Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood
Abstract
1. Introduction
2. Material and Methods
2.1. Origin and Characterization of Black Liquor
2.2. High-Pressure Wood Impregnation
2.3. Hyperspectral Sensors
2.4. Chemical Analysis
2.4.1. Protein-Free Cell Wall Preparation (PFCWP)
2.4.2. Determination of Lignin in PFCW
2.4.3. Determination of Cellulose in PFCW
2.5. Univariate and Multivariate Statistical Analysis
3. Results and Discussion
3.1. Descriptive Biochemical Parameters
3.2. Principal Component Analysis of Cross-Sections of Different Timber Species
3.3. Calibration, Cross-Validation and Prediction of the Cellular Components of Timber Species Sections
3.4. Spectral Curves (NIR) for Each Wood Section and Wood Species
3.4.1. Top
3.4.2. Median
3.4.3. Base
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data availability statement
Acknowledgments
Conflicts of Interest
Abbreviations
SEU | Sapwood of Eucalyptus urophylla |
SP | Sapwood of Pinus taeda |
HEU | Heartwood of Eucalyptus urophylla |
r | Correlation coefficient |
PLS | Partial Least Squares |
R2 | Coefficient of determination |
RMSE | Root mean square error |
RPD | Ratio between the prediction and deviation |
Appendix A
Appendix A.1
Samples (Top) | Samples (Middle) | Samples (Base) | |||
---|---|---|---|---|---|
A-Alb-C | Top of untreated E. urophylla sapwood wood (control) | M-Alb-C | Middle of untreated E. urophylla sapwood wood (control) | B-Alb-C | Base of untreated E. urophylla sapwood wood (control) |
A-Alb-atm | Top of E. urophylla sapwood impregnated at 0.10 MPa | M-Alb-atm | Middle of E. urophylla sapwood impregnated at 0.10 MPa | B-Alb-atm | Base of E. urophylla sapwood impregnated at 0.10 MPa |
A-Alb-25 | Top of E. urophylla sapwood impregnated at 2.5 MPa | M-Alb-25 | Middle of E. urophylla sapwood impregnated at 2.5 MPa | B-Alb-25 | Base of E. urophylla sapwood impregnated at 2.5 MPa |
A-Alb-50 | Top of E. urophylla sapwood impregnated at 5.0 MPa | M-Alb-50 | Middle of E. urophylla sapwood impregnated at 5.0 MPa | B-Alb-50 | Base of E. urophylla sapwood impregnated at 5.0 MPa |
A-Alb-75 | Top of E. urophylla sapwood impregnated at 7.5 MPa | M-Alb-75 | Middle of E. urophylla sapwood impregnated at 7.5 MPa | B-Alb-75 | Base of E. urophylla sapwood impregnated at 7.5 MPa |
A-Alb-100 | Top of E. urophylla sapwood impregnated at 10 MPa | M-Alb-100 | Middle of E. urophylla sapwood impregnated at 10 MPa | B-Alb-100 | Base of E. urophylla sapwood impregnated at 10 MPa |
A-Pin-C | Top of untreated P. taeda sapwood wood (control) | M-Pin-C | Middle of untreated P. taeda sapwood wood (control) | B-Pin-C | Base of untreated P. taeda sapwood wood (control) |
A-Pin-atm | Top of P. taeda sapwood impregnated at 0.10 MPa | M-Pin-atm | Middle of P. taeda sapwood impregnated at 0.10 MPa | B-Pin-atm | Base of P. taeda sapwood impregnated at 0.10 MPa |
A-Pin-25 | Top of P. taeda sapwood impregnated at 2.5 MPa | M-Pin-25 | Middle of P. taeda sapwood impregnated at 2.5 MPa | B-Pin-25 | Base of P. taeda sapwood impregnated at 2.5 MPa |
A-Pin-50 | Top of P. taeda sapwood impregnated at 5.0 MPa | M-Pin-50 | Middle of P. taeda sapwood impregnated at 5.0 MPa | B-Pin-50 | Base of P. taeda sapwood impregnated at 5.0 MPa |
A-Pin-75 | Top of P. taeda sapwood impregnated at 7.5 MPa | M-Pin-75 | Middle of P. taeda sapwood impregnated at 7.5 MPa | B-Pin-75 | Base of P. taeda sapwood impregnated at 7.5 MPa |
