Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.2.1. Sample Formulation and Mixing
2.2.2. Melt Mixing
2.2.3. Compression Molding
2.3. Characterization
2.3.1. Gel Permeation Chromatography
2.3.2. Melt Flow Index
2.3.3. Dynamic Mechanical Analysis
2.3.4. Tensile Properties
2.3.5. Notched Izod Impact Test
2.3.6. Differential Scanning Calorimetry (DSC)
2.3.7. Color Measurement
2.3.8. Statistical Analysis
3. Results and Discussions
3.1. Molecular Weight and Antioxidant Mechanism
3.2. Melt Flow Index
3.3. Dynamic Mechanical Analysis
3.4. Izod Impact Strength
3.5. Tensile Properties
3.6. Differential Scanning Calorimetry
3.7. Color Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DSC | Differential scanning calorimetry |
GPC | Gel permeation chromatography |
HDPE | High-density polyethylene |
MFI | Melt flow index |
MW | Molecular weight |
MWD | Molecular weight distribution |
PEG | Polyethylene glycol |
Appendix A
Appendix A.1. ANOVA Result
Dependent Variables | Parameter | C(Vitamin E Concentration) (A) | C(Irganox 1010 Concentration) (B) | C(Extruder_Passes) (C) | C(AxB) | C(AxC) | C(BxC) | Residual |
---|---|---|---|---|---|---|---|---|
Molecular Weight | sum_sq | 40,660,615,484.963 | 5,112,176,817.852 | 4,887,268,419.185 | 7,249,427,183.926 | 2,727,185,360.593 | 231,342,411.037 | 692,318,198.519 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 234.924 | 29.537 | 28.237 | 20.942 | 7.878 | 0.668 | ||
PR(>F) | 0 | 0 | 0 | 0 | 0.007 | 0.632 | ||
Melt Flow Index | sum_sq | 287.892 | 75.254 | 66.415 | 158.492 | 169.945 | 58.106 | 115.744 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 9.949 | 2.601 | 2.295 | 2.739 | 2.937 | 1.004 | ||
PR(>F) | 0.007 | 0.135 | 0.163 | 0.105 | 0.091 | 0.459 | ||
Melt Strength | sum_sq | 9,823,371,593.959 | 2,040,345,883.352 | 901,136,840.613 | 11,162,183,127.526 | 788,960,163.636 | 152,637,737.101 | 323,104,911.162 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 121.612 | 25.259 | 11.156 | 69.093 | 4.884 | 0.945 | ||
PR(>F) | 0 | 0 | 0.005 | 0 | 0.027 | 0.486 | ||
Crystallinity | sum_sq | 54.585 | 47.37 | 156.38 | 272.813 | 189.677 | 157.667 | 192.251 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 1.136 | 0.986 | 3.254 | 2.838 | 1.973 | 1.64 | ||
PR(>F) | 0.368 | 0.414 | 0.092 | 0.098 | 0.192 | 0.255 | ||
Melting Point | sum_sq | 12.921 | 6.072 | 27.523 | 18.457 | 13.486 | 23.215 | 20.296 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 2.546 | 1.197 | 5.424 | 1.819 | 1.329 | 2.288 | ||
PR(>F) | 0.139 | 0.351 | 0.032 | 0.219 | 0.338 | 0.148 | ||
Color (b-value) | sum_sq | 416.928 | 0.549 | 4.59 | 5.078 | 3.907 | 2.525 | 13.02 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 128.089 | 0.169 | 1.41 | 0.78 | 0.6 | 0.388 | ||
PR(>F) | 0 | 0.848 | 0.299 | 0.569 | 0.673 | 0.812 | ||
Izod Impact Strength | sum_sq | 291,400.056 | 17,262.954 | 89,542.574 | 64,381.761 | 43,966.268 | 13,301.037 | 34,340.561 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 33.942 | 2.011 | 10.43 | 3.75 | 2.561 | 0.775 | ||
PR(>F) | 0 | 0.196 | 0.006 | 0.053 | 0.12 | 0.571 | ||
Tensile Strength at Yield | sum_sq | 0.227 | 0.072 | 8.036 | 2.404 | 0.959 | 1.075 | 4.01 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 0.227 | 0.072 | 8.017 | 1.199 | 0.478 | 0.536 | ||
PR(>F) | 0.802 | 0.931 | 0.012 | 0.382 | 0.751 | 0.714 | ||
