Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review
Abstract
1. Introduction
Review Strategy
- (i)
- the oil and gas industry, particularly in the design of bentonite-based drilling fluids;
- (ii)
- the ceramics industry, where flow properties of suspensions containing kaolinite and other clays are regulated;
- (iii)
- the chemical and materials industries, involving the development of nanocomposites, functional surfactants, and hybrid additives; and
- (iv)
- environmental and wastewater treatment, where rheological properties influence the efficiency of sedimentation and clarification processes.
2. General Principles
2.1. Clay Minerals
2.2. Rheology
2.3. Influence of Clays on the Rheology of Mineral Pulps
3. Rheology-Modifying Reagents
3.1. Salinity and pH
3.2. Polymers
3.3. Surfactants
3.4. Nanoparticles
3.5. Comparison of Rheological Behavior According to Clay Type
- (i)
- Montmorillonite features an expandable 2:1 layered structure with high swelling capacity, large specific surface area, and significant cation exchange capacity, making it particularly sensitive to the action of reagents such as salts, polymers, or nanoparticles. For instance, low concentrations of sodium or anionic polymers can induce pronounced dispersion, whereas the presence of divalent cations favors the formation of gel-like networks. Its rheological behavior is governed by “house-of-cards” structures and the thickness of the electrical double layer, which explains its tendency to exhibit high yield stresses.
- (ii)
- Kaolinite, in contrast, possesses a non-expandable 1:1 layered structure, with a lower specific surface area and a more heterogeneous surface charge. Suspensions of kaolinite generally exhibit limited swelling and more stable viscosities over time. The response to the addition of polymers and surfactants is primarily associated with interactions at edges and structural defects, rather than interlayer adsorption; therefore, the rheological behavior of these suspensions tends to be more predictable, with reduced sensitivity to changes in pH or ionic strength.
- (iii)
- Illite has a non-expandable 2:1 structure with low cation exchange capacity and limited surface reactivity. As a result, its response to rheology-modifying reagents is less pronounced. However, some studies have reported a slight modification of its colloidal stability using cationic surfactants and high molecular weight polymers, albeit to a lesser extent than in systems containing montmorillonite or kaolinite [152,153,154,155]. These studies suggest that, although illite exhibits lower surface reactivity, its colloidal and rheological behavior can still be altered using specific reagents, particularly under favorable chemical conditions.
4. Research Opportunities
4.1. New Formulations of Rheology Modifiers
4.2. Interactions Between Additives and Specific Clay Minerals
4.3. Impact of Physicochemical Conditions of Water on Additive Effectiveness
4.4. Optimization of Additives for Thickened Tailings
4.5. Sustainable and Eco-Friendly Approaches
5. Conclusions
- (i)
- Salts and pH modifiers influence the compression of the electrical double layer and the neutralization of surface charges, thereby altering the aggregation/disaggregation state of particles and, consequently, the rheological behavior of the suspension. However, these reagents are often treated as auxiliary variables, and their coexistence with other additives warrants more systematic investigation.
- (ii)
- Polymers exhibit high versatility, as they can induce either dispersion or flocculation depending on characteristics such as molecular weight, molecular architecture (linear or branched), ionic nature (anionic or cationic), and applied dosage. Biopolymers are receiving increasing attention due to their biodegradability and functional diversity, although their performance under extreme salinity or temperature conditions remains insufficiently validated.
- (iii)
- Surfactants also exert a significant influence on rheological behavior, depending on their ionic character, molecular structure, and molecular weight. Among these, ionic character is the most studied factor: cationic surfactants tend to promote flocculation via adsorption onto negatively charged clay surfaces, whereas nonionic and anionic surfactants may induce either stabilization or reversible flocculation. Nonetheless, there is a notable lack of studies evaluating surfactant behavior under industrially relevant conditions, such as seawater or complex reagent systems.
- (iv)
- Nanoparticles possess strong potential due to their large specific surface area and tunable physicochemical properties, such as size, morphology, and surface charge, which may promote either stabilization or destabilization of clay mineral suspensions. However, their synthesis and/or surface functionalization are often associated with high costs, unexplored environmental risks, and limited compatibility with specific minerals.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kawatra, S.K.; Eisele, T.C. Rheological Effects in Grinding Circuits. Int. J. Miner. Process 1988, 22, 251–259. [Google Scholar] [CrossRef]
