Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Bromatological Analysis of Colocasia esculenta Roots
2.3. Starch Isolation from Colocasia esculenta Flesh
2.4. Extraction of Cellulose Nanofibers from Colocasia esculenta Peels
2.5. Characterization of Starch and Cellulose Nanofibers
2.5.1. Amylose Content and Gelatinization Temperature of Starch Granules
2.5.2. Morphological Analysis and Particle Size
2.5.3. Structural Analysis by Fourier Transform Infrared Spectroscopy (FTIR)
2.5.4. Thermogravimetric Analysis (TGA)
3. Results and Discussions
3.1. Proximal Composition of Colocasia esculenta Roots
3.2. Amylose Content and Gelatinization Temperature of C. esculenta Starch
3.3. Yield and Morphology of Starch Granules and Cellulose Nanofibers
3.4. Structural Features Revealed by FTIR
3.5. Thermogravimetric Analysis of Starch and Nanocellulose
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rajendran, S.; Al-Samydai, A.; Palani, G.; Trilaksana, H.; Sathish, T.; Giri, J.; Saravanan, R.; Lalvani, J.I.J.; Nasri, F. Replacement of Petroleum Based Products with Plant-Based Materials, Green and Sustainable Energy—A Review. Eng. Rep. 2025, 7, e70108. [Google Scholar] [CrossRef]
- Edo, G.I.; Ndudi, W.; Ali, A.B.M.; Yousif, E.; Jikah, A.N.; Isoje, E.F.; Igbuku, U.A.; Mafe, A.N.; Opiti, R.A.; Madueke, C.J.; et al. Biopolymers: An Inclusive Review. Hybrid Adv. 2025, 9, 100418. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef]
- Díaz-Montes, E. Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films. Polysaccharides 2022, 3, 480–501. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Etale, A.; Onyianta, A.J.; Turner, S.R.; Eichhorn, S.J. Cellulose: A Review of Water Interactions, Applications in Composites, and Water Treatment. Chem. Rev. 2023, 123, 2016–2048. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Li, Y.; Lin, Y.; Zhang, W.; Yang, J.; Liu, Y.; He, Z.; Hong, Y.; Shen, J.; Ni, Y.; et al. Crucial Role of Fiber Swelling in Microfibrillated Cellulose Extraction via Ball Milling. Ind. Crops Prod. 2024, 218, 118899. [Google Scholar] [CrossRef]
- Antony Jose, S.; Cowan, N.; Davidson, M.; Godina, G.; Smith, I.; Xin, J.; Menezes, P.L. A Comprehensive Review on Cellulose Nanofibers, Nanomaterials, and Composites: Manufacturing, Properties, and Applications. Nanomaterials 2025, 15, 356. [Google Scholar] [CrossRef]
- Arkharova, N.A.; Shalina, N.A.; Karimov, D.N.; Makarov, I.S.; Gromovykh, T.I.; Klechkovskaya, V.V. Microstructure Evolution of Bacterial Cellulose Gel-Films During Cultivation. Fibre Chem. 2025, 56, 320–325. [Google Scholar] [CrossRef]
- Reshmy, R.; Philip, E.; Thomas, D.; Madhavan, A.; Sindhu, R.; Binod, P.; Varjani, S.; Awasthi, M.K.; Pandey, A. Bacterial Nanocellulose: Engineering, Production, and Applications. Bioengineered 2021, 12, 11463–11483. [Google Scholar] [CrossRef]
- Waterschoot, J.; Gomand, S.V.; Fierens, E.; Delcour, J.A. Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch Stärke 2015, 67, 14–29. [Google Scholar] [CrossRef]
