Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials
Abstract
1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mixture Proportions, Production, and Curing
2.3. Testing Procedure
2.3.1. Physical Properties
2.3.2. Mechanical Properties
2.3.3. High Temperature Resistance Properties
2.3.4. Freeze–Thaw Resistance Properties
2.3.5. Acid Resistance Properties
2.3.6. Microstructure Properties
3. Results and Discussion
3.1. Physical Properties
3.2. Mechanical Properties
3.3. Durability Properties
3.3.1. High Temperature Resistance
3.3.2. Freeze–Thaw (F-T) Resistance
3.3.3. Acid Resistance
3.4. CO2 Emission and Cost Analysis of Samples
4. Limitations and Practical Implications
5. Conclusions
- ⮚
- Waste and recycled materials (BFS, WMP, RFA, HF, and WTSF) can be effectively utilized in geopolymer mortars, providing both performance and sustainability benefits.
- ⮚
- As the volume of WTSF in the blend increased, the dry unit weight of the samples increased, while the opposite was observed with HF, where the weight decreased with an increasing HF volume. The dry unit weight measured in the hybrid use of fibers was between those measured in the single-use blends.
- ⮚
- The flow diameter decreased with the addition of fiber to the samples. As the fiber volume increased, the flow diameter reached lower values. With the decrease in the flow diameter, the apparent porosity and water absorption values increased because the mortar could not cover the fibers sufficiently.
- ⮚
- The addition of WTSF significantly enhanced compressive and flexural strengths, while HF reduced these strengths but markedly increased fracture energy. The hybrid fibers balanced these effects, achieving stable mechanical performance and demonstrating a synergistic action in improving crack resistance.
- ⮚
- Durability assessments showed that the hybrid fibers contributed to superior structural stability: HF degraded at 600 °C and WTSF corroded under freeze–thaw cycles and acid attack, but using hybrid fibers mitigated the overall performance losses.
- ⮚
- The integration of waste-based constituents substantially lowered environmental impact, with CO2 emissions reduced to ~338 kg/m3 and production costs reduced to ~188 USD/m3, underlining the economic and sustainabilty feasibility of these mixtures.
- ⮚
- In general, this study emphasizes that geopolymers mortars incorporating WTSF, HF, and the hybrid use of both fibers not only enhance mechanical and durability performance but also support sustainable construction practices.
Funding
Data Availability Statement
Conflicts of Interest
References
- Aydin, A.C.; Karakoç, M.; Düzgün, O.; Bayraktutan, M. Effect of low quality aggregates on the mechanical properties of lightweight concrete. Sci. Res. Essays 2010, 5, 1133–1140. [Google Scholar]
- Jagadesh, P.; Nagarajan, V. Effect of nano titanium di oxide on mechanical properties of fly ash and ground granulated blast furnace slag based geopolymer concrete. J. Build. Eng. 2022, 61, 105235. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, Z.; Zhu, H.; Zhang, B.; Dong, Z.; Zhan, X. Efficient utilization of coral waste for internal curing material to prepare eco-friendly marine geopolymer concrete. J. Environ. Manag. 2024, 368, 122173. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, L.; Liu, T.; Hao, L.; Li, Y.; Liu, P.; Zhu, T. A review of low-carbon technologies and projects for the global cement industry. J. Environ. Sci. 2024, 136, 682–697. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.; Bogas, J.A.; Real, S.; Meireles, I. Industrial production of recycled cement: Energy consumption and carbon dioxide emission estimation. Environ. Sci. Pollut. Res. 2023, 30, 8778–8789. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Dai, J.-G.; Shi, C.-J. Mechanical properties of alkali-activated concrete: A state-of-the-art review. Constr. Build. Mater. 2016, 127, 68–79. [Google Scholar] [CrossRef]