Young’s Modulus | sum_sq | 5,659,780.436 | 1,328,043.662 | 63,984.916 | 2,661,506.569 | 18,542.222 | 3725.102 | 16,247.840 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 3431.335 | 805.148 | 38.792 | 806.791 | 5.621 | 1.129 | ||
PR(>F) | 0 | 0 | 0 | 0 | 0.019 | 0.408 | ||
Elongation at Break | sum_sq | 442,291.500 | 43,017.816 | 79,110.527 | 102,683.404 | 115,998.507 | 14,373.064 | 22,137.829 |
df | 2 | 2 | 2 | 4 | 4 | 4 | 8 | |
F | 79.916 | 7.773 | 14.294 | 9.277 | 10.48 | 1.299 | ||
PR(>F) | 0 | 0.013 | 0.002 | 0.004 | 0.003 | 0.348 |
References
- Vidakis, N.; Petousis, M.; Maniadi, A. Sustainable Additive Manufacturing: Mechanical Response of High-Density Polyethylene over Multiple Recycling Processes. Recycling 2021, 6, 4. [Google Scholar] [CrossRef]
- Abeysinghe, S.; Gunasekara, C.; Bandara, C.; Nguyen, K.; Dissanayake, R.; Mendis, P. Engineering Performance of Concrete Incorporated with Recycled High-Density Polyethylene (HDPE)—A Systematic Review. Polymers 2021, 13, 1885. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-H.; Chen, L.-W.; Lu, W.-H.; Lin, W.-C.; Chen, Y.-C. Design and Simulation Analysis of Lightweight HDPE Milk Bottle. Polym. Polym. Compos. 2018, 26, 91–98. [Google Scholar] [CrossRef]
- Jiwa, M.Z.; Kim, Y.T.; Mustaffa, Z.; Kim, S.; Kim, D.K. A Simplified Approach for Predicting Bend Radius in HDPE Pipelines during Offshore Installation. J. Mar. Sci. Eng. 2023, 11, 2032. [Google Scholar] [CrossRef]
- Qiao, Z.; Wu, W.; Wang, Z.; Zhang, L.; Zhou, Y. Space Charge Behavior of Thermally Aged Polyethylene Insulation of Track Cables. Polymers 2022, 14, 2162. [Google Scholar] [CrossRef]
- Nagarajan, Y.R.; Farukh, F.; Silberschmidt, V.V.; Kandan, K.; Rathore, R.; Singh, A.K.; Mukul, P. Strength Assessment of PET Composite Prosthetic Sockets. Materials 2023, 16, 4606. [Google Scholar] [CrossRef]
- Marturano, V.; Cerruti, P.; Ambrogi, V. Polymer Additives. Phys. Sci. Rev. 2017, 2, 20160130. [Google Scholar] [CrossRef]
- Xanthos, M. Polymer processing. In Applied Polymer Science: 21st Century; Elsevier: Amsterdam, The Netherlands, 2000; pp. 355–371. ISBN 9780080434179. [Google Scholar]
- Kutz, M. Applied Plastics Engineering Handbook: Processing and Materials, 1st ed.; PDL Handbook Series; William Andrew: Norwich, NY, USA, 2011; ISBN 9781437735147. [Google Scholar]
- Garton, A.; Carlsson, D.J.; Wiles, D.M. Polypropylene Oxidation: The Apparent Rate Constant for Peroxy Radical Termination and the Photoinitiation Efficiency. Macromolecules 1979, 12, 1071–1073. [Google Scholar] [CrossRef]
- Decker, C.; Mayo, F.R. Aging and Degradation of Polyolefins. II. Γ-initiated Oxidations of Atactic Polypropylene. J. Polym. Sci. Polym. Chem. Ed. 1973, 11, 2847–2877. [Google Scholar] [CrossRef]
- Gryn’ova, G.; Hodgson, J.L.; Coote, M.L. Revising the Mechanism of Polymer Autooxidation. Org. Biomol. Chem. 2010, 9, 480–490. [Google Scholar] [CrossRef]
- Bertin, D.; Leblanc, M.; Marque, S.R.A.; Siri, D. Polypropylene Degradation: Theoretical and Experimental Investigations. Polym. Degrad. Stab. 2010, 95, 782–791. [Google Scholar] [CrossRef]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic Antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67–103. [Google Scholar] [CrossRef] [PubMed]
