Experimental Investigations into the Deformation and Failure of Polyurea-Coated Steel Plates Experiencing Localized Air Blast Loads
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Settings
2.2. Specimens and Materials
3. Results
3.1. Deformation Modes and Failure Mechanisms
3.1.1. Monolithic Steel Plates
1.76S
2.76S
3.1.2. 1.76S + 8PU Plates
3.1.3. 8PU + 1.76S Plates
3.2. Air Blast Resistance and Deformation of Polyurea-Coated Steel Plates
3.2.1. Comparison of Air Blast Resistance
3.2.2. Failure Process
3.3. Analysis of Stress Wave Propagation Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Dual-Use Research of Concern Statement
References
- Zhu, H.; Ji, C.; Feng, K.; Tu, J.; Wang, X.; Zhao, C. Polyurea Elastomer for Enhancing Blast Resistance of Structures: Recent Advances and Challenges Ahead. Thin Walled Struct. 2024, 200, 111938. [Google Scholar] [CrossRef]
- Cheng, R.; Chen, W.; Hao, H.; Li, J. A State-of-The-Art Review of Road Tunnel Subjected to Blast Loads. Tunn. Undergr. Space Technol. 2021, 112, 103911. [Google Scholar] [CrossRef]
- MirzaMohammadi, P.K.; Khalilpour, S.H.; Parsa, H.; Sareh, P. Symmetric Multipath Branching as a Layout Design Strategy for Blast-Resilient Tunnel Structures. Structures 2023, 58, 105616. [Google Scholar] [CrossRef]
- Yang, G.; Luo, Z.; Fan, Y.; Zhou, T.; Ding, S.; Wang, G.; Tian, B. Experimental Investigation on Anti-Blast Performance of RC Arches Subjected to Underwater Explosions. Eng. Fail. Anal. 2025, 182, 109989. [Google Scholar] [CrossRef]
- Cai, S.; Liu, J.; Zhang, P.; Li, C.; Cheng, Y. Dynamic Response of Sandwich Panels with Multi-Layered Aluminum Foam/UHMWPE Laminate Cores under Air Blast Loading. Int. J. Impact Eng. 2019, 138, 103475. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Yin, J.; Wang, M.; Hao, W.; Wen, X.; Wang, B.; Jin, X. Investigation on Aging Behavior and Failure Mechanism of Blast-Resistant Polyurea Coating in Service Environments. Mater. Today Commun. 2025, 44, 112051. [Google Scholar] [CrossRef]
- Foglar, M.; Šulc, V.; Hájek, R.; Čítek, D.; Čítek, A.; Kolísko, J.; Pachman, J. Experimental Study on Response of Axially Loaded Steel and Steel-Concrete Composite Columns to Blast Loading. Eng. Struct. 2025, 340, 120585. [Google Scholar] [CrossRef]
- Patel, M.; Patel, S.; Ahmad, S.; Soares, C.G. A Comparative Assessment of the Dynamic Responses of Solid Plate, Stiffened Plate, and Sandwich Plate of Equal Masses under Explosive Loadings. In Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering, Singapore, 9–14 June 2024. [Google Scholar] [CrossRef]
- Li, S.; Wang, F. Punching Shear Failure Criterion for Curved Steel-Concrete-Steel Sandwich Structure under Blast Loading. Eng. Struct. 2025, 343, 121034. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, Q.; Jiang, H.; Lu, Q.; Cheng, H.; Zhang, K.; Li, X. Blast Resistance Performance of RU-NC-RU Sandwich Structures Subject to Internal Explosion: Experiment and Simulations. Constr. Build. Mater. 2025, 493, 143288. [Google Scholar] [CrossRef]
- Zhao, Z.; Hou, H.; Li, D.; Li, Y.; Jiang, A. Dynamic Response and Protection Effectiveness of Fluid Filled Concave Multicell Structure under Air Blast. Mater. Des. 2023, 229, 111876. [Google Scholar] [CrossRef]
- Rigoulet, T.; Blanc, L.; Daghia, F.; Wriggers, P. A Numerical and Experimental Approach to Blast Protection with Fluids, Effect of Impulse Spreading. Int. J. Impact Eng. 2024, 194, 105094. [Google Scholar] [CrossRef]
- AlAhmed, Y.S.; Bahroun, Z.; Hassan, N.M. Fluid Based Sandwich Panel Core Structure for Blast Load Mitigation. Heliyon 2024, 10, e27236. [Google Scholar] [CrossRef]
- Vo, N.H.; Pham, T.M.; Hao, H.; Bi, K.; Chen, W.; Ha, N.S. Blast Resistant Enhancement of Meta-Panels Using Multiple Types of Resonators. Int. J. Mech. Sci. 2021, 215, 106965. [Google Scholar] [CrossRef]
- Mohammadi, P.K.M.; Khalilpour, S.H.; Parsa, H.; Sareh, P. Protective Water Curtains as Wave Attenuators for Blast-Resistant Tunnels. Sci. Rep. 2022, 12, 20463. [Google Scholar] [CrossRef]