- Davidovits, J. The polysialate terminology: A very useful and simple model for the promotion and understanding of green-chemistry. Geopolymer chemistry and sustainable development solutions. In Proceedings of the World Congress Geopolymer 2005, Saint Quentin, France, 29 June–1 July 2005. [Google Scholar]
- Ren, D.; Yan, C.; Duan, P.; Zhang, Z.; Li, L.; Yan, Z. Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack. Constr. Build. Mater. 2017, 134, 56–66. [Google Scholar] [CrossRef]
- She, Y.; Chen, Y.; Li, L.; Xue, L.; Yu, Q. Understanding the generation and evolution of hydrophobicity of silane modified fly ash/slag based geopolymers. Cem. Concr. Compos. 2023, 142, 105206. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; Van Deventer, J.S. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- da Silveira Maranhão, F.; de Souza Junior, F.G.; Soares, P.; Alcan, H.G.; Çelebi, O.; Bayrak, B.; Kaplan, G.; Aydın, A.C. Physico-mechanical and microstructural properties of waste geopolymer powder and lime-added semi-lightweight geopolymer concrete: Efficient machine learning models. J. Build. Eng. 2023, 72, 106629. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Lee, B.-J.; Saraswathy, V.; Kwon, S.-J. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. Sci. World J. 2014, 2014, 209584. [Google Scholar] [CrossRef] [PubMed]
- Nassar, A.K.; Sivanandam, S.; Saran, D.; Sundar, S.S.; Kathirvel, P.; Murali, G.; Dixit, S. Durability assessment of sustainable one-part alkali activated concrete produced from agricultural and industrial waste activators under aggressive environmental conditions. Constr. Build. Mater. 2025, 486, 141823. [Google Scholar] [CrossRef]
- Tchakouté, H.K.; Rüscher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. Thermal behavior of metakaolin-based geopolymer cements using sodium waterglass from rice husk ash and waste glass as alternative activators. Waste Biomass Valorization 2017, 8, 573–584. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Ma, T.; Gu, G.; Chen, C.; Hu, J. Understanding the changes in engineering behaviors and microstructure of FA-GBFS based geopolymer paste with addition of silica fume. J. Build. Eng. 2023, 70, 106450. [Google Scholar] [CrossRef]
- Marathe, S.; Sheshadri, A.; Nikolaiev, V. Life cycle assessment of sustainable air-cured alkali-activated concrete for permeable pavements using agro-industrial wastes. Sci. Rep. 2025, 15, 22012. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, C.; Liang, Y.; Luo, J.; Wang, X.; Feng, Y.; Li, Y.; Wang, Q.; Abomohra, A.E.-F. Life cycle assessment and impact correlation analysis of fly ash geopolymer concrete. Materials 2021, 14, 7375. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2−e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Odeh, A.; Al-Fakih, A.; Alghannam, M.; Al-Ainya, M.; Khalid, H.; Al-Shugaa, M.A.; Thomas, B.S.; Aswin, M. Recent Progress in Geopolymer Concrete Technology: A Review. Iran. J. Sci. Technol. Trans. Civ. Eng. 2024, 48, 3285–3308. [Google Scholar] [CrossRef]
- Shahmansouri, A.A.; Bengar, H.A.; Ghanbari, S. Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method. J. Build. Eng. 2020, 31, 101326. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Gao, X.; Yu, Q.; Yu, R.; Brouwers, H. Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Mater. Struct. 2017, 50, 165. [Google Scholar] [CrossRef]
- Murali, G.; Nassar, A.K.; Swaminathan, M.; Kathirvel, P.; Wong, L.S. Effect of silica fume and glass powder for enhanced impact resistance in GGBFS-based ultra high-performance geopolymer fibrous concrete: An experimental and statistical analysis. Def. Technol. 2024, 41, 59–81. [Google Scholar] [CrossRef]
- Ranjbar, N.; Zhang, M. Fiber-reinforced geopolymer composites: A review. Cem. Concr. Compos. 2020, 107, 103498. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Johari, M.A.M.; Demirboğa, R. Impact of fiber reinforcements on properties of geopolymer composites: A review. J. Build. Eng. 2021, 44, 102628. [Google Scholar] [CrossRef]
- Lin, T.; Jia, D.; Wang, M.; He, P.; Liang, D. Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites. Bull. Mater. Sci. 2009, 32, 77–81. [Google Scholar] [CrossRef]