- Tátraaljai, D.; Földes, E.; Pukánszky, B. Efficient Melt Stabilization of Polyethylene with Quercetin, a Flavonoid Type Natural Antioxidant. Polym. Degrad. Stab. 2014, 102, 41–48. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Torres-Giner, S.; Quiles-Carrillo, L.; Gomez-Caturla, J.; Garcia-Garcia, D.; Balart, R. On the Use of Phenolic Compounds Present in Citrus Fruits and Grapes as Natural Antioxidants for Thermo-Compressed Bio-Based High-Density Polyethylene Films. Antioxidants 2020, 10, 14. [Google Scholar] [CrossRef]
- Dopico-García, M.S.; Castro-López, M.M.; López-Vilariño, J.M.; González-Rodríguez, M.V.; Valentão, P.; Andrade, P.B.; García-Garabal, S.; Abad, M.J. Natural Extracts as Potential Source of Antioxidants to Stabilize Polyolefins. J. Appl. Polym. Sci. 2011, 119, 3553–3559. [Google Scholar] [CrossRef]
- Carrero, J.; Oliva, V.; Navascués, B.; Borrull, F.; Galià, M. Determination of Antioxidants in Polyolefins by Pressurized Liquid Extraction Before High Performance Liquid Chromatography. Polym. Test. 2015, 46, 21–25. [Google Scholar] [CrossRef]
- Ghaffari, M.; Ahmadian, V. Investigation of Antioxidant and Electron Beam Radiation Effects on the Thermal Oxidation Stability of Low-Density Polyethylene. Radiat. Phys. Chem. 2007, 76, 1666–1670. [Google Scholar] [CrossRef]
- Wang, W.; Xiong, P.; Zhang, H.; Zhu, Q.; Liao, C.; Jiang, G. Analysis, Occurrence, Toxicity and Environmental Health Risks of Synthetic Phenolic Antioxidants: A Review. Environ. Res. 2021, 201, 111531. [Google Scholar] [CrossRef]
- Maraveas, C.; Bayer, I.S.; Bartzanas, T. Recent Advances in Antioxidant Polymers: From Sustainable and Natural Monomers to Synthesis and Applications. Polymers 2021, 13, 2465. [Google Scholar] [CrossRef]
- Valero, L.; Gainche, M.; Esparcieux, C.; Delor-Jestin, F.; Askanian, H. Vegetal Polyphenol Extracts as Antioxidants for the Stabilization of PLA: Toward Fully Biobased Polymer Formulation. ACS Omega 2024, 9, 7725–7736. [Google Scholar] [CrossRef]
- AI-Malaika, S. Vitamin E: An Effective Biological Antioxidant for Polymer Stabilisation. Polym. Polym. Compos. 2000, 8, 537–542. [Google Scholar] [CrossRef]
- Kirschweng, B.; Tátraaljai, D.; Földes, E.; Pukánszky, B. Natural Antioxidants as Stabilizers for Polymers. Polym. Degrad. Stab. 2017, 145, 25–40. [Google Scholar] [CrossRef]
- Tátraaljai, D.; Major, L.; Földes, E.; Pukánszky, B. Study of the Effect of Natural Antioxidants in Polyethylene: Performance of β-Carotene. Polym. Degrad. Stab. 2014, 102, 33–40. [Google Scholar] [CrossRef]
- Mishra, S.K.; Belur, P.D.; Iyyaswami, R. Comparison of Efficacy of Various Natural and Synthetic Antioxidants in Stabilizing the Fish Oil. Food Process. Preserv. 2022, 46, e16970. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; do Valle, C.P.; Uchoa, A.F.J.; Ramos, D.M.; da Ponte, F.A.F.; Rios, M.A.d.S.; de Queiroz Malveira, J.; Pontes Silva Ricardo, N.M. Comparative Study of Synthetic and Natural Antioxidants on the Oxidative Stability of Biodiesel from Tilapia Oil. Renew. Energy 2020, 156, 1100–1106. [Google Scholar] [CrossRef]
- Allen, N.S.; Edge, M.; Hussain, S. Perspectives on Yellowing in the Degradation of Polymer Materials: Inter-Relationship of Structure, Mechanisms and Modes of Stabilisation. Polym. Degrad. Stab. 2022, 201, 109977. [Google Scholar] [CrossRef]
- Wang, J.; Wan, W. Experimental Design Methods for Fermentative Hydrogen Production: A Review. Int. J. Hydrogen Energy 2009, 34, 235–244. [Google Scholar] [CrossRef]
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. International Organization for Standardization: Geneva, Switzerland, 2022.
