Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Aging and Fracture Measurements
2.3. Statistical Analysis
3. Results
3.1. Fracture Resistance
3.2. Fracture Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DPS | Digital Press Stereolithography |
CAD/CAM | Computer-aided design/computer-aided manufacturing |
EM | E.MAX CAD |
VE | Vita Enamic |
CS | Cerasmart |
CC | Ceramic Crown |
References
- Chiu, A.; Chen, Y.-W.; Hayashi, J.; Sadr, A. Accuracy of CAD/CAM Digital Impressions with Different Intraoral Scanner Parameters. Sensors 2020, 20, 1157. [Google Scholar] [CrossRef]
- Baba, K. Database-Driven Prosthodontics—Future of Digital Dentistry. J. Prosthodont. Res. 2021, 65, VI–VII. [Google Scholar] [CrossRef]
- Kihara, H.; Sugawara, S.; Yokota, J.; Takafuji, K.; Fukazawa, S.; Tamada, A.; Hatakeyama, W.; Kondo, H. Applications of three-dimensional printers in prosthetic dentistry. J. Oral Sci. 2021, 63, 21-0072–216. [Google Scholar] [CrossRef]
- Suksuphan, P.; Krajangta, N.; Didron, P.P.; Wasanapiarnpong, T.; Rakmanee, T. Marginal adaptation and fracture resistance of milled and 3D-printed CAD/CAM hybrid dental crown materials with various occlusal thicknesses. J. Prosthodont. Res. 2023, 68, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.M.; Morgano, S.M.; Muller, F.; Kelly, J.A.; Nguyen, C.T.; Scherrer, S.S.; Salinas, T.J.; Shah, K.C.; Att, W.; Frelich, M.A.; et al. The Glossary of Prosthodontic Terms 2023. J. Prosthet. Dent. 2023, 130, e1–e3. [Google Scholar] [CrossRef] [PubMed]
- Husain, N.A.-H.; Özcan, M.; Molinero-Mourelle, P.; Joda, T. Clinical Performance of Partial and Full-Coverage Fixed Dental Restorations Fabricated from Hybrid Polymer and Ceramic CAD/CAM Materials: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2107. [Google Scholar] [CrossRef]
- Zimmermann, M.; Ender, A.; Egli, G.; Özcan, M.; Mehl, A. Fracture load of CAD/CAM-fabricated and 3D-printed composite crowns as a function of material thickness. Clin. Oral Investig. 2018, 23, 2777–2784. [Google Scholar] [CrossRef]
- Lauvahutanon, S.; Takahashi, H.; Shiozawa, M.; Iwasaki, N.; Asakawa, Y.; Oki, M.; Finger, W.J.; Arksornnukit, M. Mechanical properties of composite resin blocks for CAD/CAM. Dent. Mater. J. 2014, 33, 705–710. [Google Scholar] [CrossRef]
- Mann, R.S.; Ruse, N.D. Fracture toughness of conventional, milled and 3D printed denture bases. Dent. Mater. 2022, 38, 1443–1451. [Google Scholar] [CrossRef]
- Moussa, C.; Savard, G.; Rochefort, G.; Renaud, M.; Denis, F.; Daou, M.H. Fracture Resistance of Direct versus Indirect Restorations on Posterior Teeth: A Systematic Review and Meta-Analysis. Bioengineering 2024, 11, 536. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. Influence of surface finishing on the outcome of a 3-point bending test in polymer-based dental composits assessed by qualitative and quantitative fractography. J. Mech. Behav. Biomed. Mater. 2024, 156, 106607. [Google Scholar] [CrossRef]
- ZwickRoell. Material Fatigue: How to Prevent and Eliminate This Phenomenon ZwickRoell Home Page. Available online: https://www.zwickroell.com/news-and-events/news/material-fatigue-how-to-prevent-and-eliminate-this-phenomenon/ (accessed on 23 October 2024).
- Körtvélyessy, G.; Szabó, Á.L.; Pelsőczi-Kovács, I.; Tarjányi, T.; Tóth, Z.; Kárpáti, K.; Matusovits, D.; Hangyási, B.D.; Baráth, Z. Different Conical Angle Connection of Implant and Abutment Behavior: A Static and Dynamic Load Test and Finite Element Analysis Study. Materials 2023, 16, 1988. [Google Scholar] [CrossRef]
- Pospiech, P. All-ceramic crowns: Bonding or cementing? Clin. Oral Investig. 2002, 6, 189–197. [Google Scholar] [CrossRef]
- Güleç, C.; Sarıkaya, I. The influence of aging on the fracture load of milled monolithic crowns. BMC Oral Health 2022, 22, 516. [Google Scholar] [CrossRef]
- Suksawat, N.; Angwaravong, O.; Angwarawong, T. Fracture resistance and fracture modes in endodontically treated maxillary premolars restored using different CAD-CAM onlays. J. Prosthodont. Res. 2023, 68, 290–298. [Google Scholar] [CrossRef]
- VITA Zahnfabrik Home Page. Available online: http://www.vita-zahnfabrik.com (accessed on 18 June 2024).
