Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Raw Material and Extract Characterization
2.3. Ultrasound-Assisted Extraction
2.4. Determination of Total Polyphenol Content (TPC)
2.5. Determination of Antioxidant Capacity by DPPH
2.6. Compounds Identification by UPLC-QTOF-ESI-MS
2.7. In Vitro Cell Viability and Oxidative Stress of Extracts
2.8. Encapsulant Concentration by Spray Drying
2.8.1. Encapsulation Efficiency
2.8.2. Drying Yield
2.8.3. Water Activity and Moisture Content
2.8.4. Color Determination
2.9. Stability Analysis at Different Relative Humidities
2.10. Physicochemical Properties of the Vegan Powdered Additive
2.10.1. Total Polyphenol Content and Antioxidant Capacity of Powders
2.10.2. Morphology Powder
2.11. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Raw Material and Extracts
3.2. Tentative Identification of Compounds by UPLC-QTOF-ESI-MS
3.3. Cytotoxic Effect of Extracts and Antioxidant Activity In Vivo
3.4. Effect of Encapsulant Concentration by Spray Drying
3.5. Stability Analysis of Powder Additive at Different Relative Humidities
- -
- Total polyphenol content and antioxidant capacity
- -
- Stability of color properties
3.6. Morphology Characterization of the Powder Additive
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Antioxidant capacity |
AMSL | Above mean sea level |
ANOVA | Analysis of variance |
CC50 | Concentrations that inhibit 50% of cell proliferation |
CIEDE2000 | Color-difference formula |
CPP | Chickpea protein |
DCFH-DA | 2′,7′-dichlorofluorescein diacetate assay |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
GAE | Gallic acid equivalent |
HPLC-DAD | High-Performance Liquid Chromatography with Diode Array Detection |
ND | Not detected |
RFU | Relative fluorescence units |
RH | Relative humidity |
ROS | Intracellular reactive oxygen species |
SEM | Scanning Electron Microscopy |
TPC | Total polyphenol content |
TSS | Total soluble solids |
UPLC-QTOF-ESI-MS | Ultra-performance liquid chromatography quadrupole time-of-flight electrospray ionization mass spectrometry |
References
- Mendoza-Rangel, J.M.; Díaz-Aguilera, J.H. Economía circular en la industria latinoamericana del cemento y el concreto: Una solución sustentable de diseño, durabilidad, materiales y procesos. ALCONPAT 2023, 13, 328–348. [Google Scholar] [CrossRef]
- Ellen McArthur Foundation. 2025. Available online: https://www.ellenmacarthurfoundation.org/ (accessed on 1 April 2025).
- MundoAgro. Chilenut Revela Datos Clave y Desafíos Que Enfrenta la Industria Chilena de Nueces. 2023. Available online: https://mundoagro.cl/chilenut-revela-datos-claves-y-desafios-que-enfrenta-la-industria-chilena-de-nueces/ (accessed on 22 November 2024).