- Kovrlija, R.; Goubin, E.; Rondeau-Mouro, C. TD-NMR Studies of Starches from Different Botanical Origins: Hydrothermal and Storage Effects. Food Chem. 2020, 308, 125675. [Google Scholar] [CrossRef]
- Srichuwong, S.; Sunarti, T.C.; Mishima, T.; Isono, N.; Hisamatsu, M. Starches from Different Botanical Sources I: Contribution of Amylopectin Fine Structure to Thermal Properties and Enzyme Digestibility. Carbohydr. Polym. 2005, 60, 529–538. [Google Scholar] [CrossRef]
- Vamadevan, V.; Bertoft, E. Structure-function Relationships of Starch Components. Starch-Stärke 2015, 67, 55–68. [Google Scholar] [CrossRef]
- Varghese, S.; Awana, M.; Mondal, D.; Rubiya, M.H.; Melethil, K.; Singh, A.; Krishnan, V.; Thomas, B. Amylose–Amylopectin Ratio. In Handbook of Biopolymers; Thomas, S., Ajitha, A.R., Jose Chirayil, C., Thomas, B., Eds.; Springer Nature: Singapore, 2022; pp. 1–30. ISBN 978-981-16-6603-2. [Google Scholar]
- Zhang, C.; Xue, W.; Li, T.; Wang, L. Understanding the Relationship between the Molecular Structure and Physicochemical Properties of Soft Rice Starch. Foods 2023, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Kashcheyeva, E.I.; Gismatulina, Y.A.; Mironova, G.F.; Gladysheva, E.K.; Budaeva, V.V.; Skiba, E.A.; Zolotuhin, V.N.; Shavyrkina, N.A.; Kortusov, A.N.; Korchagina, A.A. Properties and Hydrolysis Behavior of Celluloses of Different Origin. Polymers 2022, 14, 3899. [Google Scholar] [CrossRef]
- Kontturi, K.S.; Lee, K.Y.; Jones, M.P.; Sampson, W.W.; Bismarck, A.; Kontturi, E. Influence of Biological Origin on the Tensile Properties of Cellulose Nanopapers. Cellulose 2021, 28, 6619–6628. [Google Scholar] [CrossRef]
- Wang, T.; McFarlane, H.E.; Persson, S. The Impact of Abiotic Factors on Cellulose Synthesis. J. Exp. Bot. 2016, 67, 543–552. [Google Scholar] [CrossRef]
- Midhun Dominic, C.D.; Maheswary, S.; Neenu, K.V.; Sajadi, S.M.; dos Santos Rosa, D.; Sabura Begum, P.M.; Mathew, M.; Ajithkumar, T.G.; Parameswaranpillai, J.; George, T.S.; et al. Colocasia esculenta Stems for the Isolation of Cellulose Nanofibers: A Chlorine-Free Method for the Biomass Conversion. Biomass Convers. Biorefin. 2022, 14, 10305–10318. [Google Scholar] [CrossRef]
- Singla, D.; Singh, A.; Dhull, S.B.; Kumar, P.; Malik, T.; Kumar, P. Taro Starch: Isolation, Morphology, Modification and Novel Applications Concern—A Review. Int. J. Biol. Macromol. 2020, 163, 1283–1290. [Google Scholar] [CrossRef]
- Mann, S.; Dixit, A.K.; Shrivastav, A. Development and Performance Optimization of a Taro (Colocasia esculenta) Peeling Machine for Enhanced Efficiency in Small-Scale Farming. Sci. Rep. 2025, 15, 11336. [Google Scholar] [CrossRef] [PubMed]
- Ohuoba, A.N.; Onwuka, G.I.; Omodamiro, R.M. Effects of Drying Methods on Physico-Chemical Properties of Hydrocolloids Isolated from Peel Flour of Some Selected Root and Tuber Crops. Int. J. Biochem. Res. Rev. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- FAOSTAT Food and Agriculture Data. Available online: http://www.fao.org/faostat/en/?#home (accessed on 8 March 2022).