A-Pin-100 | Top of P. taeda sapwood impregnated at 10 MPa | M-Pin-100 | Middle of P. taeda sapwood impregnated at 10 MPa | B-Pin-100 | Base of P. taeda sapwood impregnated at 10 MPa |
A-Cer-C | Top of untreated P. taeda sapwood wood (control) | M-Cer-C | Middle of untreated P. taeda sapwood wood (control) | B-Cer-C | Base of untreated P. taeda sapwood wood (control) |
A-Cer-atm | Top of E. urophylla heartwood impregnated at 0.10 MPa | M-Cer-atm | Middle of E. urophylla heartwood impregnated at 0.10 MPa | B-Cer-atm | Base of E. urophylla heartwood impregnated at 0.10 MPa |
A-Cer-25 | Top of E. urophylla heartwood impregnated at 2.5 MPa | M-Cer-25 | Middle of E. urophylla heartwood impregnated at 2.5 MPa | B-Cer-25 | Base of E. urophylla heartwood impregnated at 2.5 MPa |
A-Cer-50 | Top of E. urophylla heartwood impregnated at 5.0 MPa | M-Cer-50 | Middle of E. urophylla heartwood impregnated at 5.0 MPa | B-Cer-50 | Base of E. urophylla heartwood impregnated at 5.0 MPa |
A-Cer-75 | Top of E. urophylla heartwood impregnated at 7.5 MPa | M-Cer-75 | Middle of E. urophylla heartwood impregnated at 7.5 MPa | B-Cer-75 | Base of E. urophylla heartwood impregnated at 7.5 MPa |
A-Cer-100 | Top of E. urophylla heartwood impregnated at 10 MPa | M-Cer-100 | Middle of E. urophylla heartwood impregnated at 10 MPa | B-Cer-100 | Base of E. urophylla heartwood impregnated at 10 MPa |
References
- Lopes, C.L.; Chiavari, J. Forest Restoration in Brazil: Essential Factors for Promoting Restoration at Scale. Climate Policy Initiative. 12 March 2024. Available online: https://www.climatepolicyinitiative.org/publication/forest-restoration-in-brazil-essential-factors-for-promoting-restoration-at-scale/ (accessed on 25 September 2025).
- Wang, H.-M.; Wang, B.; Wen, J.-L.; Yuan, T.-Q.; Sun, R.-C. Structural Characteristics of Lignin Macromolecules from Different Eucalyptus Species. ACS Sustain. Chem. Eng. 2017, 5, 11618–11627. [Google Scholar] [CrossRef]
- Mirski, R.; Dziurka, D.; Chuda-Kowalska, M.; Wieruszewski, M.; Kawalerczyk, J.; Trociński, A. The Usefulness of Pine Timber (Pinus sylvestris L.) for the Production of Structural Elements. Part I: Evaluation of the Quality of the Pine Timber in the Bending Test. Materials 2020, 13, 3957. [Google Scholar] [CrossRef] [PubMed]
- Seng Hua, L.; Wei Chen, L.; Antov, P.; Kristak, L.; Md Tahir, P. Engineering Wood Products from Eucalyptus spp. Adv. Mater. Sci. Eng. 2022, 2022, 8000780. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Islam, M.M.; Rahman, A.N.M.M. Wood Preservation: Improvement of Mechanical Properties by Vacuum Pressure Process. Int. J. Eng. Appl. Sci. 2015, 2, 75–79. [Google Scholar]
- Morais, S.; Fonseca, H.M.A.C.; Oliveira, S.M.R.; Oliveira, H.; Gupta, V.K.; Sharma, B.; de Lourdes Pereira, M. Environmental and Health Hazards of Chromated Copper Arsenate-Treated Wood: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5518. [Google Scholar] [CrossRef]
- Mercer, T.G.; Frostick, L.E. Leaching Characteristics of CCA-Treated Wood Waste: A UK Study. Sci. Total Environ. 2012, 427–428, 165–174. [Google Scholar] [CrossRef]
- Andeme Ela, R.C.; Chipkar, S.H.; Bal, T.L.; Xie, X.; Ong, R.G. Lignin–Propiconazole Nanocapsules Are an Effective Bio-Based Wood Preservative. ACS Sustain. Chem. Eng. 2021, 9, 2684–2692. [Google Scholar] [CrossRef]