- Oliveira, I.; Sousa, A.; Ferreira, I.C.; Bento, A.; Estevinho, L.; Pereira, J.A. Total phenols, antioxidant potential, and antimicrobial activity of walnut (Juglans regia L.) green husks. Food Chem. Toxicol. 2008, 46, 2326–2331. [Google Scholar] [CrossRef]
- Soto-Madrid, D.; Gutierrez-Cutiño, M.; Pozo, J.; Zuñiga, M.; Olea, C.; Matiacevich, S. Dependence of the ripeness stage on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) Green husk extracts from industrial by-products. Molecules 2021, 26, 2878. [Google Scholar] [CrossRef]
- Kithi, L.; Lengyel-Kónya, É.; Berki, M.; Bujdosó, G. Role of the green husks of Persian walnut (Juglans regia L.)—A review. Horticulturae 2023, 9, 782. [Google Scholar] [CrossRef]
- Soto-Maldonado, C.; Vergara-Castro, M.; Jara-Quezada, J.; Caballero-Valdés, E.; Müller-Pavez, A.; Zúñiga-Hansen, M.; Altamirano, C. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Elect. J. Biotechnol. 2019, 39, 1–7. [Google Scholar] [CrossRef]
- Vieira, V.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Coutinho, J.A.P.; Ferreira, O.; Barros, L.; Ferreira, I.C.F.R. Hydroethanolic extract of Juglans regia L. green husks: A source of bioactive phytochemicals. Food Chem. Toxicol. 2020, 137, 111189. [Google Scholar] [CrossRef]
- Galanakis, C. Polyphenols Properties, Recovery, and Applications, 1st ed.; Elsevier: London, UK, 2018. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C.; Padma Ishwarya, S. Spray Drying Techniques for Encapsulating Food Ingredients, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–100. [Google Scholar]
- Yun, P.; Devahastin, S.; Chiewchan, N. Microstructures of encapsulates and their relations with encapsulation efficiency and controlled release of bioactive constituents: A review. Compreh. Rev. Food Sci. Food Saf. 2021, 20, 1768–1799. [Google Scholar] [CrossRef]
- Nesterenko, A.; Alric, I.; Silvestre, F.; Durrieu, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Ind: Crops Prod. 2013, 42, 469–479. [Google Scholar] [CrossRef]
- Fernandes, J.; Rodrigues, R.C.; Pereira, L.; Stringheta, P.; Campelo, P.; Martins, E. Encapsulation of hydrophobic active ingredients in plant proteins: Modulation of interfacial properties and encapsulation efficiency. Curr. Op. Food Sci. 2024, 57, 101170. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res. Int. 2012, 48, 478–483. [Google Scholar] [CrossRef]
- Soto-Madrid, D.; Arrau, F.; Zúñiga, R.N.; Gutiérrez-Cutiño, M.; Matiacevich, S. Development and characterization of a natural antioxidant additive in powder based on polyphenols extracted from agro-industrial wastes (Walnut green husk): Effect of chickpea protein concentration as an encapsulating agent during storage. Polymers 2024, 16, 777. [Google Scholar] [CrossRef]
- Aguilar-Raymundo, V.G.; Vélez-Ruiz, J.F. Propiedades nutricionales y funcionales del garbanzo (Cicer arietinum L.). TSIA 2013, 7, 25–34. [Google Scholar]
- Ariyarathna, R.I.; Karunaratne, N.D. Use of chickpea protein for encapsulation of folate to enhance nutritional potency and stability. Foods Bioprod. Proc. 2015, 95, 76–82. [Google Scholar] [CrossRef]
- Quesada, D.; Gómez, G. ¿Proteínas de origen vegetal o de origen animal? Una mirada a su impacto sobre la salud y el medio ambiente. Rev. Nutr. Clin. Metab. 2019, 2, 79–86. [Google Scholar] [CrossRef]
- Wijegunawardhana, D.; Wijesekara, I.; Liyanage, R.; Truong, T.; Silva, M.; Chandrapala, J. Process-induced molecular-level protein–carbohydrate–polyphenol interactions in milk–tea blends: A review. Foods 2024, 13, 2489. [Google Scholar] [CrossRef]
- Sandoval-Peraza, V.M.; Cu-Cañetas, T.; Peraza-Mercado, G.; Acereto Escoffié, P.O.M. Introducción en los procesos de encapsulación de moléculas nutracéuticas. In Alimentos Funcionales de Hoy; Ramírez Ortiz, E., Ed.; OmniaScience: Barcelona, Spain, 2016; pp. 181–218. [Google Scholar] [CrossRef]
- Rosas, M.; Hernández, P. Manual de Prácticas de la Experiencia Educativa de: “Química de Alimentos”; Universidad Veracruzana, Facultad de Nutrición: Xalapa, Mexico, 2017; Available online: https://www.uv.mx/nutri-xal/files/2019/11/Manual-Quimica-de-alimentos.pdf (accessed on 11 January 2025).
