Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis Process of Hybrid Bio-Based Networks
2.2. Methods
3. Results and Discussion
3.1. Structural Characterization of the Monomers
3.2. Evaluation of the Curing Reaction and Dynamics
3.3. Thermal Curing Behavior and Kinetics Monitored Through DSC
3.4. Thermal Stability and Thermomechanical Behavior
3.5. Nanomechanical and Surface Properties
3.6. Hydrolytic Stability and Degradation of Hybrid Thermosets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mallick, P.K. Chapter 6—Thermoset matrix composites for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles, 2nd ed.; Mallick, P.K., Ed.; Woodhead Publishing: Cambridge, UK, 2021; pp. 229–263. [Google Scholar] [CrossRef]
- Moreira, V.B.; Rintjema, J.; Bravo, F.; Kleij, A.W.; Franco, L.; Puiggalí, J.; Alemán, C.; Armelin, E. Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners. ACS Sustain. Chem. Eng. 2022, 10, 2708–2719. [Google Scholar] [CrossRef]
- Aguirre-Vargas, F. Chapter 11—Thermoset coatings. In Thermosets, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 369–400. [Google Scholar] [CrossRef]
- Sukanto, H.; Raharjo, W.W.; Ariawan, D.; Triyono, J.; Kaavesina, M. Epoxy resins thermosetting for mechanical engineering. Open Eng. 2021, 11, 797–814. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.A. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2022, 79, 1949–1975. [Google Scholar] [CrossRef]
- Lakshmanan, K.; Angayarkanny, S. Polymerization and characterization of benzoxazine synthesized from para-diamines and their epoxy composite for electronic and aerospace applications. J. Mol. Struct. 2025, 1323, 140581. [Google Scholar] [CrossRef]
- Dyer, W.E.; Kumru, B. Polymers as Aerospace Structural Components: How to Reach Sustainability? Macromol. Chem. Phys. 2023, 224, 2300186. [Google Scholar] [CrossRef]
- Hong, K.; Sun, Q.; Zhang, X.; Fan, L.; Wu, T.; Du, J.; Zhu, Y. Fully Bio-Based High-Performance Thermosets with Closed-Loop Recyclability. ACS Sustain. Chem. Eng. 2022, 10, 1036–1046. [Google Scholar] [CrossRef]
- Roig, A.; Ramis, X.; De la Flor, S.; Serra, À. Dual-cured thermosets based on eugenol derivatives and thiol chemistry. Eur. Polym. J. 2023, 200, 112499. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhai, M.; Ma, F.; Li, Y.; Lyu, B.; Liu, T.; Gao, Z.; Wang, L.; Vincent, D.; Kessler, M.R. Fully Eugenol-Based Epoxy Thermosets: Synthesis, Curing, and Properties. Macromol. Mater. Eng. 2022, 307, 2100833. [Google Scholar] [CrossRef]
- Nabipour, H.; Niu, H.; Wang, X.; Batool, S.; Hu, Y. Fully bio-based epoxy resin derived from vanillin with flame retardancy and degradability. React. Funct. Polym. 2021, 168, 105034. [Google Scholar] [CrossRef]
- Derradji, M.; Khiari, K.; Mehelli, O.; Abdous, S.; Amri, B.; Belgacemi, R.; Ramdani, N.; Zegaoui, A.; Liu, W. Green composites from vanillin-based benzoxazine and silane surface modified chopped carbon fibers. Polym. Renew. Resour. 2023, 14, 16–30. [Google Scholar] [CrossRef]
