Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication of Composites
2.2. Mechanical Tests
2.2.1. Tensile Test
2.2.2. Hardness Measurement and Density Measurement
2.3. SPE Test
3. Results and Discussion
3.1. Mechanical Test Results
3.1.1. Tensile Test Results
3.1.2. Hardness and Density Test Results
3.2. SPE Test Results
3.3. Damage Mechanisms
3.4. Effect of Hybridization of Composites on SPE
3.5. Effect of Hardness and Tensile Strength of Composites on SPE.
3.6. Morphology of Eroded Surfaces
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MWCNT | Multi-walled carbon nanotube |
SPE | Solid particle erosion |
ER | Erosion rate |
UTS | Ultimate tensile strength |
SEM | Scanning electron microscope |
CFRP | Carbon fiber-reinforced polymer |
GFRP | Glass fiber-reinforced polymer |
References
- Risaliti, E.; Del Pero, F.; Arcidiacono, G.; Citti, P. Optimizing Lightweight Material Selection in Automotive Engineering: A Hybrid Methodology Incorporating Ashby’s Method and VIKOR Analysis. Machines 2025, 13, 63. [Google Scholar] [CrossRef]
- Hagnell, M.K.; Kumaraswamy, S.; Nyman, T.; Åkermo, M. From Aviation to Automotive—A Study on Material Selection and Its Implication on Cost and Weight Efficient Structural Composite and Sandwich Designs. Heliyon 2020, 6, e03716. [Google Scholar] [CrossRef]
- Rajak, D.; Pagar, D.; Menezes, P.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, Present and Future Prospective of Global Carbon Fibre Composite Developments and Applications. Compos. Part B Eng. 2023, 250, 110463. [Google Scholar] [CrossRef]
- Yang, Q.; Pankov, V. Solid Particle Erosion Performance and Damage Mechanism of AlTiN Coating. Tribol. Trans. 2023, 66, 809–821. [Google Scholar] [CrossRef]
- Yang, P.; Yue, W.; Chen, A.; Bin, G. Influence of SiO2 and Al2O3 Particles on Erosion Wear of Aero-Compressor Blades. Wear 2023, 530, 204992. [Google Scholar] [CrossRef]
- Wood, R.J.K.; Lu, P. Leading Edge Topography of Blades–a Critical Review. Surf. Topogr. Metrol. Prop. 2021, 9, 023001. [Google Scholar] [CrossRef]
- Deng, T. Erosive Wear Mechanisms of Materials—A Review of Understanding and Progresses. Materials 2025, 18, 1615. [Google Scholar] [CrossRef]
- Khan, M.S.; Sasikumar, C. A Water Droplet Erosion-Induced Fatigue Crack Propagation and Failure in X20Cr13 Martensitic Stainless-Steel Turbines Working at Low Pressure. Eng. Fail. Anal. 2022, 139, 106491. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Fæster, S.; Mikkelsen, L.P.; Kusano, Y.; Bech, J.I. Micromechanisms of Leading Edge Erosion of Wind Turbine Blades: X-ray Tomography Analysis and Computational Studies. Wind Energy 2020, 23, 547–562. [Google Scholar] [CrossRef]
- Doagou-Rad, S.; Mishnaevsky, L.; Bech, J.I. Leading Edge Erosion of Wind Turbine Blades: Multiaxial Critical Plane Fatigue Model of Coating Degradation under Random Liquid Impacts. Wind Energy 2020, 23, 1752–1766. [Google Scholar] [CrossRef]
- Shahapurkar, K.; Darekar, V.; Banjan, R.; Nidasosi, N.; Soudagar, M.E.M. Factors Affecting the Solid Particle Erosion of Environment Pollutant and Natural Particulate Filled Polymer Composites—A Review. Polym. Polym. Compos. 2021, 29, 1587–1598. [Google Scholar] [CrossRef]
- Ahmed, D.A.; Yerramalli, C.S. Experimental and Computational Analysis of the Erosion Behaviour of Unidirectional Glass Fiber Epoxy Composites. Wear 2020, 462, 203525. [Google Scholar] [CrossRef]