- Belizário, A.C.; de Oliveira, F.L.; Icimoto, F.H.; Vairo, M. Performance Comparison Between Preservative Products Concerning Termites Attack On Pine Timber. Revista Árvore 2023, 47. [Google Scholar] [CrossRef]
- Facchi, S.P.; de Almeida, D.A.; Abrantes, K.K.B.; Rodrigues, P.C.d.S.; Tessmann, D.J.; Bonafé, E.G.; da Silva, M.F.; Gashti, M.P.; Martins, A.F.; Cardozo-Filho, L. Ultra-Pressurized Deposition of Hydrophobic Chitosan Surface Coating on Wood for Fungal Resistance. Int. J. Mol. Sci. 2024, 25, 10899. [Google Scholar] [CrossRef]
- Barbosa Abrantes, K.K.; Sete da Cruz, R.M.; Barros, T.V.; de Souto, E.R.; Paes, J.B.; Cardozo-Filho, L. Antifungal Activity in Vitro Using Kraft-Pulping Crude Black Liquor and Hydrothermal Treatment Black Liquor against Wood-Decaying Fungi. J. Wood Chem. Technol. 2023, 43, 150–163. [Google Scholar] [CrossRef]
- Durmaz, S.; Erisir, E.; Yildiz, U.C.; Kurtulus, O.C. Using Kraft Black Liquor as a Wood Preservative. Procedia Soc. Behav. Sci. 2015, 195, 2177–2180. [Google Scholar] [CrossRef]
- Rosell, J.A.; Marcati, C.R.; Olson, M.E.; Lagunes, X.; Vergilio, P.C.B.; Jiménez-Vera, C.; Campo, J. Inner Bark vs Sapwood Is the Main Driver of Nitrogen and Phosphorus Allocation in Stems and Roots across Three Tropical Woody Plant Communities. New Phytol. 2023, 239, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- Viotti, C.; Bach, C.; Maillard, F.; Ziegler-Devin, I.; Mieszkin, S.; Buée, M. Sapwood and Heartwood Affect Differentially Bacterial and Fungal Community Structure and Successional Dynamics during Quercus petraea Decomposition. Environ. Microbiol. 2021, 23, 6177–6193. [Google Scholar] [CrossRef] [PubMed]
- Celedon, J.M.; Bohlmann, J. An Extended Model of Heartwood Secondary Metabolism Informed by Functional Genomics. Tree Physiol. 2018, 38, 311–319. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical Composition and Resistance of Italian Stone Pine (Pinus pinea L.) Wood against Fungal Decay and Wetting. Ind. Crops Prod. 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Miler, R.B. Structure of Wood. In Wood Handbook: Wood as an Engineering Material, 2nd ed.; Forest Products Laboratory, Ed.; U.S. Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; 463p. [Google Scholar]
- Schwanninger, M.; Rodrigues, J.C.; Gierlinger, N.; Hinterstoisser, B. Determination of Lignin Content in Norway Spruce Wood by Fourier Transformed near Infrared Spectroscopy and Partial Least Squares Regression. Part 1: Wavenumber Selection and Evaluation of the Selected Range. J. Near Infrared Spectrosc. 2011, 19, 319–329. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef]
- Rehman, N.; Alam, S.; Amin, N.U.; Mian, I.; Ullah, H. Ecofriendly Isolation of Cellulose from Eucalyptus Lenceolata: A Novel Approach. Int. J. Polym. Sci. 2018, 2018. [Google Scholar] [CrossRef]
- Piccinino, D.; Capecchi, E.; Tomaino, E.; Gabellone, S.; Gigli, V.; Avitabile, D.; Saladino, R. Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants 2021, 10, 274. [Google Scholar] [CrossRef]
- Reyes, D.C.; Ma, Z.; Romero, J.J. The Antimicrobial Properties of Technical Lignins and Their Derivatives—A Review. Polymers 2024, 16, 2181. [Google Scholar] [CrossRef]
- Dampanaboina, L.; Yuan, N.; Mendu, V. Estimation of Crystalline Cellulose Content of Plant Biomass Using the Updegraff Method. JoVE 2021, e62031. [Google Scholar] [CrossRef]