- Shi, F.N.; Napier-Munn, T.J. Effects of Slurry Rheology on Industrial Grinding Performance. Int. J. Miner. Process 2002, 65, 125–140. [Google Scholar] [CrossRef]
- Yue, J.; Klein, B. Influence of Rheology on the Performance of Horizontal Stirred Mills. Miner. Eng. 2004, 17, 1169–1177. [Google Scholar] [CrossRef]
- Hockings, W.A.; Volin, M.E.; Mular, A.L. Effect of Suspending Fluid Viscosity on Batch Mill Grinding. Trans. Am. Inst. Min. Eng. 1965, 232, 59–62. [Google Scholar]
- Clarke, B.; Kitchener, J.A. The Influence of Pulp Viscosity on Fine Grinding in a Ball Mill. Br. Chem. Eng. 1968, 13, 991–995. [Google Scholar]
- Jinescu, V.V. The Rheology of Suspension. Int. Chem. Eng. 1974, 14, 397–420. [Google Scholar]
- Klimpel, R.R. Slurry Rheology Influence on the Performance of Mineral/Coal Grinding Circuits. Min. Eng. 1982, 34, 12. [Google Scholar]
- Klimpel, R.R. Slurry Rheology Influence on the Performance of Mineral/Coal Grinding Circuit, Part 2. Min. Eng. 1983, 35, 21–26. [Google Scholar]
- Klimpel, R.R. Influence of Material Breakage Properties and Associated Slurry Rheology on Breakage Rates in Wet Grinding of Coals/Ores in Tumbling Media Mills. In Reagents in the Mineral Industry; Jones, M.J., Oblatt, R., Eds.; I.M.M: London, UK, 1984; pp. 265–270. [Google Scholar]
- Shi, F.N.; Napier-Munn, T.J. A Model for Slurry Rheology. Int. J. Miner. Process 1996, 47, 103–123. [Google Scholar] [CrossRef]
- Shi, F.N.; Napier-Munn, T.J. Measuring the Rheology of Slurries Using an On-Line Viscometer. Int. J. Miner. Process 1996, 47, 153–176. [Google Scholar] [CrossRef]
- Shi, F.N.; Napier-Munn, T.J. Estimation of Shear Rates inside a Ball Mill. Int. J. Miner. Process 1999, 57, 167–183. [Google Scholar] [CrossRef]
- Shi, F.N. Investigation of the Effects of Chrome Ball Charge on Slurry Rheology and Milling Performance. Miner. Eng. 2002, 15, 297–299. [Google Scholar] [CrossRef]
- Tangsathitkulchai, C. The Effect of Slurry Rheology on Fine Grinding in a Laboratory Ball Mill. Int. J. Miner. Process 2003, 69, 29–47. [Google Scholar] [CrossRef]
- Bernhardt, C.; Reinsch, E.; Husemann, K. The Influence of Suspension Properties on Ultra-Fine Grinding in Stirred Ball Mills. Powder Technol. 1999, 105, 357–361. [Google Scholar] [CrossRef]
- Reinisch, E.; Bernhardt, C.; Husemann, K. The Influence of Additives during Wet Ultra-Fine Grinding in Agitator Bead Mills: Part 1. General Principles and Experimental. Ceram. Forum Int. Berichte Dtsch. Keram. Ges. 2001, 78, E38–E42. [Google Scholar]
- Reinisch, E.; Bernhardt, C.; Husemann, K. The Influence of Additives during Wet Ultra-Fine Grinding in Agitator Bead Mills: Part 2. Results and Conclusions. Ceram. Forum Int. Berichte Dtsch. Keram. Ges. 2001, 78, E36–E40. [Google Scholar]
- Somasundaran, P.; Moudgil, B.M. Grinding Aids Based on Slurry Rheology Control. In Reagents in Mineral Technology; Somasundaran, P., Moudgil, B.M., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1988; Volume 27, pp. 179–193. [Google Scholar]
- Klimpel, R.R. The Selection of Wet Grinding Chemical Additives Based on Slurry Rheology Control. Powder Technol. 1999, 105, 430–435. [Google Scholar] [CrossRef]
- Bakker, C.W.; Meyer, C.J.; Deglon, D.A. Numerical Modelling of Non-Newtonian Slurry in a Mechanical Flotation Cell. Miner. Eng. 2009, 22, 944–950. [Google Scholar] [CrossRef]
- Shabalala, N.Z.P.; Harris, M.; Leal Filho, L.S.; Deglon, D.A. Effect of Slurry Rheology on Gas Dispersion in a Pilot-Scale Mechanical Flotation Cell. Miner. Eng. 2011, 24, 1448–1453. [Google Scholar] [CrossRef]
- Klassen, V.I.; Mokrousov, V.A. An Introduction to the Theory of Flotation; Butterworths: London, UK, 1963; Volume 14. [Google Scholar]
- Schubert, H. On the Optimization of Hydrodynamics in Fine Particle Flotation. Miner. Eng. 2008, 21, 930–936. [Google Scholar] [CrossRef]
- O’Connor, C.T.; Randall, E.W.; Goodall, C.M. Measurement of the Effects of Physical and Chemical Variables on Bubble Size. Int. J. Miner. Process 1990, 28, 139–149. [Google Scholar] [CrossRef]
- Becker, M.; Yorath, G.; Ndlovu, B.; Harris, M.; Deglon, D.; Franzidis, J.P. A Rheological Investigation of the Behaviour of Two Southern African Platinum Ores. Miner. Eng. 2013, 49, 92–97. [Google Scholar] [CrossRef]
- Meng, S.; Li, X.; Yan, X.; Wang, L.; Zhang, H.; Cao, Y. Turbulence Models for Single Phase Flow Simulation of Cyclonic Flotation Columns. Minerals 2019, 9, 464. [Google Scholar] [CrossRef]
- Hanks, R.W. Principles of Slurry Pipeline Hydraulics. Encycl. Fluid Mech. 1986, 5, 213–276. [Google Scholar]
- Thomas, A.D. A Rational Design Philosophy for Long Distance Slurry Pipelines. Chem. Eng. Aust. 1977, 1, 22–33. [Google Scholar]
- Want, F.M.; Colombera, P.M.; Nguyen, Q.D.; Boger, D.V. Pipeline Design for the Transport of High Density Bauxite Residue Slurries. In Proceedings of the 8th International Conference Hydraulic Transport of Solids in Pipes, Johannesburg, South Africa, 25–27 August 1982; pp. 242–262. [Google Scholar]