- Marathe, S.; Shetty Kuthyaru, S.; Bhat, A.K. Stabilization of Indian Lateritic Subgrade Soil Using Alkali-Activated Slag with Sugarcane Bagasse Ash for Sustainable Pavement Infrastructure. J. Struct. Des. Constr. Pract. 2025, 30, 04025073. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Review of mechanical properties of short fibre reinforced geopolymer composites. Constr. Build. Mater. 2013, 43, 37–49. [Google Scholar] [CrossRef]
- Korniejenko, K.; Lin, W.-T.; Šimonová, H. Mechanical properties of short polymer fiber-reinforced geopolymer composites. J. Compos. Sci. 2020, 4, 128. [Google Scholar] [CrossRef]
- Ma, C.-K.; Awang, A.Z.; Omar, W. Structural and material performance of geopolymer concrete: A review. Constr. Build. Mater. 2018, 186, 90–102. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kawajiri, K.; Hatori, H.; Tahara, K. Impact of the manufacturing processes of aromatic-polymer-based carbon fiber on life cycle greenhouse gas emissions. Sustainability 2022, 14, 3541. [Google Scholar] [CrossRef]
- Silva, G.; Kim, S.; Aguilar, R.; Nakamatsu, J. Natural fibers as reinforcement additives for geopolymers–A review of potential eco-friendly applications to the construction industry. Sustain. Mater. Technol. 2020, 23, e00132. [Google Scholar] [CrossRef]
- Ali, H.A.; Keke, S.; Xiaohao, S.; Poon, C.S.; Banthia, N. Utilizing Incinerated Sewage Sludge Ash for Antibacterial Alkali-Activated Materials. Cem. Concr. Compos. 2025, 164, 106262. [Google Scholar] [CrossRef]
- Aydın, A.C.; Alcan, H.G.; Bayrak, B.; Kılıç, M.; Maali, M. The mechanical behavior of thermally enhanced polypropylene concrete. Constr. Build. Mater. 2020, 262, 120578. [Google Scholar] [CrossRef]
- McNeil, K.; Kang, T.H.-K. Recycled concrete aggregates: A review. Int. J. Concr. Struct. Mater. 2013, 7, 61–69. [Google Scholar] [CrossRef]
- Merli, R.; Preziosi, M.; Acampora, A.; Lucchetti, M.C.; Petrucci, E. Recycled fibers in reinforced concrete: A systematic literature review. J. Clean. Prod. 2020, 248, 119207. [Google Scholar] [CrossRef]
- Formela, K. Sustainable development of waste tires recycling technologies–recent advances, challenges and future trends. Adv. Ind. Eng. Polym. Res. 2021, 4, 209–222. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, J.; Wu, J.; Zhao, C.; Zhang, B. Workability, compressive strength, and microstructures of one-part rubberized geopolymer mortar. J. Build. Eng. 2023, 68, 106088. [Google Scholar] [CrossRef]
- Althoey, F.; Zaid, O.; Alsharari, F.; Yosri, A.M.; Isleem, H.F. Evaluating the impact of nano-silica on characteristics of self-compacting geopolymer concrete with waste tire steel fiber. Arch. Civ. Mech. Eng. 2025, 25, 108. [Google Scholar] [CrossRef]
- Mucsi, G.; Szenczi, Á.; Nagy, S. Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire. J. Clean. Prod. 2018, 178, 429–440. [Google Scholar] [CrossRef]
- Zhuo, K.-X.; Cai, Y.-J.; Lai, H.-M.; Chen, Z.-B.; Guo, Y.-C.; Chen, G.; Xiao, S.-H.; Lan, X.-W. Axial compressive behavior of environmentally friendly high-strength concrete: Effects of recycled tire steel fiber and rubber powder. J. Build. Eng. 2023, 76, 107092. [Google Scholar] [CrossRef]
- Qin, X.; Kaewunruen, S. Environment-friendly recycled steel fibre reinforced concrete. Constr. Build. Mater. 2022, 327, 126967. [Google Scholar] [CrossRef]
- Rehman, M.; Fahad, S.; Du, G.; Cheng, X.; Yang, Y.; Tang, K.; Liu, L.; Liu, F.-H.; Deng, G. Evaluation of hemp (Cannabis sativa L.) as an industrial crop: A review. Environ. Sci. Pollut. Res. 2021, 28, 52832–52843. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.H.; Ogihara, S.; Tung, N.H.; Kobayashi, S. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos. Part B Eng. 2011, 42, 1648–1656. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites–A review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Arehart, J.H.; Nelson, W.S.; Srubar, W.V., III. On the theoretical carbon storage and carbon sequestration potential of hempcrete. J. Clean. Prod. 2020, 266, 121846. [Google Scholar] [CrossRef]