- Hou, S.; Li, L. Rapid Characterization of Woody Biomass Digestibility and Chemical Composition Using Near-Infrared Spectroscopy. J. Integr. Plant Biol. 2011, 53, 166–175. [Google Scholar] [CrossRef]
- Vidholdová, Z.; Sandak, A.; Sandak, J. Assessment of the Chemical Change in Heat Treated Pine Wood by near Infrared Spectroscopy. Acta Fac. Xylolog. Zvo. 2019, 61, 31–42. [Google Scholar] [CrossRef]
- Ayanleye, S.; Avramidis, S. Predictive Capacity of Some Wood Properties by Near-Infrared Spectroscopy. Int. Wood Prod. J. 2020, 12, 83–94. [Google Scholar] [CrossRef]
- Lengowski, E.C.; de Muñiz, G.I.B.; Klock, U.; Nisgoski, S. Potential Use of Nir and Visible Spectroscopy to Analyze Chemical Properties of Thermally Treated Wood. Maderas-Cienc. Tecnol. 2018, 20, 627–640. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, Y.; Ren, Y.; Lu, Y.; Yu, C.; Chen, G.; Hong, Y.; Liu, Q. Predictive Modeling of Lignocellulosic Content in Crop Straws Using NIR Spectroscopy. Plants 2025, 14, 1430. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, C.; Zhou, B.; He, Y. Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy. Sci. Rep. 2015, 5, 17210. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Jiang, W.; Via, B.K.; Chetty, P.M.; Swain, T. Monitoring the Chemistry and Monosaccharide Ratio of Eucalyptus Dunnii Wood by near Infrared Spectroscopy. J. Near Infrared Spec. 2016, 24, 537–548. [Google Scholar] [CrossRef]
- Fahey, L.M.; Nieuwoudt, M.K.; Harris, P.J. Using near Infrared Spectroscopy to Predict the Lignin Content and Monosaccharide Compositions of Pinus radiata Wood Cell Walls. Int. J. Biol. Macromol. 2018, 113, 507–514. [Google Scholar] [CrossRef]
- Mesquita Pimenta, E.; Dos Santos Brito, E.G.; Ramalho, F.M.G.; Hein, P.R.G. Validation of Models Using Near-Infrared Spectroscopy to Estimate Basic Density and Chemical Composition of Eucalyptus Wood. IForest 2024, 17, 338–345. [Google Scholar] [CrossRef]
- Li, Y.; Altaner, C. Predicting Extractives Content of Eucalyptus Bosistoana F. Muell. Heartwood from Stem Cores by near Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 198, 78–87. [Google Scholar] [CrossRef]
- Pereira-Crespo, S.; Gesteiro, N.; López-Malvar, A.; Gómez, L.; Santiago, R. Assessing the Application of Near-Infrared Spectroscopy to Determine Saccharification Efficiency of Corn Biomass. Bioenergy Res. 2024, 17, 1522–1532. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Falcioni, R.; Antunes, W.C.; Demattê, J.A.M.; Nanni, M.R. A Novel Method for Estimating Chlorophyll and Carotenoid Concentrations in Leaves: A Two Hyperspectral Sensor Approach. Sensors 2023, 23, 3843. [Google Scholar] [CrossRef] [PubMed]
- Barros, T.V.; Carregosa, J.d.C.; Wisniewski Jr, A.; Freitas, A.C.D.; Guirardello, R.; Ferreira-Pinto, L.; Bonfim-Rocha, L.; Jegatheesan, V.; Cardozo-Filho, L. Assessment of Black Liquor Hydrothermal Treatment under Sub- and Supercritical Conditions: Products Distribution and Economic Perspectives. Chemosphere 2022, 286, 131774. [Google Scholar] [CrossRef] [PubMed]
- Pola, L.; Collado, S.; Oulego, P.; Calvo, P.Á.; Díaz, M. Characterisation of the Wet Oxidation of Black Liquor for Its Integration in Kraft Paper Mills. Chem. Eng. J. 2021, 405, 126610. [Google Scholar] [CrossRef]
- AWPA E30-16; Standard Method for Evaluating Natural Decay Resistance of Woods Using Laboratory Decay Tests. AWPA—American Wood Protection Association: Birmingham, AL, USA, 2016.