- Rudman, M.; Simic, K.; Paterson, D.A.; Strode, P.; Brent, A.; Šutalo, I.D. Raking in Gravity Thickeners. Int. J. Miner. Process 2008, 86, 114–130. [Google Scholar] [CrossRef]
- Rios, D.; Misle, M.; Silva, P. Manual de Operaciones Espesadores de Relave; TECSUP: Allonzier-la-Caille, France, 2016. [Google Scholar]
- Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989; Volume 3. [Google Scholar]
- Ndlovu, B.; Farrokhpay, S.; Bradshaw, D. The Effect of Phyllosilicate Minerals on Mineral Processing Industry. Int. J. Miner. Process 2013, 125, 149–156. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals, 2nd ed.; Longman Scientific & Technical: Harlow, UK, 1992. [Google Scholar]
- Lagaly, G.; Ziesmer, S. Colloid Chemistry of Clay Minerals: The Coagulation of Montmorillonite Dispersions. Adv. Colloid Interface Sci. 2003, 100–102, 105–128. [Google Scholar] [CrossRef]
- Schofield, R.K.; Samson, H.R. Flocculation of Kaolinite Due to the Attraction of Oppositely Charged Crystal Faces. Discuss. Faraday Soc. 1954, 18, 135–145. [Google Scholar] [CrossRef]
- Johnson, S.B.; Russell, A.S.; Scales, P.J. Volume Fraction Effects in Shear Rheology and Electroacoustic Studies of Concentrated Alumina and Kaolin Suspensions. Colloids Surf. A Physicochem. Eng. Asp. 1998, 141, 119–130. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Surface Charge Heterogeneity of Kaolinite in Aqueous Suspension in Comparison with Montmorillonite. Appl. Clay Sci. 2006, 34, 105–124. [Google Scholar] [CrossRef]
- Kelessidis, V.C.; Tsamantaki, C.; Dalamarinis, P. Effect of PH and Electrolyte on the Rheology of Aqueous Wyoming Bentonite Dispersions. Appl. Clay Sci. 2007, 38, 86–96. [Google Scholar] [CrossRef]
- Luckham, P.F.; Rossi, S. The Colloidal and Rheological Properties of Bentonite Suspensions. Adv. Colloid Interface Sci. 1999, 82, 43–92. [Google Scholar] [CrossRef]
- Slade, P.G.; Gates, W.P. The Swelling of HDTMA Smectites as Influenced by Their Preparation and Layer Charges. Appl. Clay Sci. 2004, 25, 93–101. [Google Scholar] [CrossRef]
- Klein, C.; Hurlbut, C.S., Jr. Manual of Mineralogy, 21st ed.; John Wiley’ Sons, Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Guggenheim, S.; Martin, R.T.; Alietti, A.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Köster, H.M.; Morgan, D.J.; Paquet, H.; Watanabe, T.; et al. Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees. Clays Clay Miner. 1995, 43, 255–256. [Google Scholar] [CrossRef]
- Güngör, N. Effect of the Adsorption of Surfactants on the Rheology of Na-Bentonite Slurries. J. Appl. Polym. Sci. 2000, 75, 107–110. [Google Scholar] [CrossRef]
- Johnston, C.T.; Premachandra, G.S. Polarized ATR-FTIR Study of Smectite in Aqueous Suspension. Langmuir 2002, 17, 3712–3718. [Google Scholar] [CrossRef]
- Dixon, J.B.; Weed, S.B. Minerals in Soil Environments, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989. [Google Scholar]
- Bulatovic, S.; Wyslouzil, D.M.; Kant, C. Effect of Clay Slimes on Copper, Molybdenum Flotation from Porphyry Ores. In Proceedings of the Copper, Phoenix, AZ, USA, 10–13 October 1999. [Google Scholar]
- Rieder, M.; Cavazzini, G.; D’Yakonov, Y.S.; Frank-Kamenetskii, V.A.; Gottardi, G.; Guggenheim, S.; Koval’, P.V.; Müller, G.; Neiva, A.M.R.; Radoslovich, E.W.; et al. Nomenclature of the Micas. Miner. Mag. 1999, 63, 267–279. [Google Scholar] [CrossRef]
- Chhabra, R.P.; Richardson, J.F. Non-Newtonian Flow and Applied Rheology, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2008. [Google Scholar]
- Macosko, C.W. Chapter 6. Shear Rheometry: Pressure Driven Flows. In Rheology—Principles, Measurements and Applications; John Wiley’ Sons, Inc.: Hoboken, NJ, USA, 1994; pp. 237–283. [Google Scholar]
- Mewis, J.; Wagner, N.J. Introduction to Colloid Science and Rheology. In Colloidal Suspension Rheology; Cambridge University Press: Cambridge, UK, 2011; pp. 1–35. [Google Scholar] [CrossRef]
- Hong, E.; Herbert, C.M.; Yeneneh, A.M.; Sen, T.K. Rheological Characteristics of Mixed Kaolin–Sand Slurry, Impacts of PH, Temperature, Solid Concentration and Kaolin–Sand Mixing Ratio. Int. J. Environ. Sci. Technol. 2016, 13, 2629–2638. [Google Scholar] [CrossRef]
- Nuntiya, A.; Prasanphan, S. The Rheological Behavior of Kaolin Suspensions. Chiang Mai J. Sci. 2006, 33, 271–281. [Google Scholar]
- Shakeel, A.; Kirichek, A.; Chassagne, C. Rheology and Yielding Transitions in Mixed Kaolinite/Bentonite Suspensions. Appl. Clay Sci. 2021, 211, 106206. [Google Scholar] [CrossRef]
- Burdukova, E.; Becker, M.; Ndlovu, B.; Mokgethi, B.; Deglon, D. Relationship between Slurry Rheology and Its Mineralogical Content. In Proceedings of the 24th International Minerals Processing Congress, Beijing, China, 24–28 September 2008; pp. 2169–2178. [Google Scholar]
- Zhang, M.; Peng, Y. Effect of Clay Minerals on Pulp Rheology and the Flotation of Copper and Gold Minerals. Miner. Eng. 2015, 70, 8–13. [Google Scholar] [CrossRef]