- Cardona Tangarife, D.; Patiño Arias, L.; Ormaza Zapata, A. Technological aspects of the microencapsulation bioactive food compounds by spray-drying. Cienc. Tecnol. Agropecu. 2021, 22, e1899. [Google Scholar] [CrossRef]
- Tamasiga, P.; Miri, T.; Onyeaka, H.; Hart, A. Food Waste and Circular Economy: Challenges and Opportunities. Sustainability 2022, 14, 9896. [Google Scholar] [CrossRef]
- Pojić, M.; Mišan, A.; Tiwari, B. Eco-innovative technologies for extraction of proteins for human consumption from renewable protein sources of plant origin. Trends Food Sci. Technol. 2018, 75, 93–104. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.; Fraga, P.; Perez-Cueto, F. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Casanova-Pinto, M.; Vera Elizondo, W.; Luzio Leighton, W.; Salazar Guerrero, O. Distribución de suelos en Chile. In Edafología. Manual de Guías Prácticas; Universidad de Chile: Santiago, Chile, 2004; p. 70. Available online: https://www.grn.cl/MANUAL%20EDAFOLOGIA%20_2004.pdf (accessed on 11 August 2025).
- Soto-Madrid, D.; Pérez, N.; Gutiérrez-Cutiño, M.; Matiacevich, S.; Zúñiga, R.N. Structural and physicochemical characterization of extracted protein fractions from chickpea (Cicer arietinum L.) as a potential food ingredient to replace ovalbumin in foams and emulsions. Polymers 2023, 5, 110. [Google Scholar] [CrossRef]
- AOAC—Official Methods of Analysis. Association of Official Analytical Chemists, 16th ed.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Kim, H.W.; Wang, M.; Leber, C.A.; Nothias, L.F.; Reher, R.; Kang, K.B.; van der Hooft, J.J.J.; Dorrestein, P.C.; Gerwick, W.H.; Cottrell, G.W. NP Classifier: A deep neural network-based structural classification tool for natural products. J. Nat. Prod. 2021, 84, 2795–2807. [Google Scholar] [CrossRef]
- Mitsi, C.; Echeverría, C.; Cubillos, F.A.; Monardes-Carvajal, C.; Forero-Doria, O.; Echeverría, J. Alcoholic fermentation enhances in vitro and cellular antioxidant capacity and in vitro antihypertensive potential of native Chilean fruits algarrobo (Neltuma chilensis) and chañar (Geoffroea decorticans). Food Biosci. 2025, 69, 106852. [Google Scholar] [CrossRef]
- Matiacevich, S.; Mery, D.; Pedreschi, F. Prediction of mechanical properties of corn and tortilla chips using computer vision. Food Bioprocess Technol. 2012, 5, 2025–2030. [Google Scholar] [CrossRef]
- Sharma, G.; Wu, W.; Dalal, E. The CIEDE2000 Color-Difference Formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. App. 2005, 30, 21–30. [Google Scholar] [CrossRef]
- Greenspan, L. Humidity fixed points of binary saturated aqueous solutions. J. Res. Nat. Bureau Stand. A Phys. Chem. 1977, 81, 89. [Google Scholar] [CrossRef]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data: Production, Management and Use, 2nd ed.; FAO Publishing Management Service: Rome, Italy, 2003; Available online: https://www.fao.org/uploads/media/Greenfield_and_shouthgate_2003_English_02.pdf (accessed on 4 March 2025).
- Vázquez-Flores, A.A.; Álvarez-Parrilla, E.; Rodrigo-García, J.; de la Rosa, L.A. Cáscara de nuez pecana. In Alimentos Vegetales Autóctonos Iberoamericanos Subutilizados, 1st ed.; Álvarez-Parrilla, E., Sayago-Ayerdi, S., Eds.; Fabro Editores: CDMX, México, 2018; Available online: https://alimentos-autoctonos.fabro.com.mx/cascara-de-nuez-pecanera.html (accessed on 7 July 2023).