- Padmaraj, N.H.; Vijaya, K.M.; Dayananda, P. Experimental Investigation on Solid Particle Erosion Behaviour of Glass/Epoxy Quasi-Isotropic Laminates. Mater. Res. Express 2019, 6, 085339. [Google Scholar] [CrossRef]
- Demet, S.M.; Sepetcioglu, H.; Bagci, M. Solid Particle Erosion Behavior on the Outer Surface of Basalt/Epoxy Composite Pipes Produced by the Filament Winding Technique. Polymers 2023, 15, 319. [Google Scholar] [CrossRef]
- Miyazaki, N. Solid Particle Erosion of Composite Materials: A Critical Review. J. Compos. Mater. 2016, 50, 3175–3217. [Google Scholar] [CrossRef]
- Biswas, S.; Satapathy, A.; Patnaik, A. Erosion Wear Behavior of Polymer Composites: A Review. J. Reinf. Plast. Compos. 2010, 29, 2898–2924. [Google Scholar] [CrossRef]
- Shanmugam, S.K.; Sundaresan, T.K.; Varol, T.; Kurniawan, R. Solid Particle Erosion Studies of Varying Tow-Scale Carbon Fibre-Reinforced Polymer Composites. Materials 2022, 15, 7534. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Gao, F.; Pant, S.; Huang, X.; Yang, Q. Solid Particle Erosion Behaviors of Carbon-Fiber Epoxy Composite and Pure Titanium. J. Mater. Eng. Perform. 2016, 25, 290–296. [Google Scholar] [CrossRef]
- Sepetcioglu, H.; Demet, S.M.; Karagöz, İ.; Bagci, M. Solid Particle Erosion Behaviors of Walnut Shell-Filled Acrylic-Styrene-Acrylate (ASA) and Polycarbonate/Acrylic-Styrene-Acrylate (PC/ASA) Thermoplastic Blend Biocomposites. Polym. Compos. 2025, 46, 11594–11608. [Google Scholar] [CrossRef]
- Harsha, A.P.; Thakre, A.A. Investigation on Solid Particle Erosion Behaviour of Polyetherimide and Its Composites. Wear 2007, 262, 807–818. [Google Scholar] [CrossRef]
- Patnaik, A.; Satapathy, A.; Chand, N.; Barkoula, N.M.; Biswas, S. Solid Particle Erosion Wear Characteristics of Fiber and Particulate Filled Polymer Composites: A Review. Wear 2010, 268, 249–263. [Google Scholar] [CrossRef]
- Rattan, R.; Bijwe, J. Influence of Impingement Angle on Solid Particle Erosion of Carbon Fabric Reinforced Polyetherimide Composite. Wear 2007, 262, 568–574. [Google Scholar] [CrossRef]
- Pradhan, S.; Acharya, S.K. Solid Particle Erosive Wear Behaviour of Eulaliopsis Binata Fiber Reinforced Epoxy Composite. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 830–841. [Google Scholar] [CrossRef]
- Goh, G.D.; Dikshit, V.; Nagalingam, A.P.; Goh, G.L.; Agarwala, S.; Sing, S.L.; Wei, J.; Yeong, W.Y. Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics. Mater. Des. 2018, 137, 79–89. [Google Scholar] [CrossRef]
- Ahmed, S.R.; Khanna, S. Investigation into Features of Fracture Toughness of a Transparent E-Glass Fiber Reinforced Polyester Composites at Extreme Temperatures. Heliyon 2020, 6, e03986. [Google Scholar] [CrossRef] [PubMed]
- Boggarapu, V.; Gujjala, R.; Ojha, S. A Critical Review on Erosion Wear Characteristics of Polymer Matrix Composites. Mater. Res. Express 2020, 7, 022002. [Google Scholar] [CrossRef]
- Chen, J.; Trevarthen, J.A.; Deng, T.; Bradley, M.S.A.; Rahatekar, S.S.; Koziol, K.K.K. Aligned Carbon Nanotube Reinforced High Performance Polymer Composites with Low Erosive Wear. Compos. Part Appl. Sci. Manuf. 2014, 67, 86–95. [Google Scholar] [CrossRef]
- Koumoulos, E.; Charitidis, C. Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale. Lubricants 2017, 5, 18. [Google Scholar] [CrossRef]
- Chen, J.; Hutchings, I.M.; Deng, T.; Bradley, M.S.A.; Koziol, K.K.K. The Effect of Carbon Nanotube Orientation on Erosive Wear Resistance of CNT-Epoxy Based Composites. Carbon 2014, 73, 421–431. [Google Scholar] [CrossRef]