- Chaïr, H.; Traore, R.E.; Duval, M.F.; Rivallan, R.; Mukherjee, A.; Aboagye, L.M.; Van Rensburg, W.J.; Andrianavalona, V.; De Pinheiro Carvalho, M.A.A.; Saborio, F.; et al. Genetic Diversification and Dispersal of Taro (Colocasia esculenta (L.) Schott). PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Mweta, D.E.; Labuschagne, M.T.; Bonnet, S.; Swarts, J.; Saka, J.D.K. Isolation and Physicochemical Characterisation of Starch from Cocoyam (Colocasia esculenta) Grown in Malawi. J. Sci. Food Agric. 2010, 90, 1886–1896. [Google Scholar] [CrossRef]
- Wongsagonsup, R.; Nateelerdpaisan, T.; Gross, C.; Suphantharika, M.; Belur, P.D.; Agoo, E.M.G.; Janairo, J.I.B. Physicochemical Properties and in Vitro Digestibility of Flours and Starches from Taro Cultivated in Different Regions of Thailand. Int. J. Food Sci. Technol. 2021, 56, 2395–2406. [Google Scholar] [CrossRef]
- Abreu-Naranjo, R.; Lucero Yupangui, J.E.; Guardado Yordi, E.; Lara-Fiallos, M.; Pais-Chanfrau, J.M.; Pérez Martínez, A. Evaluation of Taro (Colocasia esculenta) as a Raw Material for Bioethanol Production Through Ultrasound-Assisted Enzymatic Hydrolysis. Fermentation 2025, 11, 102. [Google Scholar] [CrossRef]
- Medina Jaramillo, C.; Estevez Areco, S.; Goyanes, S.; López Córdoba, A. Characterization of Starches Isolated from Colombian Native Potatoes and Their Application as Novel Edible Coatings for Wild Andean Blueberries (Vaccinium meridionale Swartz). Polymers 2019, 11, 1937. [Google Scholar] [CrossRef]
- Medina-Jaramillo, C.; Quintero-Pimiento, C.; Gómez-Hoyos, C.; Zuluaga-Gallego, R.; López-Córdoba, A. Alginate-Edible Coatings for Application on Wild Andean Blueberries (Vaccinium meridionale Swartz): Effect of the Addition of Nanofibrils Isolated from Cocoa By-Products. Polymers 2020, 12, 824. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Vélez, J.; Mondragon, I.; Gañán, P. Cellulose Microfibrils from Banana Rachis: Effect of Alkaline Treatments on Structural and Morphological Features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- Park, I.; Mannaa, M. Assessing Amylose Content with Iodine and Con A Methods, In Vivo Digestion Profile, and Thermal Properties of Amylosucrase-Treated Waxy Corn Starch. Foods 2024, 13, 1203. [Google Scholar] [CrossRef]
- Ferdaus, M.J.; Chukwu-Munsen, E.; Foguel, A.; da Silva, R.C. Taro Roots: An Underexploited Root Crop. Nutrients 2023, 15, 3337. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Sandoval, J.; Acevedo-Rodríguez, P. Colocasia esculenta (Taro). In CABI Compendium; CABI International: Wallingford, UK, 2013. [Google Scholar]
- Martins, A.; Beninca, C.; Bet, C.D.; Bisinella, R.Z.B.; de Oliveira, C.S.; Hornung, P.S.; Schnitzler, E. Ultrasonic Modification of Purple Taro Starch (Colocasia esculenta B. Tini): Structural, Psychochemical and Thermal Properties. J. Therm. Anal. Calorim. 2020, 142, 819–828. [Google Scholar] [CrossRef]
- Mallillin, A.C.; Trinidad, T.P.; Raterta, R.; Dagbay, K.; Loyola, A.S. Dietary Fibre and Fermentability Characteristics of Root Crops and Legumes. Br. J. Nutr. 2008, 100, 485–488. [Google Scholar] [CrossRef]
- Srichuwong, S.; Isono, N.; Jiang, H.; Mishima, T.; Hisamatsu, M. Freeze–Thaw Stability of Starches from Different Botanical Sources: Correlation with Structural Features. Carbohydr. Polym. 2012, 87, 1275–1279. [Google Scholar] [CrossRef]