- Ivoclar Vivadent Home Page. Available online: https://d3tfk74ciyjzum.cloudfront.net/annexes/ips_emax_cad_ifu_es.pdf (accessed on 30 July 2024).
- GC International AG Home Page. Available online: https://www.gc.dental/europe/sites/europe.gc.dental/files/products/downloads/cerasmart/leaflet/LFL_CERASMART_es.pdf (accessed on 17 August 2024).
- SprintRay Home Page. Available online: https://sprintray.com/midas-dental-restoratives/ (accessed on 10 June 2024).
- Goujat, A.; Abouelleil, H.; Colon, P.; Jeannin, C.; Pradelle, N.; Seux, D.; Grosgogeat, B. Mechanical properties and internal fit of 4 CAD-CAM block materials. J. Prosthet. Dent. 2018, 119, 384–389. [Google Scholar] [CrossRef]
- International Organization for Standardization Home Page. Available online: https://www.iso.org/standard/81718.html (accessed on 26 March 2025).
- I Elmokadem, M.; Haggag, K.M.; Mohamed, H.R. Effect of Thermo-mechanical Cycling on Fracture Resistance of Different CAD/CAM Crowns: An In Vitro Study. J. Contemp. Dent. Pract. 2024, 25, 29–34. [Google Scholar] [CrossRef]
- Ahlholm, P.; Sipilä, K.; Tarvonen, P.-L.; Silvast, T.; Lappalainen, R. Accuracy of Dental Restorations Fabricated Using Milling vs 3D-Printed Molds: A Pilot Study. Int. J. Prosthodont. 2024, 37, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Lai, T.; Malyala, R. Fracture toughness and brittleness of novel CAD/CAM resin composite block. Dent. Mater. 2022, 38, e308–e317. [Google Scholar] [CrossRef] [PubMed]
- Prause, E.; Malgaj, T.; Kocjan, A.; Beuer, F.; Hey, J.; Jevnikar, P.; Schmidt, F. Mechanical properties of 3D-printed and milled composite resins for definitive restorations: An in vitro comparison of initial strength and fatigue behavior. J. Esthet. Restor. Dent. 2023, 36, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Temizci, T.; Bozoğulları, H.N. Effect of thermocycling on the mechanical properties of permanent composite-based CAD-CAM restorative materials produced by additive and subtractive manufacturing techniques. BMC Oral Health 2024, 24, 334. [Google Scholar] [CrossRef]
- An, S.-J.; Lee, H.; Ahn, J.-S.; Lee, J.-H.; Lee, H.-H.; Choi, Y.-S. Influence of thermo-mechanical aging on fracture resistance and wear of digitally standardized chairside computer-aided-designed/computer-assisted-manufactured restorations. J. Dent. 2023, 130, 104450. [Google Scholar] [CrossRef]
- Ling, L.; Ma, Y.; Malyala, R. A novel CAD/CAM resin composite block with high mechanical properties. Dent. Mater. 2021, 37, 1150–1155. [Google Scholar] [CrossRef]
- Güngör, M.B.; Nemli, S.K. Fracture resistance of CAD-CAM monolithic ceramic and veneered zirconia molar crowns after aging in a mastication simulator. J. Prosthet. Dent. 2018, 119, 473–480. [Google Scholar] [CrossRef]
- Waltimo, A.; Könönen, M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Eur. J. Oral Sci. 1993, 101, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Fayed, A.K.; Azer, A.S.; AboElhassan, R.G. Fit accuracy and fracture resistance evaluation of advanced lithium disilicate crowns (in- vitro study). BMC Oral Health 2025, 25, 58. [Google Scholar] [CrossRef] [PubMed]
- Laborie, M.; Naveau, A.; Menard, A. CAD-CAM resin-ceramic material wear: A systematic review. J. Prosthet. Dent. 2022, 131, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Alsaeed, A.Y. Bonding CAD/CAM materials with current adhesive systems: An overview. Saudi Dent. J. 2022, 34, 259–269. [Google Scholar] [CrossRef]
- Balladares, A.O.; Abad-Coronel, C.; Ramos, J.C.; Fajardo, J.I.; Paltán, C.A.; Biedma, B.J.M. Comparative Study of the Influence of Heat Treatment on Fracture Resistance of Different Ceramic Materials Used for CAD/CAM Systems. Materials 2024, 17, 1246. [Google Scholar] [CrossRef]
- May, L.G.; Kelly, J.R.; Bottino, M.A.; Hill, T. Effects of cement thickness and bonding on the failure loads of CAD/CAM ceramic crowns: Multi-physics FEA modeling and monotonic testing. Dent. Mater. 2012, 28, e99–e109. [Google Scholar] [CrossRef]
- Abad-Coronel, C.; Naranjo, B.; Valdiviezo, P. Adhesive Systems Used in Indirect Restorations Cementation: Review of the Literature. Dent. J. 2019, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Ivoclar Vivadent Home Page. Available online: https://www.ivoclar.com/es_es/products/digital-processes/ips-e.max-cad (accessed on 17 June 2024).