- Necolau, M.I.; Bîru, I.E.; Ghițman, J.; Stavarache, C.; Iovu, H. Insightful characterization of sesamol-based polybenzoxazines: Effect of phenol and amine chain type on physical and nanomechanical properties. Polym. Test. 2022, 110, 107578. [Google Scholar] [CrossRef]
- Sheng, W.; Zhong, M.; Zhang, H.; Zhang, K. Biobased bisbenzoxazine resins derived from sesamol and furfurylamine: Using natural renewable resources to access phosphorus- and halogen-free flame-retardant thermosets. Polym. Degrad. Stab. 2025, 234, 111255. [Google Scholar] [CrossRef]
- Dong, K.; Zhao, D.; Pang, Y.; Liu, B.; Liu, Q.; Mu, T.; Zhao, C. Multiple-reprocessable guaiacol-derived epoxy vitrimer with disulfide crosslinks and closed-loop recycling of carbon fiber-reinforced composites. Chem. Eng. J. 2025, 508, 160754. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.; Zhang, K. A highly thermally stable benzoxazine resin derived from norbornene and natural renewable tyramine and furfurylamine. Eur. Polym. J. 2023, 187, 111895. [Google Scholar] [CrossRef]
- Mukherjee, S.; Amarnath, N.; Ramkumar, M.; Lochab, B. Catechin and Furfurylamine Derived Biobased Benzoxazine with Latent-Catalyst Effect. Macromol. Chem. Phys. 2022, 223, 2100458. [Google Scholar] [CrossRef]
- Wang, X.; Niu, H.; Huang, J.; Song, L.; Hu, Y. A desoxyanisoin- and furfurylamine-derived high-performance benzoxazine thermoset with high glass transition temperature and excellent anti-flammability. Polym. Degrad. Stab. 2021, 189, 109604. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Q.; Yang, Z.; Bian, Y.; Chen, G.; Li, D.; Zheng, W.; Wei, Y.; Bi, Y.; Ding, K.; et al. Fabrication and characterization of light-curing soybean oil-based epoxy resin applied for LCD additive manufacturing. Ind. Crops Prod. 2023, 202, 117037. [Google Scholar] [CrossRef]
- Necolau, M.I.; Damian, C.M.; Olaret, E.; Iovu, H.; Balanuca, B. Comparative Thermo-Mechanical Properties of Sustainable Epoxy Polymer Networks Derived from Linseed Oil. Polymers 2022, 14, 4212. [Google Scholar] [CrossRef]
- Sempere-Torregrosa, J.; Ferri, J.M.; de la Rosa-Ramírez, H.; Pavon, C.; Samper, M.D. Effect of Epoxidized and Maleinized Corn Oil on Properties of Polylactic Acid (PLA) and Polyhydroxybutyrate (PHB) Blend. Polymers 2022, 14, 4205. [Google Scholar] [CrossRef]
- Tang, Y.; Symons, H.E.; Gobbo, P.; Van Duijneveldt, J.S.; Hamerton, I.; Rochat, S. Properties and Curing Kinetics of a Processable Binary Benzoxazine Blend. ACS Appl. Polym. Mater. 2023, 5, 10404–10415. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, X.; Han, L.; Zhang, K. Recent Progress of High Performance Thermosets Based on Norbornene Functional Benzoxazine Resins. Polymers 2021, 13, 1417. [Google Scholar] [CrossRef] [PubMed]
- Malekkhouyan, R.; Olivier, M.-G. A review on the application of benzoxazine as coatings and corrosion inhibitors for corrosion protection of metallic substrates. Mater. Today Chem. 2025, 45, 102614. [Google Scholar] [CrossRef]
- Takeichi, T.; Kawauchi, T.; Agag, T. High Performance Polybenzoxazines as a Novel Type of Phenolic Resin. Polym. J. 2008, 40, 1121–1131. [Google Scholar] [CrossRef]