- Bahramnia, H.; Mohammadian Semnani, H.; Habibolahzadeh, A.; Abdoos, H. Epoxy/Polyurethane Nanocomposite Coatings for Anti-Erosion/Wear Applications: A Review. J. Compos. Mater. 2020, 54, 3189–3203. [Google Scholar] [CrossRef]
- Demir, O.; Yar, A.; Eskizeybek, V.; Avcı, A. Combined Effect of Fiber Hybridization and Matrix Modification on Mechanical Properties of Polymer Composites. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 1935–1951. [Google Scholar] [CrossRef]
- Singh, M.; Dodla, S.; Gautam, R.K. Effect of GO, CNTs, and Hybrid Nanoparticles Coated Carbon Fiber Reinforced Epoxy Composite on Erosive Wear Properties Using Taguchi Orthogonal Array. Diam. Relat. Mater. 2025, 155, 112284. [Google Scholar] [CrossRef]
- Lim, D.-S.; An, J.-W.; Lee, H.J. Effect of Carbon Nanotube Addition on the Tribological Behavior of Carbon/Carbon Composites. Wear 2002, 252, 512–517. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Gkikas, G.; Paipetis, A.S.; Barkoula, N.-M. Effect of CNTs Addition on the Erosive Wear Response of Epoxy Resin and Carbon Fibre Composites. Compos. Part Appl. Sci. Manuf. 2016, 84, 299–307. [Google Scholar] [CrossRef]
- Ujah, C.O.; Kallon, D.V.V.; Aigbodion, V.S. Tribological Properties of CNTs-Reinforced Nano Composite Materials. Lubricants 2023, 11, 95. [Google Scholar] [CrossRef]
- Singh, M.; Dodla, S.; Gautam, R.K.; Chauhan, V. Enhancement of Mechanical and Tribological Properties in Glass Fiber-Reinforced Polymer Composites with Multi-Walled Carbon Nanotubes and ANN-Based COF Prediction. Compos. Interfaces 2025, 32, 439–459. [Google Scholar] [CrossRef]
- Hao, B.; Yu, H.; Wang, K.; Han, J.; Zhang, X.; Xia, Q. A New Strategy for Highly Wear-Resistant Ball Using Carbon Nanotube Composites: Study on the Impact Wear Resistance and Interfacial Bonding Mechanism. J. Mater. Res. Technol. 2024, 29, 4459–4469. [Google Scholar] [CrossRef]
- Arif, M.F.; Alhashmi, H.; Varadarajan, K.M.; Koo, J.H.; Hart, A.J.; Kumar, S. Multifunctional Performance of Carbon Nanotubes and Graphene Nanoplatelets Reinforced PEEK Composites Enabled via FFF Additive Manufacturing. Compos. Part B Eng. 2020, 184, 107625. [Google Scholar] [CrossRef]
- Sapiai, N.; Jumahat, A.; Jawaid, M.; Santulli, C. Abrasive Wear Behavior of CNT-Filled Unidirectional Kenaf–Epoxy Composites. Processes 2021, 9, 128. [Google Scholar] [CrossRef]
- Kim, M.T.; Rhee, K.Y.; Lee, B.H.; Kim, C.J. Effect of Carbon Nanotube Addition on the Wear Behavior of Basalt/Epoxy Woven Composites. J. Nanosci. Nanotechnol. 2013, 13, 5631–5635. [Google Scholar] [CrossRef] [PubMed]
- Sravanthi, K.; Mahesh, V.; Rao, B.N.; Fernandez, G.; Haiter, L.A. Carbon-Filled E-Glass Fibre-Reinforced Epoxy Composite: Erosive Wear Properties at an Angle of Impingement. Adv. Mater. Sci. Eng. 2022, 2022, 8725305. [Google Scholar] [CrossRef]
- Panchal, M.; Minugu, O.P.; Gujjala, R.; Ojha, S.; Mallampati Chowdary, S.; Mohammad, A. Study of Environmental Behavior and Its Effect on Solid Particle Erosion Behavior of Hierarchical Porous Activated Carbon-epoxy Composite. Polym. Compos. 2022, 43, 2276–2287. [Google Scholar] [CrossRef]
- ASTM D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D2583-25; Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor. ASTM International: West Conshohocken, PA, USA, 2025.
- ASTM D792-20; Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM G76-18; Standard Test Method for Conducting Erosion Tests by Solid Particle Impingement Using Gas Jets. ASTM International: West Conshohocken, PA, USA, 2018.