- ASTM D4440-15; Standard Test Method for Plastics: Dynamic Mechanical Properties Melt Rheology. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D256-24; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM International: West Conshohocken, PA, USA, 2025.
- ASTM D3418-21; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D6290-19; Standard Test Method for Color Determination of Plastic Pellets. ASTM International: West Conshohocken, PA, USA, 2019.
- Carlson, R.; Carlson, J.E. 1.11—The Study of Experimental Factors. In Comprehensive Chemometrics; Brown, S.D., Tauler, R., Walczak, B., Eds.; Elsevier: Oxford, UK, 2009; pp. 301–344. ISBN 9780444527011. [Google Scholar]
- Li, C.; Sun, P.; Guo, S.; Zhang, Z.; Wang, J. Relationship between Bridged Groups and Antioxidant Activity for Aliphatic Diamine Bridged Hindered Phenol in Polyolefins. J. Appl. Polym. Sci. 2017, 134, 45095. [Google Scholar] [CrossRef]
- Moss, S.; Zweifel, H. Degradation and Stabilization of High Density Polyethylene during Multiple Extrusions. Polym. Degrad. Stab. 1989, 25, 217–245. [Google Scholar] [CrossRef]
- Gadioli, R.; Waldman, W.R.; De Paoli, M.A. Lignin as a Green Primary Antioxidant for Polypropylene. J. Appl. Polym. Sci. 2016, 133, app.43558. [Google Scholar] [CrossRef]
- Clarke, M.W.; Burnett, J.R.; Croft, K.D. Vitamin E in Human Health and Disease. Crit. Rev. Clin. Lab. Sci. 2008, 45, 417–450. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E Inadequacy in Humans: Causes and Consequences. Adv. Nutr. 2014, 5, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Birringer, M.; Siems, K.; Maxones, A.; Frank, J.; Lorkowski, S. Natural 6-Hydroxy-Chromanols and -Chromenols: Structural Diversity, Biosynthetic Pathways and Health Implications. RSC Adv. 2018, 8, 4803–4841. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, H.; Yan, Y.; He, S.; Wu, S.; Zhao, Q. Hindered Phenolic Antioxidants as Heat-Oxygen Stabilizers for HDPE. Polym. Polym. Compos. 2021, 29, 1403–1411. [Google Scholar] [CrossRef]
- Bremner, T.; Cook, D.G.; Rudin, A. Further Comments on the Relations between Melt Flow Index Values and Molecular Weight Distributions of Commercial Plastics. J. Appl. Polym. Sci. 1991, 43, 1773. [Google Scholar] [CrossRef]
- Béreaux, Y.; Charmeau, J.-Y.; Balcaen, J. Optical Measurement and Modelling of Parison Sag and Swell in Blow Moulding. Int. J. Mater. Form. 2012, 5, 199–211. [Google Scholar] [CrossRef]
- Nunes, R.W.; Martin, J.R.; Johnson, J.F. Influence of Molecular Weight and Molecular Weight Distribution on Mechanical Properties of Polymers. Polym. Eng. Sci. 1982, 22, 205–228. [Google Scholar] [CrossRef]
- Perkins, W.G. Polymer Toughness and Impact Resistance. Polym. Eng. Sci. 1999, 39, 2445–2460. [Google Scholar] [CrossRef]