- Gulyuz, S.; Kiskan, B. Combination of Polyethylenimine and Vanillin-Based Benzoxazine as a Straightforward Self-Healable System with Excellent Film-Forming Ability. Macromolecules 2024, 57, 2078–2089. [Google Scholar] [CrossRef]
- Necolau, M.I.; Grigore, D.; Stavarache, C.; Ghitman, J.; Biru, E.I.; Iovu, H. Synthesis and thermo-mechanical characterization of vanillin-based polybenzoxaziines with complex architecture. UPB Sci. Bull. Ser. B 2023, 85, 29–40. [Google Scholar]
- Sharma, P.; Nebhani, L. Expanding the library of nitrogen enriched polybenzoxazine thermosets prepared from side-chain type benzoxazines functionalized with polyethylenimine. Eur. Polym. J. 2021, 155, 110542. [Google Scholar] [CrossRef]
- Jamnongpak, W.; Tiptipakorn, S.; Arumugam, H.; Charoensuk, K.; Karagiannidis, P.; Rimdusit, S. Development of NIR light-responsive shape memory composites based on bio-benzoxazine/bio-urethane copolymers reinforced with graphene. Nanoscale Adv. 2024, 6, 499–510. [Google Scholar] [CrossRef]
- Casarino, A.F.; Bortolato, S.A.; Casis, N.; Estenoz, D.A.; Spontón, M.E. Novel polybenzoxazine and polybenzoxazine/epoxy thermosetting copolymers containing polysilsesquioxane nanostructures for high-performance thermal protection systems. Eur. Polym. J. 2023, 182, 111722. [Google Scholar] [CrossRef]
- Li, X.; Xia, Y.; Xu, W.; Ran, Q.; Gu, Y. The curing procedure for a benzoxazine–cyanate–epoxy system and the properties of the terpolymer. Polym. Chem. 2012, 3, 1629–1633. [Google Scholar] [CrossRef]
- Puozzo, H.; Saiev, S.; Bonnaud, L.; Beljonne, D.; Lazzaroni, R. Integrating Benzoxazine-PDMS 3D Networks with Carbon Nanotubes for flexible Pressure Sensors. Chem. Eur. J. 2024, 30, e202301791. [Google Scholar] [CrossRef]
- Yang, R.; Xie, L.; Li, N.; Froimowicz, P.; Zhang, K. Synthesis of a triptycene-containing dioxazine benzoxazine monomer and a main-chain triptycene-polydimethysiloxane-benzoxazine copolymer with excellent comprehensive properties. Polym. Chem. 2022, 13, 3639–3649. [Google Scholar] [CrossRef]
- Musa, A.; Kiskan, B.; Yagci, Y. Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer 2014, 55, 5550–5556. [Google Scholar] [CrossRef]
- Cheng, C.; Zhang, X.; Chen, X.; Li, J.; Huang, Q.; Hu, Z.; Tu, Y. Self-healing polymers based on eugenol via combination of thiol-ene and thiol oxidation reactions. J. Polym. Res. 2016, 23, 110. [Google Scholar] [CrossRef]
- Choi, S.-W.; Park, J.O.; Kim, S.-K.; Lim, M.-Y.; Kim, K.-H.; Ko, T.; Lee, J.-C. Proton conductive cross-linked benzoxazine-benzimidazole copolymers as novel porous substrates for reinforced pore-filling membranes in fuel cells operating at high temperatures. J. Membr. Sci. 2017, 536, 76–85. [Google Scholar] [CrossRef]
- Schäfer, H.; Koschek, K. Effect of poly(ε-caprolactone) in polybenzoxazine blends and respective copolymers on morphology and mechanical properties. Eur. Polym. J. 2018, 108, 582–590. [Google Scholar] [CrossRef]
- Massingill, J.L.; Bauer, R.S. Epoxy Resins. In Applied Polymer Science: 21st Century; Pergamon: Oxford, UK, 2000; pp. 393–424. [Google Scholar] [CrossRef]