- Zampori, L.; Dotelli, G.; Vernelli, V. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings. Environ. Sci. Technol. 2013, 47, 7413–7420. [Google Scholar] [CrossRef]
- Galzerano, B.; Formisano, A.; Durante, M.; Iucolano, F.; Caputo, D.; Liguori, B. Hemp reinforcement in lightweight geopolymers. J. Compos. Mater. 2018, 52, 2313–2320. [Google Scholar] [CrossRef]
- Lv, C.; Liu, J. Alkaline degradation of plant fiber reinforcements in geopolymer: A review. Molecules 2023, 28, 1868. [Google Scholar] [CrossRef]
- Shah, I.; Jing, L.; Fei, Z.M.; Yuan, Y.S.; Farooq, M.U.; Kanjana, N. A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites. J. Nat. Fibers 2022, 19, 5133–5151. [Google Scholar]
- Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly Ash/Blast Furnace Slag-Based Geopolymer as a Potential Binder for Mine Backfilling: Effect of Binder Type and Activator Concentration. Adv. Mater. Sci. Eng. 2019, 2019, 2028109. [Google Scholar]
- Zhuguo, L.; Sha, L. Carbonation resistance of fly ash and blast furnace slag based geopolymer concrete. Constr. Build. Mater. 2018, 163, 668–680. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd Elmoaty, M.; Auda, E.M. Re-use of waste marble dust in the production of cement and concrete. Constr. Build. Mater. 2014, 50, 28–41. [Google Scholar] [CrossRef]
- Bayrak, B.; Benli, A.; Alcan, H.G.; Çelebi, O.; Kaplan, G.; Aydın, A.C. Recycling of waste marble powder and waste colemanite in ternary-blended green geopolymer composites: Mechanical, durability and microstructural properties. J. Build. Eng. 2023, 73, 106661. [Google Scholar] [CrossRef]
- Petrović, E.K.; Thomas, C.A. Global Patterns in Construction and Demolition Waste (C&DW) Research: A Bibliometric Analysis Using VOSviewer. Sustainability 2024, 16, 1561. [Google Scholar] [CrossRef]
- Nematollahi, B.; Sanjayan, J. Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater. Des. 2014, 57, 667–672. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Alkali-activated materials and geopolymer: A review of common precursors and activators addressing circular economy. Circ. Econ. Sustain. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- John, M.J.; Anandjiwala, R.D. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym. Compos. 2008, 29, 187–207. [Google Scholar]
- Alves, C.; Dias, A.; Diogo, A.; Ferrão, P.; Luz, S.; Silva, A.; Reis, L.; Freitas, M. Eco-composite: The effects of the jute fiber treatments on the mechanical and environmental performance of the composite materials. J. Compos. Mater. 2011, 45, 573–589. [Google Scholar] [CrossRef]
- Asokan, R.; Rathanasamy, R.; Paramasivam, P.; Chinnasamy, M.; Pal, S.K.; Palaniappan, S.K. Hemp composite. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2023; pp. 89–112. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Sadeghi, P.; Cao, Q.; Abouzeid, R.; Shayan, M.; Koo, M.; Wu, Q. Experimental and Statistical Investigations for Tensile Properties of Hemp Fibers. Fibers 2024, 12, 94. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- ASTMC230; Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2021.
- Alcan, H.G.; Bayrak, B.; Öz, A.; Kavaz, E.; Kaplan, G.; Çelebi, O.; Aydın, A.C. A comprehensive characterization on geopolymer concretes with low content slag and quartz aggregates: The shielding features. Radiat. Eff. Defects Solids 2023, 178, 769–798. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- ASTMC642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTMC349; Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure). ASTM International: West Conshohocken, PA, USA, 2018.
- ASTMC348; Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTMC1018; Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). ASTM International: West Conshohocken, PA, USA, 2017.
- ASTME119; Standard Test Methods for Fire Tests of Building Construction and Materials. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTMC666-97; Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTMC267; Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes. ASTM International: West Conshohocken, PA, USA, 2020.