- Zahavich, A.T.P.; Latto, B.; Takacs, E.; Vlachopoulos, J. The Effect of Multiple Extrusion Passes during Recycling of High Density Polyethylene. Adv. Polym. Technol. 1997, 16, 11–24. [Google Scholar] [CrossRef]
- Elmer-Dixon, M.M.; Fawcett, L.P.; Hinderliter, B.R.; Maurer-Jones, M.A. Could Superficial Chiral Nanostructures Be the Reason Polyethylene Yellows as It Ages? ACS Appl. Polym. Mater. 2022, 4, 6458–6465. [Google Scholar] [CrossRef]
- Al-Malaika, S.; Goodwin, C.; Issenhuth, S.; Burdick, D. The Antioxidant Role of α-Tocopherol in Polymers II. Melt Stabilising Effect in Polypropylene. Polym. Degrad. Stab. 1999, 64, 145–156. [Google Scholar] [CrossRef]
- Potts, H.L.; Amin, K.N.; Duncan, S.E. Retail Lighting and Packaging Influence Consumer Acceptance of Fluid Milk. J. Dairy Sci. 2017, 100, 146–156. [Google Scholar] [CrossRef]
- Guzman-Puyol, S.; Benítez, J.J.; Heredia-Guerrero, J.A. Transparency of Polymeric Food Packaging Materials. Food Res. Int. 2022, 161, 111792. [Google Scholar] [CrossRef] [PubMed]
- Butt, N.D.; Costolnick, N.; Jorgensen, R.J.; Lahoti, M.R.; Neubauer, A.C.; Nylin, K.; Werling, C.L.; Wright, D.A.; Ho, T.H. Reduction of Discoloration in Polyolefin Resins. World Patent WO2005111091A1, 24 November 2005. [Google Scholar]
- Kawai, F. Biodegradation of Polyethers (Polyethylene Glycol, Polypropylene Glycol, Polytetramethylene Glycol, and Others). In Biopolymers Online; Steinbüchel, A., Ed.; Wiley: Hoboken, NJ, USA, 2001; ISBN 9783527302901. [Google Scholar]
- Scherz, L.F.; Abdel-Rahman, E.A.; Ali, S.S.; Schlüter, A.D.; Abdel-Rahman, M.A. Design, Synthesis and Cytotoxic Activity of Water-Soluble Quinones with Dibromo-p-Benzoquinone Cores and Amino Oligo(Ethylene Glycol) Side Chains against MCF-7 Breast Cancer Cells. Med. Chem. Commun. 2017, 8, 662–672. [Google Scholar] [CrossRef]
- Rauner, F.J.; Arcesi, J.A.; Guild, J.R. Light-Sensitive Quinone Diazide Polymers and Polymer Compositions. U.S. Patent US2835656A, 7 March 1972. [Google Scholar]
- Gigante, A.; Bottegoni, C.; Ragone, V.; Banci, L. Effectiveness of Vitamin-E-Doped Polyethylene in Joint Replacement: A Literature Review. J. Funct. Biomater. 2015, 6, 889–900. [Google Scholar] [CrossRef]
- Mallégol, J.; Carlsson, D.J.; Deschênes, L. Antioxidant Effectiveness of Vitamin E in HDPE and Tetradecane at 32 °C. Polym. Degrad. Stab. 2001, 73, 269–280. [Google Scholar] [CrossRef]
Parameter | No. of Levels | Values |
---|---|---|
Concentration of Vitamin E | 3 | 0, 200, and 400 (ppm) |
Concentration of Irganox 1010 | 3 | 0, 200, and 400 (ppm) |
Number of Passes | 3 | 1 to 3 |
Formulation No. | Formulation Name | Number of Passes | Polymer | Concentration of Irganox 1010 (ppm) | Concentration of Vitamin E (ppm) | Concentration of PEG (ppm) |
---|---|---|---|---|---|---|
1 | Ref-1 | 1 | PE | 0 | 0 | 0 |