- He, H.; Chen, H.; Dai, J.-G.; Fan, H. Dynamic Theory of Blast-Loaded Circular Meta-Arch with Mass-Spring Resonators. Eng. Struct. 2025, 333, 120156. [Google Scholar] [CrossRef]
- Patel, M.; Patel, S.; Ahmad, S. Blast Analysis of Efficient Honeycomb Sandwich Structures with CFRP/Steel FML Skins. Int. J. Impact Eng. 2023, 178, 104609. [Google Scholar] [CrossRef]
- Patnaik, G.; Rajput, A. Safety Assessment of Underground Steel Pipelines with CFRP Protection against Subsurface Blast Loading. Structures 2023, 54, 1541–1559. [Google Scholar] [CrossRef]
- Yan, J.; Liu, Y.; Bai, F.; Ni, X.; Xu, Y.; Yan, Z.; Huang, F. Dynamic Response of GFRP-Reinforced UHPC Beams under Close-in Blast Loading. Mater. Des. 2022, 223, 111140. [Google Scholar] [CrossRef]
- He, J.; Qin, W.; Yao, T.; Tang, J.; Sun, X.; Pi, D.; Wang, X.; Wen, X. Blast Resistance and Protection Mechanism of Glass Fiber Mesh Reinforced Polyurea (PU-GFM)/Steel Plate Composite Structures. Constr. Build. Mater. 2025, 472, 140879. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Xu, Z.; Zhang, Q. Dynamic Behaviors of Polyurea-Coated Masonry Infill Walls with Built-in Tie Reinforcement under Near-Field Blast Loading: Numerical Simulation and Analysis. Structures 2024, 71, 108092. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Wang, Y.; Ji, C.; Wu, G.; Tao, C.; Zhang, K. Behaviour of Polyurea Coated RC Beams Subjected to Single and Repeated Blast Loading: Damage Characteristics and Assessment. Structures 2025, 80, 109594. [Google Scholar] [CrossRef]
- Grujicic, M.; He, T.; Pandurangan, B.; Svingala, F.R.; Settles, G.S.; Hargather, M.J. Experimental Characterization and Material-Model Development for Microphase-Segregated Polyurea: An Overview. J. Mater. Eng. Perform. 2011, 21, 2–16. [Google Scholar] [CrossRef]
- Si, P.; Liu, Y.; Yan, J.; Bai, F.; Shi, Z.; Huang, F. Effect of Polyurea Layer on Ballistic Behavior of Ceramic/Metal Armor. Structures 2023, 48, 1856–1867. [Google Scholar] [CrossRef]
- Palaniandy, K.; Auckloo, S.A.B.; Pasbakhsh, P. Relationship between Performance and Properties of Polyurea through Different Synthesis Protocols. In Polyurea; Elsevier: Amsterdam, The Netherlands, 2023; pp. 55–69. [Google Scholar] [CrossRef]
- Wang, D.; Yang, K.; Cheng, S.; Fu, M.; Wang, Z.; Li, L.; Zhao, X.; Han, L.; Ren, W.; Yang, F.; et al. Harsh Environment Resistible and Recyclable Thermoplastic Polyurea Adhesive Based on Stable and Density Hydrogen Bonds. Chem. Eng. J. 2024, 482, 148663. [Google Scholar] [CrossRef]
- Hou, B.; Xing, H.; Yue, S.; Zhang, Z.; Qiu, Y.; Wang, M. Assessment of Ultra-High Tensile-Strength Polyurea for Underground Roof Fall Support: Insights from Work of Adhesion. Geohazard Mech. 2025, 3, 28–41. [Google Scholar] [CrossRef]
- Mohotti, D.; Raman, S.N.; Fernando, P.L.N.; Somarathna, H.M.C.C.; Remennikov, A. Applications of Polyurea Coatings in Blast and Ballistic Damage Reduction. In Polyurea; Elsevier: Amsterdam, The Netherlands, 2023; pp. 323–345. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Wang, X.; Ji, C.; Gu, J.; Zhao, C. Investigation on the Influence Mechanism of Polyurea Material Property on the Blast Resistance of Polyurea-Steel Composite Plate. Structures 2022, 44, 1910–1927. [Google Scholar] [CrossRef]
- Liu, J.; An, F.; Niu, Z.; Zhang, L.; Feng, B.; Li, Y.; Wu, C. Study on the Blast-Resistance of Polyurea-Steel Plates Subjected to Underwater Explosion. Ocean Eng. 2022, 265, 111814. [Google Scholar] [CrossRef]
- Zhang, C.; Yuan, Y.; Su, X.; Tan, P.J.; Zhang, Q.; Chen, P. Large Inelastic Response of Polyurea-Coated Steel Plates to Confined Blast Loading. Thin Walled Struct. 2023, 183, 110454. [Google Scholar] [CrossRef]
- Wu, G.; Wang, X.; Wang, Y.; Ji, C.; Zhao, C.; Gao, Y. Blast Response of Bioinspired Nacre-like Staggered Composite Plates Combined with Steel and Polyurea. Int. J. Impact Eng. 2023, 180, 104719. [Google Scholar] [CrossRef]
- Liang, M.; Zhou, M.; Li, X.; Lin, Y.; Lu, F. Synergistic Effect of Combined Blast Loads on UHMWPE Fiber Mesh Reinforced Polyurea Composites. Int. J. Impact Eng. 2024, 183, 104804. [Google Scholar] [CrossRef]