- Maldonado, Y.; Jiménez, J.; Arámbula, G.; Flores, V.; Álvarez, P.; Ramírez, M.; Salazar, R. Effect of water activity on extractable polyphenols and some physical properties of Hibiscus sabdariffa L. calyces. J. Food Meas. Charact. 2019, 13, 687–696. [Google Scholar] [CrossRef]
- Barański, M.; Średnicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A comprehensive review on the chemical constituents and functional uses of walnut (Juglans spp.) husk. Int. J. Mol. Sci. 2019, 16, 3920. [Google Scholar] [CrossRef]
- Li, C.; Seeram, N.P. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves. J. Sep. Sci. 2018, 41, 2331–2346. [Google Scholar] [CrossRef]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic profiles of leaves, grapes, and wine of grapevine variety Vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef]
- Ahmed, J.; Lobo, M.; Ferhan, O. Tropical and Subtropical Fruits Postharvest Physiology, Processing and Packaging, 1st ed.; John Wiley & Sons, Ltd: Petaling, Malaysia, 2012; pp. 377–379. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V. A critical review of methods for characterization of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Zinati, G.; Reddivari, L. Variation of Total Phenolics in Lehigh and Purple Majesty Potato Cultivars with Cropping Systems in the Vegetable Systems Trial; Rodale Institute: Kutztown, PA, USA, 2021; pp. 1–4. Available online: https://rodaleinstitute.org/wp-content/uploads/Potato-Total-Phenolics-Web-Article-Nov-8-2021.pdf (accessed on 14 April 2025).
- Fukuda, T. Walnut polyphenols: Their structures and functions. In Tree Nuts: Composition, Phytochemicals, and Health Effects; Alasalvar, C., Shahidi, F., Eds.; Taylor & Francis Group, CRC Press: Boca Raton, FL, USA, 2008; pp. 305–320. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Zhu, J.; Li, H.; Mao, J.; Jin, X.; Wang, X.; Du, Y.; Lu, J. The anti-tumor effect and biological activities of the extract JMM6 from the stem-barks of the Chinese Juglans mandshurica Maxim on human hepatoma cell line BEL-7402. Afr. J. Trad. Complement. Alter. Med. 2013, 10, 258–269. [Google Scholar] [CrossRef]
- Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The analysis of phenolic compounds in walnut husk and pellicle by UPLC-Q-Orbitrap HRMS and HPLC. Molecules 2021, 26, 3013. [Google Scholar] [CrossRef] [PubMed]
- Vinha, A.; Barreira, S.; Costa, A.; Alves, R.; Oliveira, M. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. 2014, 67, 139–144. [Google Scholar] [CrossRef] [PubMed]
- García-Huertas, P.; Pabón, A.; Arias, C.; Blair, S. Evaluación del efecto citotóxico y del daño genético de extractos estandarizados de Solanum nudum con actividad anti-Plasmodium. Biomédica 2013, 33, 78–87. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, S.; Wang, O.; Zhao, L.; Zhao, L. A comprehensive review on walnut protein: Extraction, modification, functional properties and its potential applications. J. Agric. Food Res. 2024, 16, 101141. [Google Scholar] [CrossRef]
- Tovar, J.; Vargas, D.; Alaya, R.; Samaniego, J.; Huerta, J.; Inocente, M. Estudio comparativo del efecto antioxidante de Ipomoea batata L. “camote morado” en polvo liofilizado y atomizado. Rev. Soc. Quím. Perú 2021, 87, 50–56. [Google Scholar] [CrossRef]
- Cáceres-Roa, S.A.; López-Giraldo, L.J.; Muvdi-Nova, C.J. Extracción de polifenoles: Una comparación a partir de cáscara de cacao húmeda vs. cáscara de cacao secada. Ing. Comp. 2023, 25, 1–15. [Google Scholar] [CrossRef]
- López Fernández, S. Efecto de la Humedad Relativa y del Tiempo de Almacenamiento en la Calidad de Plátano Primitivo, Cacao y Quinoa Secos en Polvo. Master’s Thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2016. Available online: https://riunet.upv.es/handle/10251/62055 (accessed on 14 April 2025).
- Tormos, I.; Lahuerta, A.; Efecto de la Humedad Relativa Sobre las Propiedades Físicas y Compuestos Bioactivos de la Pulpa de Pitaya Amarilla en Polvo (Trabajo de fin de Grado). Universitat Politècnica de València, Valencia, Spain. 2022. Available online: https://riunet.upv.es/bitstream/handle/10251/184260 (accessed on 14 April 2025).