2 | Ref-2 | 2 | PE | 0 | 0 | 0 |
3 | Ref-3 | 3 | PE | 0 | 0 | 0 |
4 | Irg-200-1 | 1 | PE | 200 | 0 | 0 |
5 | Irg-200-2 | 2 | PE | 200 | 0 | 0 |
6 | Irg-200-3 | 3 | PE | 200 | 0 | 0 |
7 | Irg-400-1 | 1 | PE | 400 | 0 | 0 |
8 | Irg-400-2 | 2 | PE | 400 | 0 | 0 |
9 | Irg-400-3 | 3 | PE | 400 | 0 | 0 |
10 | Vit-200-1 | 1 | PE | 0 | 200 | 0 |
11 | Vit-200-2 | 2 | PE | 0 | 200 | 0 |
12 | Vit-200-3 | 3 | PE | 0 | 200 | 0 |
13 | v200-i200-1 | 1 | PE | 200 | 200 | 0 |
14 | v200-i200-2 | 2 | PE | 200 | 200 | 0 |
15 | v200-i200-3 | 3 | PE | 200 | 200 | 0 |
16 | v200-i400-1 | 1 | PE | 400 | 200 | 0 |
17 | v200-i400-2 | 2 | PE | 400 | 200 | 0 |
18 | v200-i400-3 | 3 | PE | 400 | 200 | 0 |
19 | Vit-400-1 | 1 | PE | 0 | 400 | 0 |
20 | Vit-400-2 | 2 | PE | 0 | 400 | 0 |
21 | Vit-400-3 | 3 | PE | 0 | 400 | 0 |
22 | v400-i200-1 | 1 | PE | 200 | 400 | 0 |
23 | v400-i200-2 | 2 | PE | 200 | 400 | 0 |
24 | v400-i200-3 | 3 | PE | 200 | 400 | 0 |
25 | v400-i400-1 | 1 | PE | 400 | 400 | 0 |
26 | v400-i400-2 | 2 | PE | 400 | 400 | 0 |
27 | v400-i400-3 | 3 | PE | 400 | 400 | 0 |
28 | Irg-400-PEG-1 | 1 | PE | 400 | 0 | 150 |
29 | Irg-400-PEG-2 | 2 | PE | 400 | 0 | 150 |
30 | Irg-400-PEG-3 | 3 | PE | 400 | 0 | 150 |
31 | v400-i400-PEG-1 | 1 | PE | 400 | 400 | 150 |
32 | v400-i400-PEG-2 | 2 | PE | 400 | 400 | 150 |
33 | v400-i400-PEG-3 | 3 | PE | 400 | 400 | 150 |
34 | v400-PEG-1 | 1 | PE | 0 | 400 | 150 |
35 | v400-PEG-2 | 2 | PE | 0 | 400 | 150 |
36 | v400-PEG-3 | 3 | PE | 0 | 400 | 150 |
Formulation Name | MW | % of Change from 1st Pass | MFI (g/10 min) | % of Change from 1st Pass | Melt Strength (Pa.s) | % of Change from 1st Pass | Crystallinity (%) | Melting Point (°C) | Color (b-Value) |
---|---|---|---|---|---|---|---|---|---|
Ref-1 | 191,991 | - | 6.79 | - | 66,897.4 | - | 68.75 | 130.4 | −1.1 |
Ref-2 | 141,649 | −26.22 | 12.04 | 77.32 | 56,409.3 | −15.68 | 58.45 | 130.6 | −0.3 |
Ref-3 | 115,091 | −40.05 | 31.3 | 360.97 | 40,640.1 | −39.25 | 51.3 | 136.1 | 0.16 |
Irg-200-1 | 180,731 | - | 8.21 | - | 70,690.1 | - | 61.2 | 130.7 | −0.95 |
Irg-200-2 | 130,614 | −27.73 | 16.22 | 97.56 | 46,159.6 | −34.70 | 57.25 | 130.3 | −0.5 |
Irg-200-3 | 122,713 | −32.10 | 20.3 | 147.26 | 44,000.0 | −37.76 | 59.1 | 129.9 | 0.3 |
Irg-400-1 | 258,469 | - | 4.92 | - | 103,443 | - | 60.4 | 130.2 | −1.01 |
Irg-400-2 | 213,998 | −17.21 | 5.02 | 2.03 | 77,374.6 | −25.20 | 40.25 | 133.4 | −0.4 |
Irg-400-3 | 203,260 | −21.36 | 5.4 | 9.76 | 67,816.8 | −34.44 | 44.15 | 138.3 | 0.76 |
Vit-200-1 | 271,788 | - | 5.77 | - | 55,153.4 | - | 58 | 129.9 | 7.6 |
Vit-200-2 | 231,764 | −14.73 | 5.01 | −13.17 | 65,798.2 | 19.30 | 58.55 | 129.9 | 4.8 |
Vit-200-3 | 231,207 | −14.93 | 4.7 | −18.54 | 58,516.1 | 6.10 | 37.4 | 136.4 | 4.4 |
v200-i200-1 | 249,505 | - | 5.6 | - | 76,354.4 | - | 56.25 | 131.2 | 4.02 |