- Du, J.; Morris, G.; Pushkarova, R.A.; Smart, R.S.C. Effect of Surface Structure of Kaolinite on Aggregation, Settling Rate, and Bed Density. Langmuir 2010, 26, 13227–13235. [Google Scholar] [CrossRef]
- Ndlovu, B.; Forbes, E.; Farrokhpay, S.; Becker, M.; Bradshaw, D.; Deglon, D. A Preliminary Rheological Classification of Phyllosilicate Group Minerals. Miner. Eng. 2014, 55, 190–200. [Google Scholar] [CrossRef]
- Tombácz, E.; Szekeres, M. Colloidal Behavior of Aqueous Montmorillonite Suspensions: The Specific Role of PH in the Presence of Indifferent Electrolytes. Appl. Clay Sci. 2004, 27, 75–94. [Google Scholar] [CrossRef]
- Durán, J.D.G.; Ramos-Tejada, M.M.; Arroyo, F.J.; González-Caballero, F. Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions: I. Rheological Properties and Interparticle Energy of Interaction. J. Colloid. Interface Sci. 2000, 229, 107–117. [Google Scholar] [CrossRef]
- Shoaib, M.; Cruz, N.; Bobicki, E.R. Effect of PH-Modifiers on the Rheological Behaviour of Clay Slurries: Difference between a Swelling and Non-Swelling Clay. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128699. [Google Scholar] [CrossRef]
- Kameda, J.; Morisaki, T. Sensitivity of Clay Suspension Rheological Properties to PH, Temperature, Salinity, and Smectite-Quartz Ratio. Geophys. Res. Lett. 2017, 44, 9615–9621. [Google Scholar] [CrossRef]
- Nasser, M.S.; James, A.E. The Effect of Electrolyte Concentration and PH on the Flocculation and Rheological Behaviour of Kaolinite Suspensions. J. Eng. Sci. Technol. 2009, 4, 430–446. [Google Scholar]
- Leiva, W.; Toro, N.; Robles, P.; Gálvez, E.; Jeldres, R.I. Use of Multi-Anionic Sodium Tripolyphosphate to Enhance Dispersion of Concentrated Kaolin Slurries in Seawater. Metals 2021, 11, 1085. [Google Scholar] [CrossRef]
- Yildiz, N.; Sarikaya, Y.; Çalimli, A. The Effect of the Electrolyte Concentration and PH on the Rheological Properties of the Original and the Na2CO3-Activated Kutahya Bentonite. Appl. Clay Sci. 1999, 14, 319–327. [Google Scholar] [CrossRef]
- Au, P.I.; Leong, Y.K. Rheological and Zeta Potential Behaviour of Kaolin and Bentonite Composite Slurries. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 530–541. [Google Scholar] [CrossRef]
- Kimura, H.; Tanabe, H.; Shinoki, S. Zeta Potential as a Key Indicator of Network Structure and Rheological Behavior in Smectite Clay Dispersions. Fluids 2025, 10, 178. [Google Scholar] [CrossRef]
- Labanda, J.; Llorens, J. Influence of Sodium Polyacrylate on the Rheology of Aqueous Laponite Dispersions. J. Colloid. Interface Sci. 2005, 289, 86–93. [Google Scholar] [CrossRef]
- Robles, P.; Piceros, E.; Leiva, W.H.; Valenzuela, J.; Toro, N.; Jeldres, R.I. Analysis of Sodium Polyacrylate as a Rheological Modifier for Kaolin Suspensions in Seawater. Appl. Clay Sci. 2019, 183, 105328. [Google Scholar] [CrossRef]
- Jeldres, M.; Robles, P.; Toledo, P.G.; Saldaña, M.; Quezada, L.; Jeldres, R.I. Improved Dispersion of Clay-Rich Tailings in Seawater Using Sodium Polyacrylate. Colloids Surf. A Physicochem. Eng. Asp. 2021, 612, 126015. [Google Scholar] [CrossRef]
- Ramos, J.J.; Nieto, S.; Quezada, G.R.; Leiva, W.; Robles, P.; Betancourt, F.; Jeldres, R.I. Rheological Behavior of Clay Tailings in the Presence of Divalent Cations and Sodium Polyacrylate: Insights from Molecular Dynamics Simulations. Polymers 2024, 16, 3091. [Google Scholar] [CrossRef] [PubMed]
- Nieto, S.; Piceros, E.; Castañeda, Y.; Robles, P.; Leiva, W.; Quezada, G.R.; Jeldres, R.I. Compressibility and Rheology of Clay Tailings: Effects of Sodium Polyacrylate in Presence of Divalent Cations. Polymers 2025, 17, 1903. [Google Scholar] [CrossRef]
- Rossi, S.; Luckham, P.F.; Zhu, S.; Briscoe, B.J.; Tadros, T.F. Influence of Low Molecular Weight Polymers on the Rheology of Bentonite Suspensions. Rev. L’institut Français Pétrole 1997, 52, 199–206. [Google Scholar] [CrossRef]
- Gareche, M.; Zeraibi, N.; Allal, A.; Amoura, M. The Influence of Low Molecular Weight Polymer on the Rheological Behavior of Bentonite Suspensions. Pet. Sci. Technol. 2012, 30, 1981–1989. [Google Scholar] [CrossRef]
- Tunç, S.; Duman, O. The Effect of Different Molecular Weight of Poly(Ethylene Glycol) on the Electrokinetic and Rheological Properties of Na-Bentonite Suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 93–99. [Google Scholar] [CrossRef]
- Kim, U.; Carty, W.M. Effect of Polymer Molecular Weight on Adsorption and Suspension Rheology. J. Ceram. Soc. Jpn. 2016, 124, 484–488. [Google Scholar] [CrossRef]
- Conceição, S.; Santos, N.F.; Velho, J.; Ferreira, J.M.F. Properties of Paper Coated with Kaolin: The Influence of the Rheological Modifier. Appl. Clay Sci. 2005, 30, 165–173. [Google Scholar] [CrossRef]
- Işci, S.; Günister, E.; Ece, Ö.I.; Güngör, N. The Modification of Rheologic Properties of Clays with PVA Effect. Mater. Lett. 2004, 58, 1975–1978. [Google Scholar] [CrossRef]
- Alemdar, A.; Öztekin, N.; Güngör, N.; Ece, Ö.I.; Erim, F.B. Effects of Polyethyleneimine Adsorption on the Rheological Properties of Purified Bentonite Suspensions. Colloids Surf. A Physicochem. Eng. Asp. 2005, 252, 95–98. [Google Scholar] [CrossRef]