- Rodríguez-Amado, J.R.; Escalona-Arranz, J.C.; Lafourcade-Prada, A. Estudio de la estabilidad química acelerada de las tabletas de Tamarindus indica L. Rev. Cuba. Quím. 2011, XXIII, 9–16. Available online: https://www.redalyc.org/pdf/4435/443543722002.pdf. (accessed on 27 August 2025).
- Kuck, L.S.; Zapata Noreña, C. Microencapsulation of grape (Vitis labruscavar. Bordo) skin phenolic extract using gum arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef] [PubMed]
Analysis | Organic Sample | Traditional Sample 2 | ||
---|---|---|---|---|
Green Husk | Aqueous Extract | Green Husk | Aqueous Extract | |
(g/100 g Dry Base) | (g/100 g Wet Base) | (g/100 g Dry Base) | (g/100 g Wet Base) | |
Moisture | 8.30 ± 0.01 | 94.40 ± 0.01 | 7.50 ± 0.01 | 93.90 ± 0.01 |
Proteins (%N × 5.3 1) | 4.0 ± 0.2 | * ND | 7.0 ± 0.2 | * ND |
Lipids | 1.9 ± 0.1 | ** ND | 1.9 ± 0.1 | ** ND |
Ash | 16.70 ± 0.05 | 2.00 ± 0.04 | 12.6 ± 0.05 | 1.00 ± 0.06 |
Crude Fiber | 19 ± 1 | *** ND | 20 ± 1 | *** ND |
Nitrogen-free extract (N.N.E.) | 51 ± 1 | 3.6 ± 0.08 | 51 ± 1 | 5.00 ± 0.08 |
Crop | CC50 [μg/mL] | Cytotoxicity |
---|---|---|
Organic | 96 ± 2 a | Non-toxic |
Traditional | 90 ± 9 a | Non-toxic |
Response Variable | 5% w/v | 7.5% w/v | 10% w/v |
---|---|---|---|
TPC (mg GAE/g dry sample) | 26.9 a ± 1.8 | 23.9 b ± 0.5 | 25.0 b ± 0.5 |
AC (mg Trolox/g of dry sample) | 10.4 a ± 0.5 | 8.0 b ± 0.5 | 7.1 c ± 0.4 |
Moisture (% dry basis) | 5.5 a ± 0.4 | 5.3 a ± 0.4 | 5.2 a ± 0.4 |
aw | 0.21 a ± 0.01 | 0.22 a ± 0.02 | 0.28 b ± 0.01 |
Encapsulation efficiency (%) | 52 a ± 5 | 50 a ± 2 | 52 a ± 1 |
Yield (%) | 52 | 54 | 66 |
Color Parameter L* | 80 c ± 3 | 86 b ± 2 | 88 a ± 1 |
Color Parameter a* | 3 b ± 1 | 3 a ± 1 | 4 a ± 1 |
Color Parameter b* | −15 c ± 2 | −20 b ± 1 | −21 a ± 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matiacevich, S.; Durán, I.; Gutiérrez-Cutiño, M.; Echeverría, J.; Echeverría, C.; Soto-Madrid, D. Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development. Polymers 2025, 17, 2371. https://doi.org/10.3390/polym17172371
Matiacevich S, Durán I, Gutiérrez-Cutiño M, Echeverría J, Echeverría C, Soto-Madrid D. Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development. Polymers. 2025; 17(17):2371. https://doi.org/10.3390/polym17172371
Chicago/Turabian StyleMatiacevich, Silvia, Ignacio Durán, Marlen Gutiérrez-Cutiño, Javier Echeverría, César Echeverría, and Daniela Soto-Madrid. 2025. "Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development" Polymers 17, no. 17: 2371. https://doi.org/10.3390/polym17172371
APA StyleMatiacevich, S., Durán, I., Gutiérrez-Cutiño, M., Echeverría, J., Echeverría, C., & Soto-Madrid, D. (2025). Upcycling Walnut Green Husk: Polyphenol-Rich Extracts from Traditional vs. Organic Crops for Spray-Dried Vegan Additive Development. Polymers, 17(17), 2371. https://doi.org/10.3390/polym17172371