v200-i200-2 | 243,617 | −2.36 | 5.2 | −7.14 | 72,591.1 | −4.93 | 56.55 | 131.1 | 4.5 |
v200-i200-3 | 243,665 | −2.34 | 4.9 | −12.50 | 68,519.5 | −10.26 | 57.9 | 130.8 | 6.7 |
v200-i400-1 | 256,631 | - | 5.65 | - | 78,902.2 | - | 56.25 | 130.1 | 3.4 |
v200-i400-2 | 235,056 | −8.41 | 5.3 | −6.19 | 77,735.1 | −1.48 | 58 | 130.5 | 4.6 |
v200-i400-3 | 253,072 | −1.39 | 4.9 | −13.27 | 50,340.9 | −36.20 | 59.25 | 130.6 | 5.6 |
Vit-400-1 | 255,547 | - | 5.52 | - | 81,341 | - | 59.945 | 129.8 | 8.6 |
Vit-400-2 | 264,646 | 3.56 | 5.1 | −7.61 | 68,385.9 | −15.93 | 56.3 | 131.0 | 8.4 |
Vit-400-3 | 254,776 | 0.30 | 5.4 | −2.17 | 75,705.1 | −6.93 | 59.75 | 130.8 | 9.5 |
v400-i200-1 | 273,529 | - | 5.65 | - | 82,914.6 | - | 58.7 | 130.7 | 8.9 |
v400-i200-2 | 259,465 | −5.14 | 5.35 | −5.31 | 72,063 | −13.09 | 57.75 | 130.5 | 8.2 |
v400-i200-3 | 253,196 | −7.43 | 5.3 | −6.19 | 78,491.7 | −5.33 | 58.45 | 130.5 | 9.2 |
v400-i400-1 | 276,384 | - | 5.63 | - | 78,188 | - | 58.35 | 129.8 | 12.1 |
v400-i400-2 | 262,368 | −5.07 | 5.37 | −4.62 | 74,700.4 | −4.46 | 58.4 | 130.9 | 8.36 |
v400-i400-3 | 261,212 | −5.49 | 5.4 | −4.09 | 80,037.9 | 2.37 | 58.9 | 130.8 | 10.1 |
Irg-400-PEG-1 | 181,589 | - | 8.33 | - | 65,291.2 | - | 59.75 | 130.5 | −0.7 |
Irg-400-PEG-2 | 189,411 | 4.31 | 7.8 | −6.36 | 63,268 | −3.10 | 52.95 | 130.3 | −0.45 |
Irg-400-PEG-3 | 207,835 | 14.45 | 8.01 | −3.84 | 64,865 | -0.65 | 58.5 | 130.4 | −0.4 |
v400-i400-PEG-1 | 247,305 | - | 5.57 | - | 75,778.6 | - | 60.7 | 130.6 | 12.5 |
v400-i400-PEG-2 | 255,467 | 3.30 | 5.33 | −4.31 | 76,537.2 | 1.00 | 59 | 130.3 | 6.2 |
v400-i400-PEG-3 | 260,584 | 5.37 | 5.7 | 2.33 | 76,432.1 | 0.86 | 59.85 | 130.4 | 7.5 |
v400-PEG-1 | 276,271 | - | 5.84 | - | 72,303.3 | - | 58.5 | 129.9 | 6.6 |
v400-PEG-2 | 270,180 | −2.20 | 5.24 | −10.27 | 73,905.6 | 2.22 | 61.05 | 130.3 | 9.1 |
v400-PEG-3 | 259,343 | −6.13 | 5.6 | −4.11 | 68,169.6 | −5.72 | 60.1 | 130.5 | 7.96 |
Formulation Name | Izod Impact (J/m) | % of Change from 1st Pass | Tensile Strength at Yield (MPa) | % of Change from 1st Pass | Young Modulus (MPa) | % of Change from 1st Pass | Tensile Elongation at Break (%) | % of Change from 1st Pass |
---|---|---|---|---|---|---|---|---|
Ref-1 | 515.2 | - | 25.6 | - | 1390 | - | 410 | - |
Ref-2 | 290.5 | −43.61 | 27 | 5.47 | 1500.8 | 7.97 | 49.8 | −87.85 |
Ref-3 | 152.4 | −70.42 | 27.6 | 7.81 | 1546 | 11.22 | 27.4 | −93.32 |
Irg-200-1 | 392.2 | - | 25.9 | - | 1400 | - | 292 | - |
Irg-200-2 | 238.7 | −39.14 | 27.8 | 7.34 | 1548.8 | 10.63 | 35 | −88.01 |
Irg-200-3 | 201 | −48.75 | 26.3 | 1.54 | 1532 | 9.43 | 31 | −89.38 |
Irg-400-1 | 584.5 | - | 25.6 | - | 1360 | - | 552.5 | - |
Irg-400-2 | 539.8 | −7.65 | 26.5 | 3.52 | 1424.8 | 4.76 | 420 | −23.98 |
Irg-400-3 | 347.3 | −40.58 | 27.4 | 7.03 | 1503 | 10.51 | 222.5 | −59.73 |