- Cherian, R.; Unnikrishnan, T.G.; Cherian, M.; Joy, J.; Chirayil, C.; Panneerselvam, K.; Thomas, S. Epoxy resins: Synthesis, structure, and properties. In Handbook of Thermosetting Foams, Aerogels, and Hydrogels; Elsevier: Amsterdam, The Netherlands, 2024; pp. 251–286. [Google Scholar] [CrossRef]
- Ly, U.Q.; Pham, M.; Marks, M.J.; Truong, T.N. Density functional theory study of mechanism of epoxy-carboxylic acid curing reaction. J. Comput. Chem. 2017, 38, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Rimdusit, S.; Lohwerathama, M.; Hemvichian, K.; Kasemsiri, P.; Dueramae, I. Shape memory polymers from benzoxazine-modified epoxy. Smart Mater. Struct. 2013, 22, 075033. [Google Scholar] [CrossRef]
- Hombunma, P.; Parnklang, T.; Mora, P.; Jubsilp, C.; Rimdusit, S. Shape memory polymers from bio-based benzoxazine/epoxidized natural oil copolymers. Smart Mater. Struct. 2019, 29, 015036. [Google Scholar] [CrossRef]
- Amornkitbamrung, L.; Srisaard, S.; Jubsilp, C.; Bielawski, C.W.; Um, S.H.; Rimdusit, S. Near-infrared light responsive shape memory polymers from bio-based benzoxazine/epoxy copolymers produced without using photothermal filler. Polymer 2020, 209, 122986. [Google Scholar] [CrossRef]
- Patil, D.A.; Naiker, V.E.; Phalak, G.A.; More, A.P.; Mhaske, S.T. Synthesis of benzoxazine from eugenol and its co-polymerization with a gallic acid-based epoxy resin for flame retardant application. Polym. Bull. 2024, 81, 7441–7465. [Google Scholar] [CrossRef]
- Guzmán, D.; Serra, A.; Ramis, X.; Fernández-Francos, X.; De la Flor, S. Fully renewable thermosets based on bis-eugenol prepared by thiol-click chemistry. React. Funct. Polym. 2019, 136, 153–166. [Google Scholar] [CrossRef]
- Claudino, M.; Jonsson, M.; Johansson, M. Utilizing thiol–ene coupling kinetics in the design of renewable thermoset resins based on d-limonene and polyfunctional thiols. RSC Adv. 2014, 4, 10317–10329. [Google Scholar] [CrossRef]
- Brändle, A.; Khan, A. Thiol–epoxy ‘click’ polymerization: Efficient construction of reactive and functional polymers. Polym. Chem. 2012, 3, 3224–3227. [Google Scholar] [CrossRef]
- Kiskan, B.; Musa, A.; Semerci, E.; Yagci, Y. Chapter 13—Thiol-Benzoxazine Chemistry for Macromolecular Modifications. In Advanced and Emerging Polybenzoxazine Science and Technology; Ishida, H., Froimowicz, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–232. [Google Scholar] [CrossRef]
- Dogan, Y.E.; Uyar, T. Eugenol-derived bio-benzoxazine resins: Synthesis, characterization, and exceptional thermal stability. J. Appl. Polym. Sci. 2024, 141, e55496. [Google Scholar] [CrossRef]
- Popovska, O. Characterization of clove oil with a FT-IR ATR Spectroscopic method. J. Agric. Food Environ. Sci. 2023, 77, 64–72. [Google Scholar] [CrossRef]
- Patil, D.M.; Phalak, G.A.; Mhaske, S. Enhancement of anti-corrosive performances of cardanol based amine functional benzoxazine resin by copolymerizing with epoxy resins. Prog. Org. Coat. 2017, 105, 18–28. [Google Scholar] [CrossRef]
- Grenda, K.; Idström, A.; Evenäs, L.; Persson, M.; Holmberg, K.; Bordes, R. An analytical approach to elucidate the architecture of polyethyleneimines. J. Appl. Polym. Sci. 2022, 139, 51657. [Google Scholar] [CrossRef]