- AWPA E10-16; Laboratory Method for Evaluating the Decay Resistance of Wood-Based Materials against Pure Basidiomycete Cultures: Soil/Block Test. AWPA—American Wood Protection Association: Birmingham, AL, USA, 2016.
- Furlanetto, R.H.; Moriwaki, T.; Falcioni, R.; Pattaro, M.; Vollmann, A.; Sturion Junior, A.C.; Antunes, W.C.; Nanni, M.R. Hyperspectral Reflectance Imaging to Classify Lettuce Varieties by Optimum Selected Wavelengths and Linear Discriminant Analysis. Remote Sens. Appl. 2020, 20, 100400. [Google Scholar] [CrossRef]
- Moreira-Vilar, F.C.; Siqueira-Soares, R.d.C.; Finger-Teixeira, A.; de Oliveira, D.M.; Ferro, A.P.; da Rocha, G.J.; Ferrarese, M.d.L.L.; dos Santos, W.D.; Ferrarese-Filho, O. The Acetyl Bromide Method Is Faster, Simpler and Presents Best Recovery of Lignin in Different Herbaceous Tissues than Klason and Thioglycolic Acid Methods. PLoS ONE 2014, 9, e110000. [Google Scholar] [CrossRef]
- Genkawa, T.; Shinzawa, H.; Kato, H.; Ishikawa, D.; Murayama, K.; Komiyama, M.; Ozaki, Y. Baseline Correction of Diffuse Reflection Near-Infrared Spectra Using Searching Region Standard Normal Variate (SRSNV). Appl. Spectrosc. 2015, 69, 1432–1441. [Google Scholar] [CrossRef]
- Nanni, M.R.; Cezar, E.; da Silva Junior, C.A.; Silva, G.F.C.; da Silva Gualberto, A.A. Partial Least Squares Regression (PLSR) Associated with Spectral Response to Predict Soil Attributes in Transitional Lithologies. Arch. Agron. Soil Sci. 2018, 64, 682–695. [Google Scholar] [CrossRef]
- El Bourakadi, K.; Semlali, F.-Z.; Hammi, M.; El Achaby, M. A Review on Natural Cellulose Fiber Applications: Empowering Industry with Sustainable Solutions. Int. J. Biol. Macromol. 2024, 281, 135773. [Google Scholar] [CrossRef]
- Wang, S.; Bai, J.; Innocent, M.T.; Wang, Q.; Xiang, H.; Tang, J.; Zhu, M. Lignin-Based Carbon Fibers: Formation, Modification and Potential Applications. Green Energy Environ. 2022, 7, 578–605. [Google Scholar] [CrossRef]
- Mateo, S.; Fabbrizi, G.; Moya, A.J. Lignin from Plant-Based Agro-Industrial Biowastes: From Extraction to Sustainable Applications. Polymers 2025, 17, 952. [Google Scholar] [CrossRef]
- Cazier, E.A.; Pham, T.-N.; Cossus, L.; Abla, M.; Ilc, T.; Lawrence, P. Exploring Industrial Lignocellulosic Waste: Sources, Types, and Potential as High-Value Molecules. Waste Manag. 2024, 188, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Puntambekar, R.; Pydimalla, M.; Dinda, S.; Adusumalli, R.B. Characterization of Eucalyptus Heartwood and Sapwood Pulp after Kraft Cooking. J. Indian Acad. Wood Sci. 2016, 13, 8–15. [Google Scholar] [CrossRef]
- Žlahtič, M.; Mikac, U.; Serša, I.; Merela, M.; Humar, M. Distribution and Penetration of Tung Oil in Wood Studied by Magnetic Resonance Microscopy. Ind. Crops Prod. 2017, 96, 149–157. [Google Scholar] [CrossRef]
- Wen, M.-Y.; Kang, C.-W.; Park, H.-J. Impregnation and Mechanical Properties of Three Softwoods Treated with a New Fire Retardant Chemical. J. Wood Sci. 2014, 60, 367–375. [Google Scholar] [CrossRef]