- Amorim, L.V.; Barbosa, M.I.R.; Lira, H.d.L.; Ferreira, H.C. Influence of Ionic Strength on the Viscosities and Water Loss of Bentonite Suspensions Containing Polymers. Mater. Res. 2007, 10, 53–56. [Google Scholar] [CrossRef]
- Parvizi Ghaleh, S.; Khodapanah, E.; Tabatabaei-Nezhad, S.A. Experimental Evaluation of Thiamine as a New Clay Swelling Inhibitor. Pet. Sci. 2020, 17, 1616–1633. [Google Scholar] [CrossRef]
- Kumar, S.; Thakur, A.; Kumar, N.; Husein, M.M. A Novel Oil-in-Water Drilling Mud Formulated with Extracts from Indian Mango Seed Oil. Pet. Sci. 2020, 17, 196–210. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.; Zhao, X.; Zhang, J.; Jiang, J.; He, T.; Liu, L.; Shen, P.; Zhang, M. Novel Modified Rectorite Provides Reliable Rheology and Suspendability for Biodiesel Based Drilling Fluid. In Proceedings of the SPE/IADC Middle East Drilling Technology Conference and Exhibition 2018, Abu Dhabi, United Arab Emirates, 29–31 January 2018. SPE-189310-MS. [Google Scholar] [CrossRef]
- Hall, L.J.; Deville, J.P.; Araujo, C.S.; Li, S.; Rojas, O.J. Nanocellulose and Its Derivatives for High-Performance Water-Based Fluids. In Proceedings of the SPE International Symposium on Oilfield Chemistry 2017, Montgomery, TX, USA, 3–5 April 2017; pp. 561–574. [Google Scholar] [CrossRef]
- Kafashi, S.; Rasaei, M.; Karimi, G. Effects of Sugarcane and Polyanionic Cellulose on Rheological Properties of Drilling Mud: An Experimental Approach. Egypt. J. Pet. 2017, 26, 371–374. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Dutta, P.K.; Ravikumar, M.N.V.; Dutta, J. Chitin and Chitosan for Versatile Applications. J. Macromol. Sci.-Polym. Rev. 2002, 42, 307–354. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Ghannam, M.; Ahmed, K.A.; Djama, M. The Effect of Biopolymer Chitosan on the Rheology and Stability of Na-Bentonite Drilling Mud. Polymers 2021, 13, 3361. [Google Scholar] [CrossRef]
- Hossain, M.E.; Wajheeuddin, M. The Use of Grass as an Environmentally Friendly Additive in Water-Based Drilling Fluids. Pet. Sci. 2016, 13, 292–303. [Google Scholar] [CrossRef]
- Li, M.C.; Ren, S.; Zhang, X.; Dong, L.; Lei, T.; Lee, S.; Wu, Q. Surface-Chemistry-Tuned Cellulose Nanocrystals in a Bentonite Suspension for Water-Based Drilling Fluids. ACS Appl. Nano Mater. 2018, 1, 7039–7051. [Google Scholar] [CrossRef]
- de Oliveira, V.A.V.; dos Santos Alves, K.; da Silva-Junior, A.A.; Araújo, R.M.; Balaban, R.C.; Hilliou, L. Testing Carrageenans with Different Chemical Structures for Water-Based Drilling Fluid Application. J. Mol. Liq. 2020, 299, 112139. [Google Scholar] [CrossRef]
- Okon, A.N.; Akpabio, J.U.; Tugwell, K.W. Evaluating the Locally Sourced Materials as Fluid Loss Control Additives in Water-Based Drilling Fluid. Heliyon 2020, 6, e04091. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.; Song, K.; Lee, S.; Jin, C.; Ren, S.; Lei, T. Soy Protein Isolate As Fluid Loss Additive in Bentonite-Water-Based Drilling Fluids. ACS Appl. Mater. Interfaces 2015, 7, 24799–24809. [Google Scholar] [CrossRef]
- Moslemizadeh, A.; Shadizadeh, S.R.; Moomenie, M. Experimental Investigation of the Effect of Henna Extract on the Swelling of Sodium Bentonite in Aqueous Solution. Appl. Clay Sci. 2015, 105–106, 78–88. [Google Scholar] [CrossRef]
- Gao, X.; Zhong, H.Y.; Zhang, X.B.; Chen, A.L.; Qiu, Z.S.; Huang, W.A. Application of Sustainable Basil Seed as an Eco-Friendly Multifunctional Additive for Water-Based Drilling Fluids. Pet. Sci. 2021, 18, 1163–1181. [Google Scholar] [CrossRef]
- Nwosu, O.U.; Ewulonu, C.M. Rheological Behaviour of Eco-Friendly Drilling Fluids from Biopolymers. J. Polym. Biopolym. Phys. Chem. 2014, 2, 50–54. [Google Scholar] [CrossRef]
- Reed, J.S. Principles of Ceramics Processing, 2nd ed.; Wiley: New York, NY, USA, 1995. [Google Scholar]
- Lewis, J.A. Colloidal Processing of Ceramics. J. Am. Ceram. Soc. 2000, 83, 2341–2359. [Google Scholar] [CrossRef]
- Moreno, R. The Role of Slip Additives in Tape-Casting Technology. I: Solvents and Dispersants. Am. Ceram. Soc. Bull. 1992, 71, 1521–1531. [Google Scholar]
- Benna, M.; Kbir-Ariguib, N.; Magnin, A.; Bergaya, F. Effect of PH on Rheological Properties of Purified Sodium Bentonite Suspensions. J. Colloid. Interface Sci. 1999, 218, 442–455. [Google Scholar] [CrossRef]
- Janek, M.; Lagaly, G. Interaction of a Cationic Surfactant with Bentonite: A Colloid Chemistry Study. Colloid. Polym. Sci. 2003, 281, 293–301. [Google Scholar] [CrossRef]
- Öztekin, N.; Işci, S.; Erim, F.B.; Güngör, N. Effect of the Adsorption of Cetylpyridinium Bromide on the Flow Behaviour of Bentonite Dispersions. Mater. Lett. 2002, 57, 684–688. [Google Scholar] [CrossRef]
- Günister, E.; Işçi, S.; Öztekin, N.; Erim, F.B.; Ece, Ö.I.; Güngör, N. Effect of Cationic Surfactant Adsorption on the Rheological and Surface Properties of Bentonite Dispersions. J. Colloid. Interface Sci. 2006, 303, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Desai, H.; Biswal, N.R.; Paria, S. Rheological Behavior of Pyrophyllite−Water Slurry in the Presence of Anionic, Cationic, and Nonionic Surfactants. Ind. Eng. Chem. Res. 2010, 49, 5400–5406. [Google Scholar] [CrossRef]