- Yazıcı, Ş.; İnan, G.; Tabak, V. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Constr. Build. Mater. 2007, 21, 1250–1253. [Google Scholar] [CrossRef]
- Li, Z.; Wang, L.; Wang, X. Compressive and flexural properties of hemp fiber reinforced concrete. Fibers Polym. 2004, 5, 187–197. [Google Scholar] [CrossRef]
- Öz, A.; Bayrak, B.; Kaplan, G.; Aydın, A.C. Effect of waste colemanite and PVA fibers on GBFS-Metakaolin based high early strength geopolymer composites (HESGC): Mechanical, microstructure and carbon footprint characteristics. Constr. Build. Mater. 2023, 377, 131064. [Google Scholar] [CrossRef]
- Madandoust, R.; Ranjbar, M.M.; Ghavidel, R.; Shahabi, S.F. Assessment of factors influencing mechanical properties of steel fiber reinforced self-compacting concrete. Mater. Des. 2015, 83, 284–294. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, J.; Zhang, J.; Deng, Q.; Xue, Z.; Huang, G.; Huang, X. Influence of steel slag and steel fiber on the mechanical properties, durability, and life cycle assessment of ultra-high performance geopolymer concrete. Constr. Build. Mater. 2024, 441, 137590. [Google Scholar] [CrossRef]
- da Costa Santos, A.C.; Archbold, P. Suitability of surface-treated flax and hemp fibers for concrete reinforcement. Fibers 2022, 10, 101. [Google Scholar] [CrossRef]
- Alsaif, A.S.; Albidah, A.S. Compressive and flexural characteristics of geopolymer rubberized concrete reinforced with recycled tires steel fibers. Mater. Today Proc. 2022, 65, 1230–1236. [Google Scholar] [CrossRef]
- Pham, K.V.; Nguyen, T.K.; Le, T.A.; Han, S.W.; Lee, G.; Lee, K. Assessment of performance of fiber reinforced geopolymer composites by experiment and simulation analysis. Appl. Sci. 2019, 9, 3424. [Google Scholar] [CrossRef]
- Poletanovic, B.; Janotka, I.; Janek, M.; Bacuvcik, M.; Merta, I. Influence of the NaOH-treated hemp fibres on the properties of fly-ash based alkali-activated mortars prior and after wet/dry cycles. Constr. Build. Mater. 2021, 309, 125072. [Google Scholar] [CrossRef]
- Ding, Y.; Bai, Y.-L. Fracture properties and softening curves of steel fiber-reinforced slag-based geopolymer mortar and concrete. Materials 2018, 11, 1445. [Google Scholar]
- Gülşan, M.E.; Alzeebaree, R.; Rasheed, A.A.; Niş, A.; Kurtoğlu, A.E. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 2019, 211, 271–283. [Google Scholar]
- Suwan, T.; Maichin, P.; Fan, M.; Jitsangiam, P.; Tangchirapat, W.; Chindaprasirt, P. Influence of alkalinity on self-treatment process of natural fiber and properties of its geopolymeric composites. Constr. Build. Mater. 2022, 316, 125817. [Google Scholar] [CrossRef]
- Bhutta, A.; Farooq, M.; Banthia, N. Performance characteristics of micro fiber-reinforced geopolymer mortars for repair. Constr. Build. Mater. 2019, 215, 605–612. [Google Scholar] [CrossRef]
- Amran, M.; Al-Fakih, A.; Chu, S.; Fediuk, R.; Haruna, S.; Azevedo, A.; Vatin, N. Long-term durability properties of geopolymer concrete: An in-depth review. Case Stud. Constr. Mater. 2021, 15, e00661. [Google Scholar] [CrossRef]
- Manzoor, T.; Bhat, J.A.; Shah, A.H. Performance of geopolymer concrete at elevated temperature−A critical review. Constr. Build. Mater. 2024, 420, 135578. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Marković, B.; Gojević, A.; Brdarić, J. Effect of hemp fibers on fire resistance of concrete. Constr. Build. Mater. 2018, 184, 473–484. [Google Scholar] [CrossRef]