- Rincón-Aguirre, A.; Bello Pérez, L.A.; Mendoza, S.; del Real, A.; Rodríguez García, M.E. Physicochemical Studies of Taro Starch Chemically Modified by Acetylation, Phosphorylation, and Succinylation. Starch Stärke 2018, 70, 1700066. [Google Scholar] [CrossRef]
- Pinzon, M.I.; Sanchez, L.T.; Villa, C.C. Chemical, Structural, and Thermal Characterization of Starches from Four Yellow Arracacha (Arracacia Xanthorriza) Roots Produced in Colombia. Heliyon 2020, 6, e04763. [Google Scholar] [CrossRef]
- Seung, D. Amylose in Starch: Towards an Understanding of Biosynthesis, Structure and Function. New Phytol. 2020, 228, 1490–1504. [Google Scholar] [CrossRef] [PubMed]
- Dias, T.D.L.; Romko, S.S.; Beninca, C.; Lacerda, L.G.; Bisinella, R.Z.B.; Bet, C.D.; Schnitzler, E. Effects Controlled Ultrasound and Partial Hydrolysis of Micro Starch Granules from Colocasia esculenta L. Schott: Thermal, Morphological and Structural Properties. J. Therm. Anal. Calorim. 2023, 148, 7707–7716. [Google Scholar] [CrossRef]
- Dorantes-Fuertes, M.G.; López-Méndez, M.C.; Martínez-Castellanos, G.; Meléndez-Armenta, R.Á.; Jiménez-Martínez, H.E. Starch Extraction Methods in Tubers and Roots: A Systematic Review. Agronomy 2024, 14, 865. [Google Scholar] [CrossRef]
- Saikia, J.P.; Konwar, B.K. Physicochemical Properties of Starch from Aroids of North East India. Int. J. Food Prop. 2012, 15, 1247–1261. [Google Scholar] [CrossRef]
- Trujillo-Ccanahuire, J.; Ordoñez, E.S.; Reategui, D.; Iturri, M.S. Starch from Colocasia esculenta (L.) Schott of Purple and White Esculenta Varieties: Thermal, Technological Properties, and Morphological Study. Rev. Fac. Nac. Agron. Medellin 2024, 77, 10887–10897. [Google Scholar] [CrossRef]
- Koshenaj, K.; Ferrari, G. Production of HPP Natural Hydrogels from Conventional and Non-Conventional Starch Sources. Front. Food Sci. Technol. 2025, 5, 1629161. [Google Scholar] [CrossRef]
- Hoque, M.B.; Oyshi, T.H.; Baria, B.; Tanjila, M.J.; Ayman, U.; Hosen, M.I.; Sheikh, S.; Rahman, M.M. Taro Fiber: A Comprehensive Review of Extraction, Properties, Applications, and Future Perspectives. J. Eng. Adv. 2025, 6, 31–40. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.M.; Martins, J.T.; Vicente, A.A.; Menegalli, F.C. Cellulose Nanofibers Produced from Banana Peel by Chemical and Mechanical Treatments: Characterization and Cytotoxicity Assessment. Food Hydrocoll. 2018, 75, 192–201. [Google Scholar] [CrossRef]
- Sun, J.; Yang, X.; Bai, Y.; Fang, Z.; Zhang, S.; Wang, X.; Yang, Y.; Guo, Y. Recent Advances in Cellulose Nanofiber Modification and Characterization and Cellulose Nanofiber-Based Films for Eco-Friendly Active Food Packaging. Foods 2024, 13, 3999. [Google Scholar] [CrossRef]
- Leite, A.L.M.P.; Zanon, C.D.; Menegalli, F.C. Isolation and Characterization of Cellulose Nanofibers from Cassava Root Bagasse and Peelings. Carbohydr. Polym. 2017, 157, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, F.M.; Sobral, P.J.d.A.; Menegalli, F.C. Isolation and Characterization of Cellulose Nanofibers from Banana Peels. Cellulose 2014, 21, 417–432. [Google Scholar] [CrossRef]