- Wang, X.; Shi, S.Q. Bioinspired Self-Flowing Wood Chemical Treatment. Nat. Commun. 2025, 16, 542. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, P.; Zhang, Z.; Yang, Y.; Zhao, P. Wood Density, Anatomical Characteristics, and Chemical Components of Alnus sibirica Used for Industrial Applications. For. Prod. J. 2020, 356–363. [Google Scholar] [CrossRef]
- Morais, M.C.; Pereira, H. Variation of Extractives Content in Heartwood and Sapwood of Eucalyptus globulus Trees. Wood Sci. Technol. 2012, 46, 709–719. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Meder, R. Assessing Trees, Wood and Derived Products with near Infrared Spectroscopy: Hints and Tips. J. Near Infrared Spectrosc. 2016, 24, 485–505. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Malone, B.P.; Wheeler, I. Digital Mapping of Soil Carbon. Adv. Agron. 2013, 118, 1–47. [Google Scholar] [CrossRef]
- Hodge, G.R.; Acosta, J.J.; Unda, F.; Woodbridge, W.C.; Mansfield, S.D. Global near Infrared Spectroscopy Models to Predict Wood Chemical Properties of Eucalyptus. J. Near Infrared Spectrosc. 2018, 26, 117–132. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Kube, P.D.; Raymond, C.A. Genetic Improvement of Kraft Pulp Yield in Eucalyptus Nitens Using Cellulose Content Determined by near Infrared Spectroscopy. Can. J. For. Res. 2004, 34, 2363–2370. [Google Scholar] [CrossRef]
- Loureiro, B.A.; Arriel, T.G.; Ramalho, F.M.G.; Hein, P.R.G.; Trugilho, P.F. NIR-Based Models for Estimating Selected Physical and Chemical Wood Properties from Fast-Growing Plantations. IForest 2022, 15, 372–380. [Google Scholar] [CrossRef]
- Lima, L.C.; Costa, L.R.; Carvalho, A.M.M.L.; Bianchi, M.L.; Hein, P.R.G. Near Infrared Spectroscopy for Estimating Properties of Kraft Paper Reinforced with Cellulose Nanofibrils. Cerne 2022, 28. [Google Scholar] [CrossRef]
- Schimleck, L.R.; Matos, J.L.M.; Trianoski, R.; Prata, J.G. Comparison of Methods for Estimating Mechanical Properties of Wood by NIR Spectroscopy. J. Spectrosc. 2018, 2018, 4823285. [Google Scholar] [CrossRef]
- Pan, X.; Yu, Z.; Yang, Z. A Multi-Scale Convolutional Neural Network Combined with a Portable Near-Infrared Spectrometer for the Rapid, Non-Destructive Identification of Wood Species. Forests 2024, 15, 556. [Google Scholar] [CrossRef]
- de Medeiros Neto, P.N.; Pinto, J.d.A.; Brito, F.M.S.; Paes, J.B.; Ferreira, G.; Correia, N.P.C.M. Resistência Biológica e Agentes Deterioradores Da Madeira. In Fundamentos e Pesquisas em Ciências Ambientais e Agrárias; de Andrade, J.K.B., Ed.; Editora: Licuri, Campina Grande: Paraíba, Brazil, 2024; pp. 73–89. [Google Scholar] [CrossRef]
- Fujimoto, T.; Yamamoto, H.; Tsuchikawa, S. Estimation of Wood Stiffness and Strength Properties of Hybrid Larch by Near-Infrared Spectroscopy. Appl. Spectrosc. 2007, 61, 882–888. [Google Scholar] [CrossRef]
- Costa, L.R.; Trugilho, P.F.; Hein, P.R.G. Evaluation and Classification of Eucalypt Charcoal Quality by near Infrared Spectroscopy. Biomass Bioenerg. 2018, 112, 85–92. [Google Scholar] [CrossRef]