- Lakew, A.M.; Canpolat, O.; Al-Mashhadani, M.M.; Uysal, M.; Niş, A.; Aygörmez, Y.; Bayati, M. Combined effect of using steel fibers and demolition waste aggregates on the performance of fly ash/slag based geopolymer concrete. Eur. J. Environ. Civ. Eng. 2023, 27, 4251–4278. [Google Scholar] [CrossRef]
- Bayraktar, O.Y.; Tobbala, D.E.; Turkoglu, M.; Kaplan, G.; Tayeh, B.A. Hemp fiber reinforced one-part alkali-activated composites with expanded perlite: Mechanical properties, microstructure analysis and high-temperature resistance. Constr. Build. Mater. 2023, 363, 129716. [Google Scholar] [CrossRef]
- Doğruyol, M.; Ayhan, E.; Karaşin, A. Effect of waste steel fiber use on concrete behavior at high temperature. Case Stud. Constr. Mater. 2024, 20, e03051. [Google Scholar] [CrossRef]
- Min, Y.; Wu, J.; Li, B.; Zhang, M.; Zhang, J. Experimental study of freeze–thaw resistance of a one-part geopolymer paste. Case Stud. Constr. Mater. 2022, 17, e01269. [Google Scholar] [CrossRef]
- Aygörmez, Y.; Canpolat, O.; Al-Mashhadani, M.M.; Uysal, M. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Constr. Build. Mater. 2020, 235, 117502. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Johari, M.A.M.; Demirboğa, R. Evaluation of properties of steel fiber reinforced GGBFS-based geopolymer composites in aggressive environments. Constr. Build. Mater. 2022, 345, 128339. [Google Scholar] [CrossRef]
- Brooks, R.; Bahadory, M.; Tovia, F.; Rostami, H. Properties of alkali-activated fly ash: High performance to lightweight. Int. J. Sustain. Eng. 2010, 3, 211–218. [Google Scholar] [CrossRef]
- Fan, L.; Meng, W.; Teng, L.; Khayat, K.H. Effect of steel fibers with galvanized coatings on corrosion of steel bars embedded in UHPC. Compos. Part B Eng. 2019, 177, 107445. [Google Scholar]
- Syed, M.; GuhaRay, A.; Goel, D.; Asati, K.; Peng, L. Effect of freeze–thaw cycles on black cotton soil reinforced with coir and hemp fibres in alkali-activated binder. Int. J. Geosynth. Ground Eng. 2020, 6, 19. [Google Scholar]
- Ghosn, S.; Cherkawi, N.; Hamad, B. Studies on hemp and recycled aggregate concrete. Int. J. Concr. Struct. Mater. 2020, 14, 54. [Google Scholar] [CrossRef]
- Mohebi, R.; Behfarnia, K.; Shojaei, M. Abrasion resistance of alkali-activated slag concrete designed by Taguchi method. Constr. Build. Mater. 2015, 98, 792–798. [Google Scholar] [CrossRef]
- Wang, J.; Niu, D. Influence of freeze–thaw cycles and sulfate corrosion resistance on shotcrete with and without steel fiber. Constr. Build. Mater. 2016, 122, 628–636. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, Z.; Zhao, T. Influence of Freeze-Thaw Damage on the Steel Corrosion and Bond-Slip Behavior in the Reinforced Concrete. Adv. Mater. Sci. Eng. 2016, 2016, 9710678. [Google Scholar] [CrossRef]
- Pradhan, P.; Dwibedy, S.; Pradhan, M.; Panda, S.; Panigrahi, S.K. Durability characteristics of geopolymer concrete-Progress and perspectives. J. Build. Eng. 2022, 59, 105100. [Google Scholar] [CrossRef]
- Liu, H.; You, L.; Jin, H.; Yu, W. Influence of alkali treatment on the structure and properties of hemp fibers. Fibers Polym. 2013, 14, 389–395. [Google Scholar] [CrossRef]
- Saranya, P.; Nagarajan, P.; Shashikala, A.P. Performance studies on steel fiber–Reinforced GGBS-dolomite geopolymer concrete. J. Mater. Civ. Eng. 2021, 33, 04020447. [Google Scholar] [CrossRef]
- Thanushan, K.; Sathiparan, N. Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia 2022, 21, 101309. [Google Scholar] [CrossRef]
- Rabie, M.; Irshidat, M.R.; Al-Nuaimi, N. Ambient and heat-cured geopolymer composites: Mix design optimization and life cycle assessment. Sustainability 2022, 14, 4942. [Google Scholar] [CrossRef]