- Leblond, L.; Anagri, A.; Fiset, J.; Borget, M.-Y.; Bébin, P.; Dumais, N.; Vuillaume, P.Y. Polypropylene fabric coated with branched polyethyleneimine derivatives for high antiviral activity. RSC Appl. Interfaces 2024, 1, 908–919. [Google Scholar] [CrossRef]
- Balanuca, B.; Raluca, S.; Hanganu, A.; Iovu, H. Novel linseed oil-based monomers: Synthesis and characterization. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2014, 76, 129–140. [Google Scholar]
- Dongye, G.; Zhou, Q.; Sun, S.; Hu, G.; Wang, Q.; Hu, X. The analysis of linseed oil by FTIR and FT-Raman. Guang Pu Xue Yu Guang Pu Fen Xi 2000, 20, 836–837. [Google Scholar]
- Shulen, R.; Kazybayeva, D. Synthesis and characterization of new biodegradable gels based on 2,2′-(ethylenedioxy) diethanethiol and pentaerythritol triacrylate. Kompleks. Ispolz. Miner. Syra = Complex Use Miner. Resour. 2022, 320, 25–31. [Google Scholar] [CrossRef]
- Vertuccio, L.; Calabrese, E.; D’ANgelo, A.; Piccirillo, A.M.; Longo, R. FTIR Analysis of the Curing Behaviors of Bi-Functional Epoxy Resin with Anhydride Based Hardener. Macromol. Symp. 2023, 411, 2200138. [Google Scholar] [CrossRef]
- Zhou, C.; Tao, M.; Liu, J.; Xin, Z. Thermal curing behavior of benzoxazine functional polysilsesquioxane nanospheres. Thermochim. Acta 2019, 678, 178295. [Google Scholar] [CrossRef]
- Arumugam, H.; Krishnasamy, B.; Perumal, G.; Dilip, A.A.; Aleem, M.I.A.; Muthukaruppan, A. Bio-composites of rice husk and saw dust reinforced bio-benzoxazine/epoxy hybridized matrices: Thermal, mechanical, electrical resistance and acoustic absorption properties. Constr. Build. Mater. 2021, 312, 125381. [Google Scholar] [CrossRef]
- Mora, P.; Rimdusit, S.; Karagiannidis, P.; Srisorrachatr, U.; Jubsilp, C. Mechanical properties and curing kinetics of bio-based benzoxazine–epoxy copolymer for dental fiber post. Bioresour. Bioprocess. 2023, 10, 62. [Google Scholar] [CrossRef]
- Cheung, C.W.; Ploeger, M.L.; Hu, X. Direct amidation of esters with nitroarenes. Nat. Commun. 2017, 8, 14878. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-M.; Hwang, S.-H. Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3-Mercaptobutanoic Acid and Their Thiol–Epoxy Curing Behavior. ACS Omega 2022, 7, 21987–21993. [Google Scholar] [CrossRef] [PubMed]
- Konuray, A.O.; Fernández-Francos, X.; Ramis, X. Analysis of the reaction mechanism of the thiol–epoxy addition initiated by nucleophilic tertiary amines. Polym. Chem. 2017, 8, 5934–5947. [Google Scholar] [CrossRef]
- Guzmán, D.; Ramis, X.; Fernández-Francos, X.; De la Flor, S.; Serra, A. Preparation of new biobased coatings from a triglycidyl eugenol derivative through thiol-epoxy click reaction. Prog. Org. Coatings 2018, 114, 259–267. [Google Scholar] [CrossRef]
- Chien, S.-Y.; Wang, J.; Liu, Y.-L. Biodegradable Polyester-Based Vitrimers Exhibiting Transesterification-Induced Topography Isomerization under Recycling. ACS Appl. Polym. Mater. 2024, 6, 9191–9199. [Google Scholar] [CrossRef]
- Morales-Cerrada, R.; Molina-Gutierrez, S.; Lacroix-Desmazes, P.; Caillol, S. Eugenol, a Promising Building Block for Biobased Polymers with Cutting-Edge Properties. Biomacromolecules 2021, 22, 3625–3648. [Google Scholar] [CrossRef]