- Kothiyal, V.; Raturi, A.; Jaideep; Dubey, Y.M. Enhancing the Applicability of near Infrared Spectroscopy for Estimating Specific Gravity of Green Timber from Eucalyptus tereticornis by Developing Composite Calibration Using Both Radial and Tangential Face of Wood. Eur. J. Wood Wood Prod. 2014, 72, 11–20. [Google Scholar] [CrossRef]
- Hein, P.R.G.; Lima, J.T.; Trugilho, P.F.; Chaix, G. Estimativa Do Ângulo Microfibrilar Em Madeira de Eucalyptus urophylla × E. grandis Por Meio da Espectroscopia No Infravermelho Próximo. Floresta Ambiente 2012, 19, 194–199. [Google Scholar] [CrossRef]
- Aguilera-Sáez, L.M.; Arrabal-Campos, F.M.; Callejón-Ferre, Á.J.; Suárez Medina, M.D.; Fernández, I. Use of Multivariate NMR Analysis in the Content Prediction of Hemicellulose, Cellulose and Lignin in Greenhouse Crop Residues. Phytochemistry 2019, 158, 110–119. [Google Scholar] [CrossRef]
- Ai, N.; Jiang, Y.; Omar, S.; Wang, J.; Xia, L.; Ren, J. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum Horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules 2022, 27, 335. [Google Scholar] [CrossRef]
- Dzurenda, L.; Dudiak, M.; Kučerová, V. Differences in Some Physical and Chemical Properties of Beechwood with False Heartwood, Mature Wood and Sapwood. Forests 2023, 14, 1123. [Google Scholar] [CrossRef]
- Abe, H.; Kurata, Y.; Watanabe, K.; Kitin, P.; Kojima, M.; Yazaki, K. Longitudinal Transmittance of Visible and Near-Infrared Light in the Wood of 21 Conifer Species. IAWA J. 2022, 43, 403–412. [Google Scholar] [CrossRef]
- Ma, T.; Inagaki, T.; Ban, M.; Tsuchikawa, S. Rapid Identification of Wood Species by Near-Infrared Spatially Resolved Spectroscopy (NIR-SRS) Based on Hyperspectral Imaging (HSI). Holzforschung 2019, 73, 323–330. [Google Scholar] [CrossRef]
- Kitamura, R.; Inagaki, T.; Tsuchikawa, S. Determination of True Optical Absorption and Scattering Coefficient of Wooden Cell Wall Substance by Time-of-Flight near Infrared Spectroscopy. Opt. Express 2016, 24, 3999–4009. [Google Scholar] [CrossRef]
- Hans, G.; Leblon, B.; Stirling, R.; Nader, J.; LaRocque, A.; Cooper, P. Monitoring of Moisture Content and Basic Specific Gravity in Black Spruce Logs Using a Hand-Held MEMS-Based near-Infrared Spectrometer. For. Chron. 2013, 89, 607–620. [Google Scholar] [CrossRef]
- Defo, M.; Taylor, A.M.; Bond, B. Determination of Moisture Content and Density of Fresh-Sawn Red Oak Lumber by near Infrared Spectroscopy. For. Prod. J. 2007, 57, 68–72. [Google Scholar]
- Hein, P.R.G.; Lima, J.T.; Gilles Chaix, G.C. Otimização De Calibrações Baseadas Em Espectroscopia No Infravermelho Próximo Para Estimativa de Propriedades da Madeira de Eucalyptus. Floresta 2010, 40, 615–624. [Google Scholar] [CrossRef]
Parameter | Count (n) | Mean | SD (%) | Median | Minimum | Maximum | CV (%) | |
---|---|---|---|---|---|---|---|---|
TOP | Lignin (%) | 180 | 30.1 | 8.4 | 29.7 | 9.7 | 57.9 | 28.1 |
Cellulose (%) | 180 | 2.4 | 1.5 | 2.3 | 0.4 | 7.2 | 61.2 | |