- Xie, J.; Pan, H.; Feng, Z.; Zhen, T.; Jiang, C.; Jiang, Y.; Li, X. Experimental Study on the Blast Resistance of Polyurea-Coated Aramid Fabrics. Int. J. Impact Eng. 2024, 195, 105120. [Google Scholar] [CrossRef]
- Zhu, G.; Wu, B.; Wang, Z. Experimental Study of Polyurea-Reinforced Honeycomb Targets under Sequential Penetration and Blast. Compos. Part B Eng. 2025, 307, 112904. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, B.; Wei, J.; Wang, W. Study on the Dynamic Response of Polyurea Coated Steel Tank Subjected to Blast Loadings. J. Loss Prev. Process Ind. 2020, 67, 104234. [Google Scholar] [CrossRef]
- Yue, Z.; Zhou, J.; Kong, X.; Xu, Y.; Chen, Y.; Wang, B.; Huang, Y.; Wang, P. Anti-Blast Performance of Polyurea-Coated Concrete Arch Structures. Polymers 2023, 15, 1263. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Wang, Y.; Wu, G.; Cao, Y.; Ji, C. Dynamic Responses of Aluminum Alloy Plates Coated with Polyurea Elastomer Subjected to Repeated Blast Loads: Experimental and Numerical Investigation. Thin Walled Struct. 2023, 189, 110912. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Hou, H.; Cheng, Y.; Gao, H.; Pan, Z.; Liu, T. The Influence of Spraying Strategy on the Dynamic Response of Polyurea-Coated Metal Plates to Localized Air Blast Loading: Experimental Investigations. Polymers 2019, 11, 1888. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Wu, J.; Tang, K. Dynamic Response of Square Sandwich Panels with Stagger-Layered Honeycomb Cores under Intensive Near-Field Air Blast Loading. Thin Walled Struct. 2024, 196, 111515. [Google Scholar] [CrossRef]
- Jacob, N.; Nurick, G.N.; Langdon, G.S. The Effect of Stand-off Distance on the Failure of Fully Clamped Circular Mild Steel Plates Subjected to Blast Loads. Eng. Struct. 2007, 29, 2723–2736. [Google Scholar] [CrossRef]
Configuration | Geometry | Layer Arrangement, Thickness (mm) | ρA (kg/m2) |
---|---|---|---|
1.76S | S, 1.76 | 13.7 | |
2.76S | S, 2.76 | 21.6 | |
1.76S + 8PU | S + PU, 1.76 + 8 | 21.7 | |
8PU + 1.76S | PU + S, 8 + 1.76 | 21.7 |
Test Conditions | Structure Configuration | DOS (mm) | Deformation and Failure Modes of the Target Plate |
---|---|---|---|
Test 1 | 1.76S | 90 | Flexural deformation plus plugging breach plus petal-like cracking. |
Test 2 | 2.76S | Overall, large flexural deformation without cracks. | |
Test 3 | 8PU + 1.76S | Plugging breach at the central region of polyurea coating, flexural deformation, plugging breach, plus petal-like cracking of the substrate plate | |
Test 4 | 1.76S + 8PU | Overall, large flexural deformation without cracks. | |
Test 5 | 2.76S | 75 | Overall, there is a large flexural deformation, with a plugging breach at the central region. |
Test 6 | 1.76S + 8PU | Overall, there is a large flexural deformation, with a plugging breach at the central region. | |
Test 7 | 8PU + 1.76S | Plugging breach at the central region of polyurea coating, Flexural deformation, plugging breach, plus petal-like cracking of the substrate plate. | |
Test 8 | 2.76S | 60 | Flexural deformation plus plugging breach plus petal-like cracking. |
Test 9 | 1.76S + 8PU | Flexural deformation plus plugging breach plus petal-like cracking. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; He, Z.; Li, M. Experimental Investigations into the Deformation and Failure of Polyurea-Coated Steel Plates Experiencing Localized Air Blast Loads. Polymers 2025, 17, 2481. https://doi.org/10.3390/polym17182481
Li D, He Z, Li M. Experimental Investigations into the Deformation and Failure of Polyurea-Coated Steel Plates Experiencing Localized Air Blast Loads. Polymers. 2025; 17(18):2481. https://doi.org/10.3390/polym17182481
Chicago/Turabian StyleLi, Dian, Zichun He, and Mao Li. 2025. "Experimental Investigations into the Deformation and Failure of Polyurea-Coated Steel Plates Experiencing Localized Air Blast Loads" Polymers 17, no. 18: 2481. https://doi.org/10.3390/polym17182481
APA StyleLi, D., He, Z., & Li, M. (2025). Experimental Investigations into the Deformation and Failure of Polyurea-Coated Steel Plates Experiencing Localized Air Blast Loads. Polymers, 17(18), 2481. https://doi.org/10.3390/polym17182481