Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Photochemical Polymerization Conditions
2.1.2. Thermal Polymerization Conditions
2.1.3. NAG OMNiMIP Polymerization Conditions
2.2. Chromatographic Experiments
2.3. Synthetic Procedures
2.3.1. Synthesis of (Methacryloylamino)Propyl Methacrylate (4)
2.3.2. Synthesis of Methacrylamidomethyl Methacrylate (6)
2.3.3. Synthesis of 2-Acrylamidoethyl Acrylate (10)
2.3.4. Synthesis of 2-Acrylamidoethyl Methacrylate (12)
2.3.5. Synthesis of 1,3-Dimethacrylamidopropan-2-yl Methacrylate (14)
3. Results and Discussion
3.1. Theoretical Model Comparison of OMNiMIPs Versus “Traditional” MIPs
3.2. Water Tolerability and Porogen Effects
3.3. Temperature Effects
3.4. Design, Synthesis, and Evaluation of New OMNiMIP Materials
3.4.1. Synthesis of OMNiMIP Crosslinkers
3.4.2. OMNiMIP Performance of Crosslinkers with Different Lengths
3.4.3. OMNiMIP Performance from Crosslinkers with Modification of NOBE Polymerizable Groups
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DCM | Dichloromethane |
DCC | Dicyclohexylcarbodiimide |
DMAP | Dimethylamino pyridine |
EGDMA | Ethyleneglycol dimethacrylate |
MAA | Methacrylic Acid |
BOC | tert-Butyloxycarbonyl |
References
- BelBruno, J.J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef]
- Whitcombe, M.J.; Kirsch, N.; Nicholls, I.A.J. Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. Mol. Recognit. 2014, 27, 297–401. [Google Scholar] [CrossRef]
- Spivak, D.A. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug Delivery Rev. 2005, 57, 1779–1794. [Google Scholar] [CrossRef]
- Cheong, W.J.; Yang, S.H.; Ali, F. Molecular imprinted polymers for separation science: A review of reviews. J. Sep. Sci. 2013, 36, 609–628. [Google Scholar] [CrossRef]
- Mukendi, M.D.; Salami, O.S.; Mketo, N. An In-Depth Review of Molecularly Imprinted Electrochemical Sensors as an Innovative Analytical Tool in Water Quality Monitoring: Architecture, Principles, Fabrication, and Applications. Micromachines 2025, 16, 251. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Lee, J.-H.; Kim, K.S. Small Toxic Molecule Detection and Elimination Using Molecularly Imprinted Polymers (MIPs). Biosensors 2025, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–27. [Google Scholar] [CrossRef]
- Muratsugu, S.; Shirai, S.; Tada, M. Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett. 2020, 61, 151603. [Google Scholar] [CrossRef]
- Resmini, M. Molecularly imprinted polymers as biomimetic catalysts. Anal. Bioanal. Chem. 2012, 402, 3021–3026. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, E.; Wang, W.; Huang, D.; Liu, J.; Du, Z. Molecularly imprinted nanozymes with substrate specificity: Current strategies and future direction. Small 2025, 21, 2408343. [Google Scholar] [CrossRef]
- Dickey, F.H. Specific adsorption. J. Phys. Chem. 1955, 59, 695–707. [Google Scholar] [CrossRef]
- Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 1995, 34, 1812. [Google Scholar] [CrossRef]
- Niu, J.; Du, M.; Wu, W.; Yang, J.; Chen, Q. Advances in the selection of functional monomers for molecularly imprinted polymers: A review. J. Sep. Sci. 2024, 47, 2400353. [Google Scholar] [CrossRef]
- Jamilan, M.A.; Kamarudin, B.; Zain, Z.M.; Sambasevam, K.P.; Mehamod, F.S.; Noh, M.F.M. A Scoping Review of Vitamins Detection Using Electrochemically Polymerised, Molecularly Imprinted Polymers. Polymers 2025, 17, 1415. [Google Scholar] [CrossRef]
- Ozcelikay-Akyildiz, G.; Kaya, S.I.; Samanci, S.N.; Ozkan, S.A. The Importance and Use of Polydopamine in Molecularly Imprinted Polymer-Based Electrochemical Sensor Design. Crit. Rev. Anal. Chem. 2025, 1–18. [Google Scholar] [CrossRef]
- Li, X.; Hu, B.; Ma, L.; Shi, Y.; Jing, Y.; Li, Z.; Li, Z.; Sun, S. Detection of GHRP-6 using a multi-walled carbon nanotube-based molecularly imprinted electrochemical sensor. Microchem. J. 2025, 209, 112788. [Google Scholar] [CrossRef]
- Chen, J.; Wei, M.; Meng, M. Advanced development of molecularly imprinted membranes for selective separation. Molecules 2023, 28, 5764. [Google Scholar] [CrossRef]
- Jantarat, C.; Attakitmongkol, K.; Nichsapa, S.; Sirathanarun, P.; Srivaro, S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J. Biomater. Sci. Polym. Ed. 2020, 31, 1961–1976. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ji, J.; Shi, Y.; Li, N.; Yan, Z.; Du, Q. Recent advances in composite materials integrating molecularly imprinted polymers for targeted drug delivery systems. Eur. Polym. J. 2025, 228, 113825. [Google Scholar] [CrossRef]