- Permien, T.; Lagaly, G. The Rheological and Colloidal Properties of Bentonite Dispersions in the Presence of Organic Compounds V. Bentonite and Sodium Montmorillonite and Surfactants. Clays Clay Miner. 1995, 43, 229–236. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Ghannam, M.; Nasser, M.S. The Modification of Rheological Properties of Bentonite-Water Dispersions with Cationic and Anionic Surfactants. Int. J. Chem. Eng. Appl. 2016, 7, 75–80. [Google Scholar] [CrossRef]
- Panya, P.; Wanless, E.J.; Arquero, O.A.; Franks, G.V. The Effect of Ionic Surfactant Adsorption on the Rheology of Ceramic Glaze Suspensions. J. Am. Ceram. Soc. 2005, 88, 540–546. [Google Scholar] [CrossRef]
- Panya, P.; Arquero, O.A.; Franks, G.V.; Wanless, E.J. Dispersion Stability of a Ceramic Glaze Achieved through Ionic Surfactant Adsorption. J. Colloid Interface Sci. 2004, 279, 23–35. [Google Scholar] [CrossRef]
- Günister, E.; Güngör, N.; Ece, Ö.I. The Investigations of Influence of BDTDACl and DTABr Surfactants on Rheologic, Electrokinetic and XRD Properties of Na-Activated Bentonite Dispersions. Mater. Lett. 2006, 60, 666–673. [Google Scholar] [CrossRef]
- Işçi, S.; Günister, E.; Alemdar, A.; Ece, Ö.I.; Güngör, N. The Influence of DTABr Surfactant on the Electrokinetic and Rheological Properties of Soda-Activated Bentonite Dispersions. Mater. Lett. 2008, 62, 81–84. [Google Scholar] [CrossRef]
- Alemdar, A.; Atici, O.; Güngör, N. The Influence of Cationic Surfactants on Rheological Properties of Bentonite–Water Systems. Mater. Lett. 2000, 43, 57–61. [Google Scholar] [CrossRef]
- Kennedy, R.A.; Kennedy, M.L. Effect of Selected Non-Ionic Surfactants on the Flow Behavior of Aqueous Veegum Suspensions. AAPS PharmSciTech 2007, 8, E171–E176. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sjöberg, M.; Bergström, L.; Larsson, A.; Sjöström, E. The Effect of Polymer and Surfactant Adsorption on the Colloidal Stability and Rheology of Kaolin Dispersions. Colloids Surf. A Physicochem. Eng. Asp. 1999, 159, 197–208. [Google Scholar] [CrossRef]
- Pin-Hua, R.; He, M.; Xiao-Hui, M.; Xian, Y.; Ming, Y. Effects of Surfactants on the Stability of Clay Suspensions with Special Reference to the Changes of PH. Soil. Sci. 2006, 171, 764–771. [Google Scholar] [CrossRef]
- Zdziennicka, A.; Szymczyk, K.; Krawczyk, J.; Jańczuk, B. Critical Micelle Concentration of Some Surfactants and Thermodynamic Parameters of Their Micellization. Fluid. Phase Equilib. 2012, 322–323, 126–134. [Google Scholar] [CrossRef]
- Groenendijk, D.J.; Van Wunnik, J.N.M. The Impact of Micelle Formation on Surfactant Adsorption-Desorption. ACS Omega 2021, 6, 2248–2254. [Google Scholar] [CrossRef]
- Yekeen, N.; Manan, M.A.; Idris, A.K.; Samin, A.M. Influence of Surfactant and Electrolyte Concentrations on Surfactant Adsorption and Foaming Characteristics. J. Pet. Sci. Eng. 2017, 149, 612–622. [Google Scholar] [CrossRef]
- Perelomov, L.; Gertsen, M.; Burachevskaya, M.; Hemalatha, S.; Vijayalakshmi, A.; Perelomova, I.; Atroshchenko, Y. Organoclays Based on Bentonite and Various Types of Surfactants as Heavy Metal Remediants. Sustainability 2024, 16, 4804. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, F.; Lin, D.; Xing, B. Clay Minerals Affect the Stability of Surfactant-Facilitated Carbon Nanotube Suspensions. Environ. Sci. Technol. 2008, 42, 6869–6875. [Google Scholar] [CrossRef] [PubMed]
- Amirianshoja, T.; Junin, R.; Kamal Idris, A.; Rahmani, O. A Comparative Study of Surfactant Adsorption by Clay Minerals. J. Pet. Sci. Eng. 2013, 101, 21–27. [Google Scholar] [CrossRef]
- Abbas, A.H.; Pourafshary, P.; Wan Sulaiman, W.R.; Jaafar, M.Z.; Nyakuma, B.B. Toward Reducing Surfactant Adsorption on Clay Minerals by Lignin for Enhanced Oil Recovery Application. ACS Omega 2021, 6, 18651–18662. [Google Scholar] [CrossRef]
- Alvarez-Berrios, M.P.; Aponte-Reyes, L.M.; Aponte-Cruz, L.M.; Loman-Cortes, P.; Vivero-Escoto, J.L. Effect of the Surface Charge of Silica Nanoparticles on Oil Recovery: Wettability Alteration of Sandstone Cores and Imbibition Experiments. Int. Nano Lett. 2018, 8, 181–188. [Google Scholar] [CrossRef]
- Han, L.; Zhou, Y.; He, T.; Song, G.; Wu, F.; Jiang, F.; Hu, J. One-Pot Morphology-Controlled Synthesis of Various Shaped Mesoporous Silica Nanoparticles. J. Mater. Sci. 2013, 48, 5718–5726. [Google Scholar] [CrossRef]
- Zainal, N.A.; Shukor, S.R.A.; Wab, H.A.A.; Razak, K.A. Study on the Effect of Synthesis Parameters of Silica Nanoparticles Entrapped with Rifampicin. Chem. Eng. Trans. 2013, 32, 2245–2250. [Google Scholar]
- Bagwe, R.P.; Hilliard, L.R.; Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef]
- Liberman, A.; Mendez, N.; Trogler, W.C.; Kummel, A.C. Synthesis and Surface Functionalization of Silica Nanoparticles for Nanomedicine. Surf. Sci. Rep. 2014, 69, 132–158. [Google Scholar] [CrossRef]