- Qin, W.; Chen, C.; Zhou, J.; Meng, J. Synergistic Effects of Graphene/Carbon Nanotubes Hybrid Coating on the Interfacial and Mechanical Properties of Fiber Composites. Materials 2020, 13, 1457. [Google Scholar] [CrossRef]
- Saadatyar, S.; Beheshty, M.H.; Sahraeian, R. Mechanical Properties of Multiwall Carbon Nanotubes/Unidirectional Carbon Fiber-Reinforced Epoxy Hybrid Nanocomposites in Transverse and Longitudinal Fiber Directions. Polym. Polym. Compos. 2021, 29, S74–S84. [Google Scholar] [CrossRef]
- Yuksel, E.; Eksik, O.; Haykiri-Acma, H.; Yaman, S. Mechanical Properties of a Carbon Fiber Reinforced Epoxy Resin Composite Improved by Integrating Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets. J. Compos. Mater. 2024, 58, 911–921. [Google Scholar] [CrossRef]
- Swikker, K.R.J.; Kanagasabapathy, H.; Neethi Manickam, I. Effect of MWCNT on Mechanical Characterization of Glass/Carbon Hybrid Composites. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2022, 236, 2155–2163. [Google Scholar] [CrossRef]
- Shahbaz, S.R.; Berkalp, Ö.B. Effect of MWCNTs Addition, on the Mechanical Behaviour of FRP Composites, by Reinforcement Grafting and Matrix Modification. J. Ind. Text. 2020, 50, 205–223. [Google Scholar] [CrossRef]
- Sulaiman, B.H.; Abdo, A.R.; Erkliğ, A.; Bozkurt, Ö.Y.; Bulut, M. Effectiveness of Multi-walled Carbon Nanotube on the Improvement of Tensile, Flexural, and Low-velocity Impact Properties of Hybrid K Evlar/Carbon Fiber Reinforced Epoxy-based Composites. Polym. Compos. 2024, 45, 7647–7660. [Google Scholar] [CrossRef]
- Ranjbar, M.; Feli, S. Mechanical and Low-Velocity Impact Properties of Epoxy-Composite Beams Reinforced by MWCNTs. J. Compos. Mater. 2019, 53, 693–705. [Google Scholar] [CrossRef]
- Naghizadeh, Z.; Faezipour, M.; Hossein Pol, M.; Liaghat, G.; Abdolkhani, A. High Velocity Impact Response of Carbon Nanotubes-Reinforced Composite Sandwich Panels. J. Sandw. Struct. Mater. 2020, 22, 303–324. [Google Scholar] [CrossRef]
- Ceritbinmez, F.; Yapici, A.; Kanca, E. The Effect of Nanoparticle Additive on Surface Milling in Glass Fiber Reinforced Composite Structures. Polym. Polym. Compos. 2021, 29, S575–S585. [Google Scholar] [CrossRef]
- Mendoza Mendoza, J.C.; Vera Cardenas, E.E.; Lewis, R.; Mai, W.; Avila Davila, E.O.; Martínez Pérez, A.I.; Ledesma Ledesma, S.; Moreno Rios, M. Water Jet Erosion Performance of Carbon Fiber and Glass Fiber Reinforced Polymers. Polymers 2021, 13, 2933. [Google Scholar] [CrossRef]
- Bagci, M. Influence of Fiber Orientation on Solid Particle Erosion of Uni/Multidirectional Carbon Fiber/Glass Fiber Reinforced Epoxy Composites. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2017, 231, 594–603. [Google Scholar] [CrossRef]
- Fidan, S.; Özsoy, M.İ.; Bora, M.Ö.; Ürgün, S. Advanced Hybrid Composites: A Comparative Study of Glass and Basalt Fiber Reinforcements in Erosive Environments. Polym. Compos. 2024, 45, 12071–12091. [Google Scholar] [CrossRef]
- Zhao, Y.-L.; Tang, C.-Y.; Yao, J.; Zeng, Z.-H.; Dong, S.-G. Investigation of Erosion Behavior of 304 Stainless Steel under Solid–Liquid Jet Flow Impinging at 30°. Pet. Sci. 2020, 17, 1135–1150. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, W.; Jing, X.; Yao, P.; Wang, L.; Zhang, H.; Zhao, G.; Cui, H.; Zhao, Y.; Sun, Y. Assessment of Erosion Behavior and Surface Roughness of Ceramics during Micro-Abrasive Air-Jet Machining. Ceram. Int. 2025, S0272884225030652. [Google Scholar] [CrossRef]
- Tarodiya, R.; Levy, A. Surface Erosion Due to Particle-Surface Interactions—A Review. Powder Technol. 2021, 387, 527–559. [Google Scholar] [CrossRef]