- Hu, Y.; Tian, Y.; Cheng, J.; Zhang, J. Synthesis of Eugenol-Based Polyols via Thiol–Ene Click Reaction and High-Performance Thermosetting Polyurethane Therefrom. ACS Sustain. Chem. Eng. 2020, 8, 4158–4166. [Google Scholar] [CrossRef]
- Guorong, W.; Yu, L.; Zhiyuan, M.; Jie, X.; Wei, P.; Qingxin, W. Curing mechanism and kinetics of benzoxazine co-catalyzed by transition metal salt and phenolic resin. Thermochim. Acta 2022, 710, 179182. [Google Scholar] [CrossRef]
- Konuray, A.O.; Fernández-Francos, X.; Ramis, X. Latent curing of epoxy-thiol thermosets. Polymer 2017, 116, 191–203. [Google Scholar] [CrossRef]
- Nallbani, B.G.; Kahraman, M.V.; Degirmenci, I. Base-catalyzed thiol-epoxy reactions: Energetic and kinetic evaluations. J. Mol. Graph. Model. 2025, 135, 108933. [Google Scholar] [CrossRef] [PubMed]
- Gorodisher, I.; DeVoe, R.J.; Webb, R.J. Chapter 11—Catalytic Opening of Lateral Benzoxazine Rings by Thiols. In Handbook of Benzoxazine Resins; Ishida, H., Agag, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 211–234. [Google Scholar] [CrossRef]
- Su, W.-C.; Tsai, F.-C.; Huang, C.-F.; Dai, L.; Kuo, S.-W. Flexible Epoxy Resins Formed by Blending with the Diblock Copolymer PEO-b-PCL and Using a Hydrogen-Bonding Benzoxazine as the Curing Agent. Polymers 2019, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Shutov, V.V.; Bornosuz, N.V.; Korotkov, R.F.; Gorbunova, I.Y.; Sirotin, I.S. Kinetics of benzoxazine and epoxy oligomer copolymerization. Thermochim. Acta 2022, 714, 179254. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Dayo, A.Q.; Derradji, M.; Wang, J.; Liu, W.-B.; Song, S.; Tang, T. Copolymerization of bisphthalonitrile/benzoxazine blends: Curing behavior, thermomechanical and thermal properties. React. Funct. Polym. 2018, 123, 97–105. [Google Scholar] [CrossRef]
- Rimdusit, S.; Ishida, H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer 2000, 41, 7941–7949. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Bowman, C.N. Thiol–Ene Click Chemistry. Angew. Chem. Int. Ed. 2010, 49, 1540–1573. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Chen, Y.F.; Liu, H.B. Pyrolysis of Phenolic Resin by TG-MS and FTIR Analysis. Adv. Mater. Res. 2013, 631–632, 104–109. [Google Scholar] [CrossRef]
- Sedrik, R.; Bonjour, O.; Laanesoo, S.; Liblikas, I.; Pehk, T.; Jannasch, P.; Vares, L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022, 23, 2685–2696. [Google Scholar] [CrossRef]
- Lin, Z.; Ke, Y.; Peng, X.; Wu, X.; Zhang, C.; Zhao, H.; Feng, P. Thermally Stable, Solvent Resistant, and Multifunctional Thermosetting Polymer Networks with High Mechanical Properties Prepared from Renewable Plant Phenols via Thiol–Ene Photo Click Chemistry. ACS Appl. Polym. Mater. 2022, 4, 5330–5340. [Google Scholar] [CrossRef]
- Zhou, C.; Fu, M.; Xie, H.; Gong, Y.; Chen, J.; Liu, J.; Xin, Z. Polybenzoxazine/Epoxy Composite Coatings: Effect of Crosslinking on Corrosion Resistance. Ind. Eng. Chem. Res. 2021, 60, 1675–1683. [Google Scholar] [CrossRef]