- Ribeiro, S.; Meira, R.M.; Correia, D.M.; Tubio, C.R.; Ribeiro, C.; Baleizão, C.; Lanceros-Méndez, S. Silica Nanoparticles Surface Charge Modulation of the Electroactive Phase Content and Physical-Chemical Properties of Poly(Vinylidene Fluoride) Nanocomposites. Compos. B Eng. 2020, 185, 107786. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Ceriotti, G.; Wilson, K.C.; Lomeda, J.R.; Scorsone, J.T.; Patel, A.D.; Friedheim, J.E.; Tour, J.M. Graphene Oxide as a High-Performance Fluid-Loss-Control Additive in Water-Based Drilling Fluids. ACS Appl. Mater. Interfaces 2012, 4, 222–227. [Google Scholar] [CrossRef]
- Fazelabdolabadi, B.; Khodadadi, A.A.; Sedaghatzadeh, M. Thermal and Rheological Properties Improvement of Drilling Fluids Using Functionalized Carbon Nanotubes. Appl. Nanosci. 2015, 5, 651–659. [Google Scholar] [CrossRef]
- Cai, J.; Chenevert, M.E.; Sharma, M.M.; Friedheim, J. Decreasing Water Invasion Into Atoka Shale Using Nonmodified Silica Nanoparticles. SPE Drill. Complet. 2012, 27, 103–112. [Google Scholar] [CrossRef]
- Jung, Y.; Son, Y.H.; Lee, J.K.; Phuoc, T.X.; Soong, Y.; Chyu, M.K. Rheological Behavior of Clay-Nanoparticle Hybrid-Added Bentonite Suspensions: Specific Role of Hybrid Additives on the Gelation of Clay-Based Fluids. ACS Appl. Mater. Interfaces 2011, 3, 3515–3522. [Google Scholar] [CrossRef] [PubMed]
- William, J.K.M.; Ponmani, S.; Samuel, R.; Nagarajan, R.; Sangwai, J.S. Effect of CuO and ZnO Nanofluids in Xanthan Gum on Thermal, Electrical and High Pressure Rheology of Water-Based Drilling Fluids. J. Pet. Sci. Eng. 2014, 117, 15–27. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.; Song, K.; Qing, Y.; Wu, Y. Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-Based Fluids. ACS Appl. Mater. Interfaces 2015, 7, 5009–5016. [Google Scholar] [CrossRef] [PubMed]
- Bailey, L.; Lekkerkerker, H.N.W.; Maitland, G.C. Rheology Modification of Montmorillonite Dispersions by Colloidal Silica. Rheol. Acta 2014, 53, 373–384. [Google Scholar] [CrossRef]
- Baird, J.C.; Walz, J.Y. The Effects of Added Nanoparticles on Aqueous Kaolinite Suspensions: II. Rheological Effects. J. Colloid. Interface Sci. 2007, 306, 411–420. [Google Scholar] [CrossRef]
- Pham, H.; Nguyen, Q.P. Effect of Silica Nanoparticles on Clay Swelling and Aqueous Stability of Nanoparticle Dispersions. J. Nanoparticle Res. 2014, 16, 2137. [Google Scholar] [CrossRef]
- Kleshchanok, D.; Meester, V.; Pompe, C.E.; Hilhorst, J.; Lekkerkerker, H.N.W. Effects of Added Silica Nanoparticles on Hectorite Gels. J. Phys. Chem. B 2012, 116, 9532–9539. [Google Scholar] [CrossRef]
- Vryzas, Z.; Nalbandian, L.; Zaspalis, V.T.; Kelessidis, V.C. How Different Nanoparticles Affect the Rheological Properties of Aqueous Wyoming Sodium Bentonite Suspensions. J. Pet. Sci. Eng. 2019, 173, 941–954. [Google Scholar] [CrossRef]
- Salih, A.H.; Bilgesu, H. Investigation of Rheological and Filtration Properties of Water-Based Drilling Fluids Using Various Anionic Nanoparticles. In Proceedings of the SPE Western Regional Meeting Proceedings, Bakersfield, CA, USA, 23–27 April 2017; pp. 837–857. [Google Scholar] [CrossRef]
- Tombácz, E.; Csanaky, C.; Illés, E. Polydisperse Fractal Aggregate Formation in Clay Mineral and Iron Oxide Suspensions, PH and Ionic Strength Dependence. Colloid Polym. Sci. 2001, 279, 484–492. [Google Scholar] [CrossRef]
- Tombácz, E.; Libor, Z.; Illés, E.; Majzik, A.; Klumpp, E. The Role of Reactive Surface Sites and Complexation by Humic Acids in the Interaction of Clay Mineral and Iron Oxide Particles. Org. Geochem. 2004, 35, 257–267. [Google Scholar] [CrossRef]
- Ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Maitland, G.C. Rheology Modification in Mixed Shape Colloidal Dispersions. Part II: Mixtures. Soft Matter 2008, 4, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Landman, J.; Paineau, E.; Davidson, P.; Bihannic, I.; Michot, L.J.; Philippe, A.M.; Petukhov, A.V.; Lekkerkerker, H.N.W. Effects of Added Silica Nanoparticles on the Nematic Liquid Crystal Phase Formation in Beidellite Suspensions. J. Phys. Chem. B 2014, 118, 4913–4919. [Google Scholar] [CrossRef]
- Cousin, F.; Cabuil, V.; Grillo, I.; Levitz, P. Competition between Entropy and Electrostatic Interactions in a Binary Colloidal Mixture of Spheres and Platelets. Langmuir 2008, 24, 11422–11430. [Google Scholar] [CrossRef] [PubMed]
- Cousin, F.; Cabuil, V.; Levitz, P. Magnetic Colloidal Particles as Probes for the Determination of the Structure of Laponite Suspensions. Langmuir 2002, 18, 1466–1473. [Google Scholar] [CrossRef]
- Paula, F.L.O.; da Silva, G.J.; Aquino, R.; Depeyrot, J.; Fossum, J.O.; Knudsen, K.D.; Helgesen, G.; Tourinho, F.A. Gravitational and Magnetic Separation in Self-Assembled Clay-Ferrofluid Nanocomposites. Braz. J. Phys. 2009, 39, 163–170. [Google Scholar] [CrossRef]
- Van Der Kooij, F.; Lekkerkerker, H.N.L.; Boek, E.S. Process Fluid. World Pat. WO 03/014252, 2003. [Google Scholar]
- Burba, J.L.; Barnes, A.L. Mixed Metal Layered Hydroxide-Clay Adducts as Thickeners for Water and Other Hydrophylic Fluids. U.S. Patent US4664843A, 12 May 1987. [Google Scholar]