Vit-200-1 | 519.1 | - | 25.8 | - | 1372 | - | 526.7 | - |
Vit-200-2 | 553.5 | 6.63 | 27.1 | 5.04 | 1505 | 9.69 | 458 | −13.04 |
Vit-200-3 | 471.8 | −9.11 | 26.8 | 3.88 | 1495 | 8.97 | 510 | −3.16 |
v200-i200-1 | 537.2 | - | 25.5 | - | 1352 | - | 542 | - |
v200-i200-2 | 595.7 | 10.89 | 25.3 | −0.78 | 1556 | 15.09 | 516 | −4.80 |
v200-i200-3 | 464.7 | −13.50 | 26.8 | 5.10 | 1491 | 10.28 | 523.3 | −3.44 |
v200-i400-1 | 551 | - | 25.9 | - | 1391 | - | 436.7 | - |
v200-i400-2 | 588.4 | 6.79 | 28 | 8.11 | 1562 | 12.29 | 428 | −1.98 |
v200-i400-3 | 468.8 | −14.92 | 26.7 | 3.09 | 1498 | 7.69 | 552 | 26.41 |
Vit-400-1 | 617.4 | - | 25.6 | - | 1363 | - | 562 | - |
Vit-400-2 | 663.6 | 7.48 | 27.5 | 7.42 | 1459.8 | 7.10 | 448 | −20.28 |
Vit-400-3 | 614.1 | −0.53 | 26.7 | 4.30 | 1490 | 9.32 | 528 | −6.05 |
v400-i200-1 | 776.3 | - | 27 | - | 1503 | - | 470 | - |
v400-i200-2 | 560.3 | −27.82 | 27.3 | 1.11 | 1459 | −2.93 | 362 | −22.98 |
v400-i200-3 | 535.9 | −30.97 | 26.7 | −1.11 | 1498 | −0.33 | 552 | 17.45 |
v400-i400-1 | 550.6 | - | 25.4 | - | 1331.6 | - | 554 | - |
v400-i400-2 | 644 | 16.96 | 27.3 | 7.48 | 1513.6 | 13.67 | 502 | −9.39 |
v400-i400-3 | 551 | 0.07 | 26.1 | 2.76 | 1446 | 8.59 | 496.7 | −10.35 |
Irg-400-PEG-1 | 371 | - | 25.7 | - | 1362.2 | - | 216 | - |
Irg-400-PEG-2 | 415.5 | 11.99 | 26.9 | 4.67 | 1405 | 3.14 | 264 | 22.22 |
Irg-400-PEG-3 | 390.2 | 5.18 | 25.2 | −1.95 | 1405 | 3.14 | 272 | 25.93 |
v400-i400-PEG-1 | 547.4 | - | 25 | - | 1317.6 | - | 443.3 | - |
v400-i400-PEG-2 | 589.6 | 7.71 | 27.4 | 9.60 | 1546.2 | 17.35 | 454 | 2.41 |
v400-i400-PEG-3 | 614.1 | 12.18 | 27.1 | 8.40 | 1514 | 14.91 | 527.5 | 18.98 |
v400-PEG-1 | 485.1 | - | 25.4 | - | 1344 | - | 578 | - |
v400-PEG-2 | 533 | 9.87 | 27.3 | 7.48 | 1479.6 | 10.09 | 424 | −26.64 |
v400-PEG-3 | 606.3 | 24.98 | 26.8 | 5.51 | 1480 | 10.12 | 552 | −4.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrashoudi, A.F.; Akmaluddin, H.I.; Alrashed, M.M.; Alothman, O.Y. Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene. Polymers 2025, 17, 2364. https://doi.org/10.3390/polym17172364
Alrashoudi AF, Akmaluddin HI, Alrashed MM, Alothman OY. Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene. Polymers. 2025; 17(17):2364. https://doi.org/10.3390/polym17172364
Chicago/Turabian StyleAlrashoudi, Abdullah F., Hafizh Insan Akmaluddin, Maher M. Alrashed, and Othman Y. Alothman. 2025. "Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene" Polymers 17, no. 17: 2364. https://doi.org/10.3390/polym17172364
APA StyleAlrashoudi, A. F., Akmaluddin, H. I., Alrashed, M. M., & Alothman, O. Y. (2025). Impact of Natural and Synthetic Antioxidants on the Stability of High-Density Polyethylene. Polymers, 17(17), 2364. https://doi.org/10.3390/polym17172364