- Salas, D.A.; Ramirez, A.D.; Ulloa, N.; Baykara, H.; Boero, A.J. Life cycle assessment of geopolymer concrete. Constr. Build. Mater. 2018, 190, 170–177. [Google Scholar] [CrossRef]
- Gu, X.; Li, Z.; Zhang, Y.; Zhang, W.; Li, X.; Liu, B. Sustainable assessment and synergism of ceramic powder and steel slag in iron ore tailings-based concrete. Environ. Sci. Pollut. Res. 2024, 31, 18856–18870. [Google Scholar] [CrossRef]
- Yakhlaf, M.; Safiuddin, M.; Soudki, K. Properties of freshly mixed carbon fibre reinforced self-consolidating concrete. Constr. Build. Mater. 2013, 46, 224–231. [Google Scholar] [CrossRef]
- García-Segura, T.; Yepes, V.; Alcalá, J. Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 2014, 19, 3–12. [Google Scholar] [CrossRef]
- Davidovits, J. False values on CO2 emission for geopolymer cement/concrete published in scientific papers. Tech. Pap. 2015, 24, 1–9. [Google Scholar]
- Sánchez, A.R.; Ramos, V.C.; Polo, M.S.; Ramón, M.V.L.; Utrilla, J.R. Life cycle assessment of cement production with marble waste sludges. Int. J. Environ. Res. Public Health 2021, 18, 10968. [Google Scholar] [CrossRef] [PubMed]
- Bampanis, I.; Vasilatos, C. Recycling Concrete to Aggregates. Implications on CO2 Footprint. Mater. Proc. 2023, 15, 28. [Google Scholar]
- Di Sarno, L.; Albuhairi, D.; Medeiros, J.M.P. Exploring innovative resilient and sustainable bio-materials for structural applications: Hemp-fibre concrete. Structures 2024, 68, 107096. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, P.; Sun, J.; Li, H.; Chen, A. Production of ultra-high performance concrete using recycled tire steel fiber: Mechanical properties and life cycle assessment. Mag. Concr. Res. 2025, 77, 552–567. [Google Scholar] [CrossRef]
- Abushanab, A.; Alnahhal, W. Life cycle cost analysis of sustainable reinforced concrete buildings with treated wastewater, recycled concrete aggregates, and fly ash. Results Eng. 2023, 20, 101565. [Google Scholar] [CrossRef]
- Alcan, H.G.; Bayrak, B.; Öz, A.; Çelebi, O.; Kaplan, G.; Aydın, A.C. Synergetic effect of fibers on geopolymers: Cost-effective and sustainable perspective. Constr. Build. Mater. 2024, 414, 135059. [Google Scholar] [CrossRef]
- Nikbin, I.M.; Dezhampanah, S.; Charkhtab, S.; Mehdipour, S.; Shahvareh, I.; Ebrahimi, M.; Pournasir, A.; Pourghorban, H. Life cycle assessment and mechanical properties of high strength steel fiber reinforced concrete containing waste PET bottle. Constr. Build. Mater. 2022, 337, 127553. [Google Scholar] [CrossRef]
Fiber Type | Fiber Length (mm) | Density (g/cm3) | Tensile Strength (MPa) |
---|---|---|---|
WTSF | 12 | 7.85 | 2570 |
THF | 12 | 1.8 | 600–1070 [60,61] |
UTHF | 12 | 1.4 | 270–900 [62,63] |
BFS | NaOH | Na2SiO3 | WMP | RFA | UTHF | THF | WTSF | * Vf | |
---|---|---|---|---|---|---|---|---|---|
REF | - | - | - | 0 | |||||
M1 | 7 | - | - | 0.5 | |||||
M2 | - | 9 | - | 0.5 | |||||
M3 | - | - | 39 | 0.5 | |||||
M4 | 3.5 | - | 19.5 | 0.5 | |||||
M5 | 750 | 161 | 402 | 429 | 428 | - | 4.5 | 19.5 | 0.5 |
M6 | 14 | - | - | 1 | |||||
M7 | - | 18 | - | 1 | |||||
M8 | - | - | 78 | 1 | |||||
M9 | 7 | - | 39 | 1 | |||||
M10 | - | 9 | 39 | 1 |
REF | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Flow diameter (mm) | 227 | 212 | 216 | 183 | 191 | 196 | 169 | 175 | 144 | 156 | 160 | |
After 24 h | Com. strength * (MPa) | 49.9 | 48.2 | 52.4 | 63.6 | 51.9 | 55 | 42.1 | 47.3 | 54.6 | 48.9 | 51.4 |
Flexural strength (MPa) | 4.9 | 4.8 | 5.3 | 6.9 | 5.3 | 5.7 | 4.3 | 4.7 | 6.4 | 5.2 | 5.9 | |