- Ben-Ami, Y.; Uzi, A.; Levy, A. Modelling the Particles Impingement Angle to Produce Maximum Erosion. Powder Technol. 2016, 301, 1032–1043. [Google Scholar] [CrossRef]
- Asuero, A.G.; Sayago, A.; González, A.G. The Correlation Coefficient: An Overview. Crit. Rev. Anal. Chem. 2006, 36, 41–59. [Google Scholar] [CrossRef]
Material | Tensile Strength (MPa) | Modulus of Elasticity (GPa) | Density (g/cm3) | Fiber Diameter |
---|---|---|---|---|
Epoxy resin | 70 | 3.2 | 1.19 | - |
Glass fiber fabric | 2600 | 72 | 2.5 | 9 (μm) |
Carbon fiber fabric | 3800 | 238 | 1.8 | 7 (μm) |
Sample ID | Stacking Sequence | Description | Matrix Type |
---|---|---|---|
S1 | [G12] | Pure Glass Laminate | Neat Epoxy |
S2 | [C12] | Pure Carbon Laminate | Neat Epoxy |
S3 | [G/C/G/C/G/C]s | Symmetric Hybrid (Glass-outer) | Neat Epoxy |
S4 | [C/G/C/G/C/G]s | Symmetric Hybrid (Carbon-outer) | Neat Epoxy |
S5 | [G12] | Multi-scale Glass Laminate | 0.3% MWCNT-Epoxy |
S6 | [C12] | Multi-scale Carbon Laminate | 0.3% MWCNT-Epoxy |
S7 | [G/C/G/C/G/C]s | Multi-scale Hybrid (Glass-outer) | 0.3% MWCNT-Epoxy |
S8 | [C/G/C/G/C/G]s | Multi-scale Hybrid (Carbon-outer) | 0.3% MWCNT-Epoxy |
Test Parameters | Description |
---|---|
Erodent | Aluminum Oxide (Al2O3) |
Erodent size | ~600 μm |
Erodent shape | Angular |
Hardness of erodent | Mohs 9 |
Impingement angles | 30°/45°/60°/90° |
Impact velocity | 34 m/s |
Test temperature | ~25 °C |
Nozzle to sample distance | 10 mm |
Nozzle diameter | 6 mm |
Total abrasive weight | 2 kg |
Sample ID | Barcol Hardness (Average) | Standard Deviation of Hardness | Density (g/cm3) |
---|---|---|---|
Neat Epoxy | 25.25 | 1.26 | 1.19 |
Neat Epoxy + MWCNT | 38.14 | 6.23 | 1.2 |
S1 | 74.08 | 11.46 | 1.49 |
S2 | 81.58 | 3.92 | 1.31 |
S3 | 81 | 6.48 | 1.37 |
S4 | 82 | 6.37 | 1.35 |
S5 | 75.83 | 4.65 | 1.49 |
S6 | 82.67 | 5.99 | 1.35 |
S7 | 81.67 | 5.31 | 1.36 |
S8 | 82.5 | 4.03 | 1.36 |
Impingement Angle | ER Results of Samples (g/g × 10−7) | |||||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | |
30° | 660 | 474.5 | 395 | 380 | 426 | 414 | 406 | 385.5 |
90° | 60 | 121.3 | 61 | 78.5 | 94 | 96.5 | 96 | 92.5 |
Impingement Angle | The Percentage Change in the ER Results of Samples | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S1–S3 | S2–S3 | S1–S4 | S2–S4 | S1–S7 | S2–S7 | S1–S8 | S2–S8 | S3–S7 | S4–S7 | S3–S8 | S4–S8 | |
30° | 40% | 17% | 42% | 20% | 38% | 14% | 42% | 19% | −3% | −7% | 2% | −1% |
90° | −2% | 50% | −31% | 35% | −60% | 21% | −57% | 24% | −57% | −22% | −52% | −18% |
Sample ID | Barcol Hardness | UTS | ER (at the 30°) | R (Correlation) | ||
---|---|---|---|---|---|---|
S1 | 74.08 | 271 | 660 | Hardness-UTS | Hardness-ER | UTS-ER |
S2 | 81.58 | 531 | 474.5 | 0.71065197 | −0.7584221 | −0.5773 |
S3 | 81 | 448 | 395 | |||
S4 | 82 | 425 | 380 | |||
S5 | 75.83 | 412 | 426 | |||
S6 | 82.67 | 575 | 414 | |||
S7 | 81.67 | 430 | 406 | |||
S8 | 82.5 | 400 | 385.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demet, S.M. Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites. Polymers 2025, 17, 2434. https://doi.org/10.3390/polym17182434
Demet SM. Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites. Polymers. 2025; 17(18):2434. https://doi.org/10.3390/polym17182434
Chicago/Turabian StyleDemet, Seyit Mehmet. 2025. "Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites" Polymers 17, no. 18: 2434. https://doi.org/10.3390/polym17182434
APA StyleDemet, S. M. (2025). Synergistic and Antagonistic Effects of Hybridization and MWCNT Reinforcement on the Solid Particle Erosion of Glass/Carbon Fiber Composites. Polymers, 17(18), 2434. https://doi.org/10.3390/polym17182434