- Chirumamilla, G.; Goldstein, C.E.; Lawson, N.C. A 2-year Retrospective Clinical study of Enamic Crowns Performed in a Private Practice Setting. J. Esthet. Restor. Dent. 2016, 28, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.; Ardu, S.; di Bella, E.; Krejci, I.; Duc, O. Efficiency of 3D printed composite resin restorations compared with subtractive materials: Evaluation of fatigue behavior, cost, and time of production. J. Prosthet. Dent. 2022, 131, 943–950. [Google Scholar] [CrossRef] [PubMed]
GROUP | MATERIAL | FM | ABRV. | MANUFACTURER | COMPOSITION | LOT CODE |
---|---|---|---|---|---|---|
| VITA Enamic | 23 GPa | VE | Vita Zahnfabrik; Bad Säckingen, Alemania | Feldspathic ceramic 86% and acrylate polymer 14% [17]. | 219250 |
| IPS E.max CAD | 52 GPa | EM | Ivoclar Vivadent; Schaan, Liechtenstein, Alemania | Feldspathic ceramic reinforced with lithium disilicate [18]. | YBC324 |
| Cerasmart (Polymeric) | 25 GPa | CS | GC Corporation; Tokyo, Japan | Silica nanoparticles (20 nm) and barium glass (300 nm), 71 wt%, Bis-MEPP, UDMA, and DMA polymers, 29 wt% [19]. | 2401171 |
| Ceramic Crown (Polymeric) | 70 GPa | CC | Sprintray; CA, USA | Resin with 70% ceramic filler [20]. | M24J012 |
Material | Mean (N) | Standard Deviation | Minimum (N) | Maximum (N) |
---|---|---|---|---|
VE | 173 | 30 | 134.34 | 209.67 |
EM | 440 | 56 | 377.50 | 534.02 |
CS | 265 | 18 | 235.13 | 291.32 |
CC | 306 | 73 | 207.97 | 426.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abad-Coronel, C.; Freire Bonilla, C.; Vidal, S.; Rosero, F.; Encalada Abad, C.; Mena Córdova, N.; Paltán, C.A.; Fajardo, J.I.; Aliaga, P. Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography. Polymers 2025, 17, 2322. https://doi.org/10.3390/polym17172322
Abad-Coronel C, Freire Bonilla C, Vidal S, Rosero F, Encalada Abad C, Mena Córdova N, Paltán CA, Fajardo JI, Aliaga P. Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography. Polymers. 2025; 17(17):2322. https://doi.org/10.3390/polym17172322
Chicago/Turabian StyleAbad-Coronel, Cristian, Cinthya Freire Bonilla, Sebastián Vidal, Fabián Rosero, Carolina Encalada Abad, Nancy Mena Córdova, César A. Paltán, Jorge I. Fajardo, and Paulina Aliaga. 2025. "Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography" Polymers 17, no. 17: 2322. https://doi.org/10.3390/polym17172322
APA StyleAbad-Coronel, C., Freire Bonilla, C., Vidal, S., Rosero, F., Encalada Abad, C., Mena Córdova, N., Paltán, C. A., Fajardo, J. I., & Aliaga, P. (2025). Evaluating a Novel 3D-Printed Resin for Dental Restorations: Fracture Resistance of Restorations Fabricated by Digital Press Stereolithography. Polymers, 17(17), 2322. https://doi.org/10.3390/polym17172322