
- Bittencourt, J.C.; de Santana Gois, B.H.; Rodrigues de Oliveira, V.J.; da Silva Agostini, D.L.; de Almeida Olivati, C. Gas sensor for ammonia detection based on poly (vinyl alcohol) and polyaniline electrospun. J. Appl. Polym. Sci. 2019, 136, 47288. [Google Scholar] [CrossRef]
- Jayakumar, A.; Heera, K.; Sumi, T.; Joseph, M.; Mathew, S.; Praveen, G.; Nair, I.C.; Radhakrishnan, E. Starch-PVA composite films with zinc-oxide nanoparticles and phytochemicals as intelligent pH sensing wraps for food packaging application. Int. J. Biol. Macromol. 2019, 136, 395–403. [Google Scholar] [CrossRef]
- Ramesh, G.; Radhakrishnan, T. A universal sensor for mercury (Hg, HgI, HgII) based on silver nanoparticle-embedded polymer thin film. ACS Appl. Mater. Interfaces 2011, 3, 988–994. [Google Scholar]
- Wittmar, M.; Unger, F.; Kissel, T. Biodegradable brushlike branched polyesters containing a charge-modified poly (vinyl alcohol) backbone as a platform for drug delivery systems: Synthesis and characterization. Macromolecules 2006, 39, 1417–1424. [Google Scholar] [CrossRef]
- Dhiman, T.K.; Poddar, M.; Lakshmi, G.; Kumar, R.; Solanki, P.R. Non-enzymatic and rapid detection of glucose on PVA-CuO thin film using ARDUINO UNO based capacitance measurement unit. Biomed. Microdevices 2021, 23, 36. [Google Scholar] [CrossRef]
- Shi, W.; Han, G.; Chang, Y.; Song, H.; Hou, W.; Chen, Q. Using stretchable PPy@ PVA composites as a high-sensitivity strain sensor to monitor minute motion. ACS Appl. Mater. Interfaces 2020, 12, 45373–45382. [Google Scholar] [CrossRef]
- Yang, Q.; Guo, J.; Zhang, S.; Guan, F.; Yu, Y.; Yao, Q.; Zhang, X.; Xu, Y. PVA/PEO/PVA-g-APEG nanofiber membranes with cytocompatibility and anti-cell adhesion for biomedical applications. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130638. [Google Scholar]
Composition of Materials | Preparation Method | Fillers Content (wt%) | LOI (%) | PHRR (%) | THR (%) | UL-94rating | Ref. |
---|---|---|---|---|---|---|---|
TE/PVA | Hydrogen bond association | 10 | ↑ 25.5 | −43 | −42 | V-0 | [73] |
GP/PVA | Hydrogen bond association | 15 | ↑ 31.2 | −73 | −27 | V-0 | [82] |
MLNPs/PVA | Hydrogen bond association | 50 | — | 0 | — | — | [83] |
4N-2456/PVA | Hydrogen bond association | 0.5 | — | — | — | — | [84] |
CS/TA/PVA | Electrostatic interactions | CS: 0–1.5 TA: 1.5–3 | — | — | — | — | [85] |
Nanoclay/MWCNTs/PVA | Van der Waals interactions | Nanoclay: 3 MWCNTs: 0.5 | ↑ 31.5 | — | — | V-0 | [86] |
GO/PA/PVA | Esterification | — | ↑ 36 | −88.6 | −66.5 | V-0 | [62] |
MCNFs/PVA | Layer-by-Layer (LbL) assembly | 6 | — | −37 | −15 | — | [87] |
SHCP@CS-Cu/PVA | Cross-linking strategy | 20 | ↑ 29.1 | −52.38 | −13.91 | — | [88] |
BP-PDA/PVA | Plasma treatment | 5 | — | −57.2 | −47.9 | — | [89] |
DPP/PVA | Surface graft method | 7.44 | — | — | — | V-0 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, D.; Xu, L.; Pan, D.; Xiao, Y.; Zhang, Y.; Yuan, Y.; Wang, W. Flame-Retardant Polyvinyl Alcohol Materials: Mechanisms, Design Strategies, and Multifunctional Applications. Polymers 2025, 17, 2649. https://doi.org/10.3390/polym17192649
Jia D, Xu L, Pan D, Xiao Y, Zhang Y, Yuan Y, Wang W. Flame-Retardant Polyvinyl Alcohol Materials: Mechanisms, Design Strategies, and Multifunctional Applications. Polymers. 2025; 17(19):2649. https://doi.org/10.3390/polym17192649
Chicago/Turabian StyleJia, Dehui, Lulu Xu, Danni Pan, Yi Xiao, Yan Zhang, Yao Yuan, and Wei Wang. 2025. "Flame-Retardant Polyvinyl Alcohol Materials: Mechanisms, Design Strategies, and Multifunctional Applications" Polymers 17, no. 19: 2649. https://doi.org/10.3390/polym17192649
APA StyleJia, D., Xu, L., Pan, D., Xiao, Y., Zhang, Y., Yuan, Y., & Wang, W. (2025). Flame-Retardant Polyvinyl Alcohol Materials: Mechanisms, Design Strategies, and Multifunctional Applications. Polymers, 17(19), 2649. https://doi.org/10.3390/polym17192649