Fracture energy (N/m) | 295 | 416 | 535.3 | 1327.9 | 723.5 | 834.2 | 719.2 | 837 | 2783 | 988.2 | 1195.7 | |
Max. def. ** (mm) | 2.6 | 4 | 4.8 | 6.3 | 4.9 | 5.7 | 6 | 6.4 | 11.6 | 6.8 | 7.1 | |
DUW *** (kg/m3) | 2200 | 2176 | 2185 | 2259 | 2193 | 2210 | 2080 | 2106 | 2408 | 2273 | 2291 | |
After 300 °C | Com. strength * (MPa) | 38.7 | 39.2 | 43.5 | 54.8 | 43.3 | 46.8 | 35 | 39.9 | 48.3 | 41.9 | 44.5 |
Flexural strength (MPa) | 3.3 | 3.7 | 4.2 | 5.8 | 4.3 | 4.7 | 3.4 | 3.9 | 5.5 | 4.4 | 5 | |
Fracture energy (N/m) | 218.1 | 348.2 | 466.1 | 1211.7 | 651.5 | 756 | 632.3 | 742.4 | 2588.4 | 897 | 1097.9 | |
Max. def. ** (mm) | 2 | 3.2 | 4 | 5.7 | 4.1 | 4.4 | 4.6 | 5.8 | 9.9 | 5.9 | 6 | |
DUW *** (kg/m3) | 1931 | 2004 | 2029 | 2131 | 2057 | 2076 | 1945 | 1975 | 2332 | 2158 | 2190 | |
After 600 °C | Com. strength * (MPa) | 13.23 | 8.92 | 10.87 | 20.90 | 12.37 | 15.20 | 6.71 | 8.92 | 19.07 | 12.61 | 15.28 |
Flexural strength (MPa) | 1.2 | 0.9 | 1.2 | 2.4 | 1.3 | 1.6 | 0.7 | 0.9 | 2.5 | 1.5 | 1.8 | |
Fracture energy (N/m) | 64.8 | 42.9 | 53.9 | 412.6 | 128.3 | 170.8 | 28.9 | 40.7 | 1116.1 | 179.9 | 255.1 | |
Max. def. ** (mm) | 1.3 | 1 | 1.2 | 3.2 | 2.1 | 2.6 | 0.9 | 1.1 | 5 | 2.9 | 3.2 | |
DUW *** (kg/m3) | 1608 | 1452 | 1540 | 1809 | 1601 | 1672 | 1243 | 1422 | 1979 | 1750 | 1821 | |
After 50 F-T | Com. strength * (MPa) | 53.2 | 51.6 | 56.9 | 70.7 | 56.5 | 60.3 | 46.1 | 52.4 | 64.1 | 54.9 | 58.8 |
Flexural strength (MPa) | 4.89 | 4.87 | 5.44 | 7.28 | 5.44 | 5.94 | 4.43 | 4.92 | 6.92 | 5.54 | 6.32 | |
Fracture energy (N/m) | 307.1 | 458.2 | 596.4 | 1585.3 | 823.1 | 958.2 | 798.5 | 946.7 | 3565.1 | 1167.7 | 1428.6 | |
Max. def. ** (mm) | 2.9 | 4.5 | 5.3 | 7.2 | 5.4 | 6.3 | 6.6 | 7.1 | 12.9 | 7.5 | 7.8 | |
DUW *** (kg/m3) | 2239 | 2233 | 2236 | 2362 | 2274 | 2285 | 2187 | 2206 | 2587 | 2400 | 2410 | |
After 100 F-T | Com. strength * (MPa) | 43.7 | 46.8 | 51.4 | 60.5 | 50.1 | 53.9 | 41.3 | 46.8 | 50.2 | 46.8 | 50.1 |
Flexural strength (MPa) | 3.70 | 4.47 | 4.93 | 6.36 | 4.85 | 5.30 | 4.01 | 4.49 | 5.75 | 4.90 | 5.58 | |
Fracture energy (N/m) | 225.2 | 362.4 | 482.2 | 1035.6 | 613.8 | 716.8 | 636.9 | 768.8 | 1691.8 | 816.1 | 995.6 | |
Max. def. ** (mm) | 2.3 | 3.7 | 4.5 | 5.8 | 4.5 | 5.2 | 5.5 | 5.9 | 10.1 | 6.2 | 6.5 | |
DUW *** (kg/m3) | 2041 | 2105 | 2123 | 2169 | 2118 | 2142 | 2042 | 2078 | 2286 | 2209 | 2235 | |
After Acid | Com. strength * (MPa) | 31.3 | 38.8 | 43.2 | 47.8 | 41 | 43.9 | 34.9 | 40.4 | 38 | 37.3 | 40.4 |
Flexural strength (MPa) | 2.91 | 3.62 | 4.08 | 5.01 | 3.88 | 4.24 | 3.38 | 3.93 | 4.56 | 3.77 | 4.36 | |
Fracture energy (N/m) | 172.9 | 329.8 | 432 | 889.6 | 552.5 | 661.2 | 591.7 | 697.5 | 1243.4 | 782.9 | 968.2 | |
Max. def. ** (mm) | 1.6 | 2.5 | 3 | 3.9 | 3.1 | 3.5 | 3.7 | 4 | 6.9 | 4.2 | 4.4 | |
DUW *** (kg/m3) | 1810 | 1961 | 1988 | 1955 | 1956 | 1960 | 1911 | 1941 | 2049 | 2050 | 2073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcan, H.G. Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials. Polymers 2025, 17, 2432. https://doi.org/10.3390/polym17172432
Alcan HG. Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials. Polymers. 2025; 17(17):2432. https://doi.org/10.3390/polym17172432
Chicago/Turabian StyleAlcan, Haluk Görkem. 2025. "Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials" Polymers 17, no. 17: 2432. https://doi.org/10.3390/polym17172432
APA StyleAlcan, H. G. (2025). Mechanical, Durability, and Environmental Impact Properties of Natural and Recycled Fiber Geopolymer with Zero Waste Approach: Alternative to Traditional Building Materials. Polymers, 17(17), 2432. https://doi.org/10.3390/polym17172432