Sample Name | Sample Composition | |||
---|---|---|---|---|
Benzoxazine | Epoxy | Thiol | Mass Ratio Between the Components (wt.%) | |
EPB-ELO | EPB | ELO | - | 1:1:0 |
EPB-ELO-2SH-0.1 | EPB | ELO | 2SH | 1:1:0.1 |
EPB-ELO-2SH-0.25 | EPB | ELO | 2SH | 1:1:0.25 |
EPB-ELO-2SH-0.5 | EPB | ELO | 2SH | 1:1:0.5 |
EPB-ELO-2SH-1 | EPB | ELO | 2SH | 1:1:1 |
EPB-ELO-3SH-0.1 | EPB | ELO | 3SH | 1:1:0.1 |
EPB-ELO-3SH-0.25 | EPB | ELO | 3SH | 1:1:0.25 |
EPB-ELO-3SH-0.5 | EPB | ELO | 3SH | 1:1:0.5 |
EPB-ELO-3SH-1 | EPB | ELO | 3SH | 1:1:1 |
Sample | Ea Kissinger (kJ/mol) | Ea Ozawa (kJ/mol) | Ea Average (kJ/mol) |
---|---|---|---|
ELO | - | - | - |
EPB | - | - | - |
EPB-ELO | 118.3 | 111.1 | 114.7 |
EPB-ELO-2SH-0.1 | 95.6 | 99.1 | 97.3 |
EPB-ELO-2SH-0.25 | 91.3 | 94.8 | 93.1 |
EPB-ELO-2SH-0.5 | 82.7 | 86.6 | 84.6 |
EPB-ELO-2SH-1 | 53.2 | 58.5 | 55.9 |
EPB-ELO-3SH-0.1 | 96.6 | 99.9 | 98.2 |
EPB-ELO-3SH-0.25 | 95.9 | 99.2 | 97.5 |
EPB-ELO-3SH-0.5 | 89.5 | 93.1 | 91.3 |
EPB-ELO-3SH-1 | 72.2 | 76.3 | 76.8 |
Sample | Td5% (°C) | Td10% (°C) | Tmax (°C) | Residual Mass (%) | LOI (%) | |
---|---|---|---|---|---|---|
EPB-ELO | 309.2 | 329.3 | 387.6 | 440.3 | 14.1 | 23.1 |
EPB-ELO-2SH-0.1 | 304.2 | 323.5 | 375.1 | 438.5 | 14.7 | 23.4 |
EPB-ELO-2SH-0.25 | 306.2 | 326.2 | 380.5 | 22.1 | 26.3 | |
EPB-ELO-2SH-0.5 | 308.7 | 325.4 | 365.3 | 18.1 | 24.7 | |
EPB-ELO-2SH-1 | 290.5 | 311.3 | 387.5 | 19.4 | 25.3 | |
EPB-ELO-3SH-0.1 | 304.9 | 323.6 | 382.1 | 441.2 | 16.2 | 24.0 |
EPB-ELO-3SH-0.25 | 306.4 | 325.7 | 388.1 | 442.1 | 18.0 | 24.7 |
EPB-ELO-3SH-0.5 | 304.2 | 322.7 | 381.4 | 438.2 | 15.4 | 23.7 |
EPB-ELO-3SH-1 | 298.6 | 317.7 | 350.1 | 445.8 | 13.1 | 22.7 |
Sample | E′ at 25 °C (MPa) | Tg (°C) | CD × 103 (mol/cm3) | Mc (g/mol) | Gel Fraction (%) |
---|---|---|---|---|---|
EPB-ELO | 11,865.9 | 62.6 | 2.38 | 1524.4 | 99.1 |
EPB-ELO-2SH-0.1 | 9422.6 | 56.2 | 3.71 | 975.8 | 94.7 |
EPB-ELO-2SH-0.25 | 10,855.6 | 60.2 | 4.30 | 843.5 | 96.9 |
EPB-ELO-2SH-0.5 | 3505.2 | 33 | 2.91 | 1245.4 | 93.7 |
EPB-ELO-2SH-1 | 886.6 | 26.8 | 1.75 | 2073.6 | 93.7 |
EPB-ELO-3SH-0.1 | 10,827.4 | 52.4 | 2.93 | 1234.4 | 94.2 |
EPB-ELO-3SH-0.25 | 9402.1 | 60.9 | 4.12 | 880.3 | 94.5 |
EPB-ELO-3SH-0.5 | 3536.1 | 50 | 3.40 | 1064.7 | 94.3 |
EPB-ELO-3SH-1 | 979.3 | 48.9 | 3.47 | 1044.8 | 99.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Necolau, M.I.; Biru, E.I.; Olaret, E.; Iovu, H. Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers. Polymers 2025, 17, 2389. https://doi.org/10.3390/polym17172389
Necolau MI, Biru EI, Olaret E, Iovu H. Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers. Polymers. 2025; 17(17):2389. https://doi.org/10.3390/polym17172389
Chicago/Turabian StyleNecolau, Madalina Ioana, Elena Iuliana Biru, Elena Olaret, and Horia Iovu. 2025. "Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers" Polymers 17, no. 17: 2389. https://doi.org/10.3390/polym17172389
APA StyleNecolau, M. I., Biru, E. I., Olaret, E., & Iovu, H. (2025). Multi-Functional Hybrid Terpolymer Thermosets Based on Thiols Bio-Based Epoxy and Benzoxazine Monomers. Polymers, 17(17), 2389. https://doi.org/10.3390/polym17172389