- Han, X.; Jin, Y.; Zhao, L.; Zhang, Y.; Ren, B.; Song, X.; Liu, R. Molecularly Imprinted Titanium Dioxide: Synthesis Strategies and Applications in Photocatalytic Degradation of Antibiotics from Marine Wastewater: A Review. Materials 2025, 18, 2161. [Google Scholar] [CrossRef] [PubMed]
- Bossi, A.; Rivetti, C.; Mangiarotti, L.; Whitcombe, M.J.; Turner, A.P.F.; Piletsky, S.A. Patterned gallium surfaces as molecular mirrors. Biosens. Bioelectron. 2007, 23, 290–294. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Cui, L.; Xu, C.; Wu, S. Current Developments in Chitosan-Based Hydrogels for Water and Wastewater Treatment: A Comprehensive Review. ChemistrySelect 2025, 10, e202404061. [Google Scholar] [CrossRef]
- Shiekh, P.A.; Andrabi, S.M.; Singh, A.; Majumder, S.; Kumar, A. Designing cryogels through cryostructuring of polymeric matrices for biomedical applications. Eur. Polym. J. 2021, 144, 110234. [Google Scholar] [CrossRef]
- Bu, Z.; Si, Q.; Lu, X.; Wang, P.; Wu, D.; Mei, Y. Monolithic capillary electrochromatographic system based on gold nanoparticles and chitosan chiral molecularly imprinted polymers for enantioseparation of metolachlor and separation of structural analogs. Microchim. Acta 2025, 192, 291. [Google Scholar] [CrossRef]
- Le Jeune, J.; Spivak, D.A. Analyte separation by OMNiMIPs imprinted with multiple templates. Biosens. Bioelectron. 2009, 25, 604–608. [Google Scholar] [CrossRef]
- LeJeune, J.; Spivak, D.A. Chiral effects of alkyl-substituted derivatives of N, O-bismethacryloyl ethanolamine on the performance of one monomer molecularly imprinted polymers (OMNiMIPs). Anal. Bioanal. Chem. 2007, 389, 433–440. [Google Scholar] [CrossRef]
- Meng, A.C.; Le Jeune, J.; Spivak, D.A. Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers. J. Mol. Recognit. 2009, 22, 121–128. [Google Scholar] [CrossRef]
- Simon, R.; Houck, S.; Spivak, D.A. Comparison of particle size and flow rate optimization for chromatography using one-monomer molecularly imprinted polymers versus traditional non-covalent molecularly imprinted polymers. Anal. Chim. Acta 2005, 542, 104–110. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Spivak, D.A. Enhanced enantioselectivity of molecularly imprinted polymers formulated with novel cross-linking monomers. Macromolecules 2003, 36, 5105–5113. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Spivak, D.A. Molecular imprinting made easy. J. Am. Chem. Soc. 2004, 126, 7827–7833. [Google Scholar] [CrossRef] [PubMed]
- Sibrian-Vazquez, M.; Spivak, D.A. Improving the strategy and performance of molecularly imprinted polymers using cross-linking functional monomers. J. Org. Chem. 2003, 68, 9604–9611. [Google Scholar] [CrossRef]
- Sadykov, Z.M.; Mukhamediev, M.G.; Musaev, U.N. Synthesis of N-acryloyloxyethylacrylamide. Russ. J. Org. Chem. 2002, 38, 1204. [Google Scholar]
- Kim, H.; Spivak, D.A. New insight into modeling non-covalently imprinted polymers. J. Am. Chem. Soc. 2003, 125, 11269–11275. [Google Scholar] [CrossRef]
- Umpleby, R.J.; Baxter, S.C.; Rampey, A.M.; Rushton, G.T.; Chen, Y.; Shimizu, K.D. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 804, 141–149. [Google Scholar] [CrossRef]
- Umpleby, R.J.; Bode, M.; Shimizu, K.D. Measurement of the continuous distribution of binding sites in molecularly imprinted polymers. Analyst 2000, 125, 1261–1265. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, D.; Brown, J.C.; Shimizu, K.D. Suppression of background sites in molecularly imprinted polymers via urea-urea monomer aggregation. Org. Biomol. Chem. 2011, 9, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, D.; Lanni, L.M.; Shimizu, K.D. Importance of functional monomer dimerization in the molecular imprinting process. Macromolecules 2010, 43, 6284–6294. [Google Scholar] [CrossRef]
- Rampey, A.M.; Umpleby, R.J.; Rushton, G.T.; Iseman, J.C.; Shah, R.N.; Shimizu, K.D. Characterization of the imprint effect and the influence of imprinting conditions on affinity, capacity, and heterogeneity in molecularly imprinted polymers using the Freundlich isotherm-affinity distribution analysis. Anal. Chem. 2004, 76, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Piletska, E.V.; Guerreiro, A.R.; Whitcombe, M.J.; Piletsky, S.A. Influence of the polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 2009, 42, 4921–4928. [Google Scholar] [CrossRef]