- Abe, K.; Yano, H. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose 2009, 16, 1017–1023. [Google Scholar] [CrossRef]
- Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S. Production of Nanocellulose from Lime Residues Using Chemical-Free Technology. Mater. Today Proc. 2018, 5, 11095–11100. [Google Scholar] [CrossRef]
- Wu, J.; Du, X.; Yin, Z.; Xu, S.; Xu, S.; Zhang, Y. Preparation and Characterization of Cellulose Nanofibrils from Coconut Coir Fibers and Their Reinforcements in Biodegradable Composite Films. Carbohydr. Polym. 2019, 211, 49–56. [Google Scholar] [CrossRef]
- Andrade, L.A.; Barbosa, N.A.; Pereira, J. Extraction and Properties of Starches from the Non-Traditional Vegetables Yam and Taro. Polimeros 2017, 27, 151–157. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Wu, Y.; Bai, F.; Wang, H.; Si, S.; Lu, Y.; Li, X.; Wang, S. Preparation of Cellulose Nanofibers from Bagasse by Phosphoric Acid and Hydrogen Peroxide Enables Fibrillation via a Swelling, Hydrolysis, and Oxidation Cooperative Mechanism. Nanomaterials 2020, 10, 2227. [Google Scholar] [CrossRef] [PubMed]
- Thai, Q.B.; Nguyen, S.T.; Ho, D.K.; Tran, T.D.; Huynh, D.M.; Do, N.H.N.; Luu, T.P.; Le, P.K.; Le, D.K.; Phan-Thien, N.; et al. Cellulose-Based Aerogels from Sugarcane Bagasse for Oil Spill-Cleaning and Heat Insulation Applications. Carbohydr. Polym. 2020, 228, 115365. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.M.; Menegalli, F.C. Cellulose Nanofibers Produced from Banana Peel by Chemical and Enzymatic Treatment. LWT Food Sci. Technol. 2014, 59, 1311–1318. [Google Scholar] [CrossRef]
- Merais, M.S.; Khairuddin, N.; Salehudin, M.H.; Mobin Siddique, M.B.; Lepun, P.; Chuong, W.S. Preparation and Characterization of Cellulose Nanofibers from Banana Pseudostem by Acid Hydrolysis: Physico-Chemical and Thermal Properties. Membranes 2022, 12, 451. [Google Scholar] [CrossRef]
- Widiarto, S.; Pramono, E.; Suharso; Rochliadi, A.; Arcana, I.M. Cellulose Nanofibers Preparation from Cassava Peels via Mechanical Disruption. Fibers 2019, 7, 44. [Google Scholar] [CrossRef]
Parameter | Value (±SD) |
---|---|
Moisture (%) | 64.05 ± 0.21 |
Protein (%) | 1.23 ± 0.05 |
Fat (%) | 0.67 ± 0.02 |
Carbohydrates (%) | 30.88 ± 0.14 |
Crude fiber (%) | 1.66 ± 0.04 |
Ash (%) | 1.34 ± 0.03 |
Phosphorus (mg) | 58.9 ± 0.02 |
Calcium (mg) | 23.6 ± 0.01 |
Iron (mg) | 0.78 ± 0.02 |
Sodium (mg) | 68.9 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daza-Orsini, S.M.; Medina-Jaramillo, C.; López-Córdoba, A. Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean. Polymers 2025, 17, 2354. https://doi.org/10.3390/polym17172354
Daza-Orsini SM, Medina-Jaramillo C, López-Córdoba A. Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean. Polymers. 2025; 17(17):2354. https://doi.org/10.3390/polym17172354
Chicago/Turabian StyleDaza-Orsini, Sandra Milena, Carolina Medina-Jaramillo, and Alex López-Córdoba. 2025. "Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean" Polymers 17, no. 17: 2354. https://doi.org/10.3390/polym17172354
APA StyleDaza-Orsini, S. M., Medina-Jaramillo, C., & López-Córdoba, A. (2025). Physicochemical Characterization of Starch and Cellulose Nanofibers Extracted from Colocasia esculenta Cultivated in the Colombian Caribbean. Polymers, 17(17), 2354. https://doi.org/10.3390/polym17172354