- Burba, J.L.; Holman, W.E.; Crabb, C.R. Laboratory and Field Evaluations of Novel Inorganic Drilling Fluid Additive. In Proceedings of the SPE/IADC Drilling Conference, Proceedings, Dallas, TX, USA, 28 February–2 March 1988; pp. 179–186. [Google Scholar] [CrossRef]
- Crabb, C.R.; Burba, J.L.; Holman, W.E. New Inorganic Attapulgite Extender Provides Stable Rheology and Supports Heavy Cuttings Even Under Severe Conditions; Society of Petroleum Engineers of AIME Paper 18482; SPE: Houston, TX, USA, 1989; pp. 219–226. [Google Scholar] [CrossRef]
- Assefa, K.M.; Kaushal, D.R. The Influence of Chemical Additives on the Flow Behaviours of Solid-Liquid Suspensions: A Review. Int. J. Eng. Res. Technol. 2018, 4. [Google Scholar] [CrossRef]
- Chapelain, J.C.M.; Faure, S.; Beneventi, D. Clay Flotation: Effect of TTAB Cationic Surfactant on Foaming and Stability of Illite Clay Microaggregates Foams. Ind. Eng. Chem. Res. 2016, 55, 2191–2201. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; Yu, X.; Zhang, H.; Yan, S. Study on the Use of CTAB-Treated Illite as an Alternative Filler for Natural Rubber. ACS Omega 2021, 6, 19017–19025. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Dixon, J.B.; White, G.N. Adsorption of Polyacrylamide on Smectite, Illite, and Kaolinite. Soil Sci. Soc. Am. J. 2006, 70, 297–304. [Google Scholar] [CrossRef]
- Sánchez-Martín, M.J.; Dorado, M.C.; del Hoyo, C.; Rodríguez-Cruz, M.S. Influence of Clay Mineral Structure and Surfactant Nature on the Adsorption Capacity of Surfactants by Clays. J. Hazard Mater. 2008, 150, 115–123. [Google Scholar] [CrossRef] [PubMed]
Type of Additive | Common Examples | Mechanism of Action | Rheological Effect | Relevant Conditions |
---|---|---|---|---|
Salts and pH Modifiers | NaCl, CaCl2, MgCl2, NaOH, HCl | Modification of zeta potential, compression of the electrical double layer, dissociation, or protonation of functional groups | Dispersion or flocculation, depending on ion type, concentration, and pH | pH, type of salt, ionic strength, salinity, mineralogical composition |
Polymers | Polyacrylamide (PAM), chitosan, CMC, carrageenan | Surface adsorption, bridging, and steric repulsion | Flocculation or stabilization, depending on molecular weight and structure | pH, salinity, temperature, dosage, presence of divalent ions |
Surfactants | CTAB, SDS, DDAO, surfactin | Surface charge modification, surface tension reduction, and emulsification | Dispersion, reversible flocculation, or viscosity modification | pH, surfactant type, CMC* |
Nanoparticles | Colloidal silica, iron oxides, hybrid nanoparticles | Physical/chemical interaction with surfaces, structural reinforcement, size and charge effects | Stabilization, reinforcement, or gelation of the suspension | Particle size, specific surface area, interaction with other additives |
Type of Reagent | Dominant Mechanism | Main Advantages | Observed Limitations |
---|---|---|---|
Salts and pH | Compression of the electrical double layer, modulation of surface potential | Low cost, easy dosing, rapid response | Limited control, non-specific effect, sensitivity to ionic concentration or ion type |
Polymers | Steric stabilization, interparticle bridging, charge neutralization | High efficiency, customizable formulations based on molecular weight or functional groups | Performance sensitive to salinity, pH, and mineral type; potentially high cost; variable biodegradability |
Surfactants | Selective adsorption, reduction in surface tension, micelle-induced aggregation | Controlled dispersion or flocculation depending on nature (anionic, cationic, non-ionic); good performance in alkaline or saline media | Foam formation, potential toxicity, competition with other ionic species, and sensitivity to CMC* |
Nanoparticles | Surface adsorption, heteroflocculation, electrostatic or magnetic interaction | High specific surface area, effective at low doses, good tolerance to adverse conditions | Synthesis or functionalization cost, environmental risks still underexplored, and selective mineral compatibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiva, W.; Toro, N.; Robles, P.; Quezada, G.R.; Salazar, I.; Flores-Badillo, J.; Jeldres, R.I. Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review. Polymers 2025, 17, 2427. https://doi.org/10.3390/polym17172427
Leiva W, Toro N, Robles P, Quezada GR, Salazar I, Flores-Badillo J, Jeldres RI. Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review. Polymers. 2025; 17(17):2427. https://doi.org/10.3390/polym17172427
Chicago/Turabian StyleLeiva, Williams, Norman Toro, Pedro Robles, Gonzalo R. Quezada, Iván Salazar, Javier Flores-Badillo, and Ricardo I. Jeldres. 2025. "Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review" Polymers 17, no. 17: 2427. https://doi.org/10.3390/polym17172427
APA StyleLeiva, W., Toro, N., Robles, P., Quezada, G. R., Salazar, I., Flores-Badillo, J., & Jeldres, R. I. (2025). Rheology Modifying Reagents for Clay-Rich Mineral Suspensions: A Review. Polymers, 17(17), 2427. https://doi.org/10.3390/polym17172427