- Lanza, F.; Ruther, M.; Hall, A.J.; Dauwe, C.; Sellergren, B. Studies on the process of formation, nature and stability of binding sites in molecularly imprinted polymers. Mater. Res. Soc. Symp. Proc. 2002, 723, 93–103. [Google Scholar] [CrossRef]
- Lu, Y.; Li, C.; Wang, X.; Sun, P.; Xing, X. Influence of polymerization temperature on the molecular recognition of imprinted polymers. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 804, 53–59. [Google Scholar] [CrossRef]
- O’Shannessy, D.J.; Ekberg, B.; Mosbach, K. Molecular imprinting of amino acid derivatives at low temperature (0 C) using photolytic homolysis of azobisnitriles. Anal. Biochem. 1989, 177, 144. [Google Scholar] [CrossRef]
- Sellergren, B. Molecular imprinting by noncovalent interactions. Enantioselectivity and binding capacity of polymers prepared under conditions favoring the formation of template complexes. Makromol. Chem. 1989, 190, 2703. [Google Scholar] [CrossRef]
- Piletsky, S.A.; Piletska, E.V.; Karim, K.; Freebairn, K.W.; Legge, C.H.; Turner, A.P.F. Polymer cookery: Influence of polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 2002, 35, 7499–7504. [Google Scholar] [CrossRef]
- Wu, X.; Carroll, W.R.; Shimizu, K.D. Stochastic lattice model simulations of molecularly imprinted polymers. Chem. Mater. 2008, 20, 4335–4346. [Google Scholar] [CrossRef]
- Andersson, H.S.; Karlsson, J.G.; Piletsky, S.A.; Koch-Schmidt, A.-C.; Mosbach, K.; Nicholls, I.A. Study of the nature of recognition in molecularly imprinted polymers, II: Influence of monomer–template ratio and sample load on retention and selectivity. J. Chromatogr. A 1999, 848, 39–49. [Google Scholar] [CrossRef]
- Nicholls, I.A.; Adbo, K.; Andersson, H.S.; Andersson, P.O.; Ankarloo, J.; Hedin-Dahlstrom, J.; Jokela, P.; Karlsson, J.G.; Olofsson, L.; Rosengren, J.; et al. Can we rationally design molecularly imprinted polymers? Anal. Chim. Acta 2001, 435, 9–18. [Google Scholar] [CrossRef]
- van Wissen, G.; Lowdon, J.W.; Cleij, T.J.; Eersels, K.; van Grinsven, B. Porogenic solvents in molecularly imprinted polymer synthesis: A comprehensive review of current practices and emerging trends. Polymers 2025, 17, 1057. [Google Scholar] [CrossRef] [PubMed]
% H2O | Enantioselectivity Separation Factor (α) for NOBE OMNiMIPs | Enantioselectivity Separation Factor (α) for Traditional MIPs |
---|---|---|
0 | 4.7 | 2.2 |
1 | 3.9 | 1.7 |
2 | 1.0 | 1.6 |
5 | 1.0 | 1.3 |
10 | 1.0 | 1.1 |
Entry | Solvent | Enantioselectivity Separation Factor (α) for NOBE OMNiMIPs |
---|---|---|
1 | Acetonitrile | 4.7 |
2 | Chloroform | 3.70 |
3 | Toluene | 2.10 |
4 | Methanol | 1.10 |
5 | DMF | 1.09 |
Entry | Polymer | Type of Polymerization | k′D | k′L | Enantioselectivity Separation Factor (α) |
---|---|---|---|---|---|
1 | NOBE OMNiMIP | Photochemical | 2.13 | 10.02 | 4.70 |
2 | NOBE OMNiMIP | Thermal | 3.29 | 6.63 | 2.02 |
3 | EGDMA/MAA (80/20) | Photochemical | 0.23 | 0.49 | 2.13 |
4 | EGDMA/MAA (80/20) | Thermal | 0.19 | 0.26 | 1.37 |
Entry | OMNiMIP Crosslinker | Enantioselectivity Separation Factor (α) |
---|---|---|
1 | 4.7 | |
2 | 1.3 | |
3 | 1.6 | |
4 | 2.4 |
Entry | OMNiMIP Crosslinker | Enantioselectivity Separation Factor (α) |
---|---|---|
1 | 4.7 | |
2 | 1.3 | |
3 | 1.6 | |
4 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meador, D.S.; Houck, S.S.; Spivak, D.A. Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs). Polymers 2025, 17, 2359. https://doi.org/10.3390/polym17172359
Meador DS, Houck SS, Spivak DA. Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs). Polymers. 2025; 17(17):2359. https://doi.org/10.3390/polym17172359
Chicago/Turabian StyleMeador, Danielle S., Stephanie S. Houck, and David A. Spivak. 2025. "Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs)" Polymers 17, no. 17: 2359. https://doi.org/10.3390/polym17172359
APA StyleMeador, D. S., Houck, S. S., & Spivak, D. A. (2025). Discovery and Development of One Monomer Molecularly Imprinted Polymers (OMNiMIPs). Polymers, 17(17), 2359. https://doi.org/10.3390/polym17172359