MIDDLE | Lignin (%) | 180 | 29.6 | 8.9 | 29.2 | 12.4 | 57.7 | 30.3 |
Cellulose (%) | 180 | 2.4 | 1.4 | 2.4 | 0.2 | 6.5 | 59.5 | |
BASE | Lignin (%) | 180 | 27.7 | 8.1 | 26.7 | 13.5 | 57.1 | 29.1 |
Cellulose (%) | 180 | 2.3 | 1.3 | 2.0 | 0.1 | 6.7 | 58.5 |
Sensors | Parameter | Maximum Factor PLS | Calibration | Cross-Validation | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | Offset | RMSE | RPD | R2 | Offset | RMSE | RPD | |||
TOP | Lignin (mg/g) | 4 | 0.96 | 1.4 | 0.1 | 3.61 | 0.95 | 2.5 | 0.2 | 3.17 |
Cellulose (nmol/mg) | 6 | 0.99 | 0.0 | 0.3 | 6.01 | 0.98 | 0.1 | 0.3 | 4.93 | |
MIDDLE | Lignin (mg/g) | 5 | 0.96 | 1.6 | 0.1 | 3.43 | 0.94 | 2.3 | 0.2 | 3.01 |
Cellulose (nmol/mg) | 7 | 0.99 | 0.0 | 0.2 | 8.02 | 0.99 | 0.1 | 0.2 | 6.30 | |
BASE | Lignin (mg/g) | 5 | 0.96 | 1.3 | 0.1 | 3.74 | 0.94 | 2.8 | 0.1 | 2.94 |
Cellulose (nmol/mg) | 7 | 0.99 | 0.0 | 0.2 | 7.77 | 0.98 | 0.1 | 0.3 | 4.80 |
Sensors | Parameter | Maximum Factor PLS | Predicted | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
r | R2 | Slope | Offset | SEP | RMSEP | RPD | Bias | Linear Equation Prediction to Calibration Model (R2P) | |||
TOP | Lignin (nm) | 4 | 0.94 | 0.92 | 1.02 | –0.7 | 0.1 | 0.1 | 2.93 | −0.06 | Y = 0.9241X + 2.8275 |
Cellulose (nm) | 6 | 0.98 | 0.97 | 0.89 | 0.3 | 0.3 | 0.3 | 4.65 | 0.04 | Y = 1.0933X − 0.2927 | |
MIDDLE | Lignin (nm) | 5 | 0.96 | 0.96 | 0.99 | 0.4 | 0.1 | 0.1 | 3.67 | 0.0 | Y = 0.9719X + 0.9936 |
Cellulose (nm) | 7 | 0.99 | 0.99 | 0.98 | 0.1 | 0.2 | 0.2 | 8.35 | 0.0 | Y = 1.0103X − 0.0515 | |
BASE | Lignin (nm) | 5 | 0.94 | 0.93 | 1.00 | 0.2 | 0.1 | 0.1 | 2.85 | 0.0 | Y = 0.8665X + 4.8479 |
Cellulose (nm) | 7 | 0.99 | 0.99 | 1.00 | 0.0 | 0.1 | 0.1 | 8.18 | 0.0 | Y = 0.9931X − 0.0018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deknes, L.B.; Barbosa Abrantes, K.K.; Falcioni, R.; de Oliveira, C.A.; Alemparte Abrantes dos Santos, G.L.; Nanni, M.R.; Paes, J.B.; Cardozo-Filho, L. Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood. Polymers 2025, 17, 2614. https://doi.org/10.3390/polym17192614
Deknes LB, Barbosa Abrantes KK, Falcioni R, de Oliveira CA, Alemparte Abrantes dos Santos GL, Nanni MR, Paes JB, Cardozo-Filho L. Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood. Polymers. 2025; 17(19):2614. https://doi.org/10.3390/polym17192614
Chicago/Turabian StyleDeknes, Luzia Barcelos, Karen Keli Barbosa Abrantes, Renan Falcioni, Caio Almeida de Oliveira, Glaucio Leboso Alemparte Abrantes dos Santos, Marcos Rafael Nanni, Juarez Benigno Paes, and Lúcio Cardozo-Filho. 2025. "Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood" Polymers 17, no. 19: 2614. https://doi.org/10.3390/polym17192614
APA StyleDeknes, L. B., Barbosa Abrantes, K. K., Falcioni, R., de Oliveira, C. A., Alemparte Abrantes dos Santos, G. L., Nanni, M. R., Paes, J. B., & Cardozo-Filho, L. (2025). Efficiency of Near-Infrared Spectroscopy in Quantifying Lignin in Black Liquor-Impregnated Reforestation Wood. Polymers, 17(19), 2614. https://doi.org/10.3390/polym17192614