Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays
Abstract
1. Introduction
2. Shielding Material Design
3. Materials and Methods
3.1. Materials
3.2. Characterization Methods
4. Results and Discussion
4.1. Powder Coupling Modification
4.2. Effect of Tungsten Content on Mechanical Properties
4.3. Effect of Tungsten Content on Thermal Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, C.H.; Kang, Q.; Duan, Z.S.; Qin, B.; Feng, X.J.; Lu, H.Y.; Lin, Y.Y. Development of Polymer Composites in Radiation Shielding Applications: A Review. J. Inorg. Organomet. Polym. Mater. 2023, 33, 2191–2239. [Google Scholar] [CrossRef]
- Gan, B.; Liu, S.C.; He, Z.; Chen, F.C.; Niu, H.X.; Cheng, J.C.; Tan, B.; Yu, B. Research Progress of Metal-Based Shielding Materials for Neutron and Gamma Rays. Acta Metall. Sin. (Engl. Lett.) 2021, 34, 1609–1617. [Google Scholar] [CrossRef]
- Abdullah, M.A.H.; Rashid, R.S.M.; Amran, M.; Hejazii, F.; Azreen, N.M.; Fediuk, R.; Voo, Y.L.; Vatin, N.I.; Idris, M.I. Recent Trends in Advanced Radiation Shielding Concrete for Construction of Facilities: Materials and Properties. Polymers 2022, 14, 2830. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Aburaia, W.A.; Saeed, A. Attenuation ability of tungsten and cadmium-reinforced polymeric materials as protective shields against gamma radiation and thermal neutrons. Ann. Nucl. Energy 2025, 218, 111412. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Saeed, A. Recycling lead-acid batteries in polymeric materials to enhance their efficiency as gamma ray shielding materials. J. Alloys Compd. 2025, 1024, 180277. [Google Scholar] [CrossRef]
- Liu, X.Q.; Deng, Z.H.; Mao, F.; Shi, X.Q. Research on the Heat Resistance of Neutron Shielding Materials for Reactor Chambers. Nucl. Technol. 2021, 44, 87–92. [Google Scholar]
- Huang, G.; Gong, J.J.; Xia, W.M.; Chen, J.J. Preparation and properties of high temperature resistant neutron shielding poly(4-methyl-1-pentene)/boron carbide composite materials. J. Radioanal. Nucl. Chem. 2022, 331, 4695–4704. [Google Scholar] [CrossRef]
- Gilys, L.; Griskonis, E.; Griskevicius, P.; Adliene, D. Lead Free Multilayered Polymer Composites for Radiation Shielding. Polymers 2022, 14, 1696. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Saeed, A. Thermal neutrons-gamma rays dual-function glass shield of boron-tungsten-reinforced borosilicate glass. Mater. Res. Bull. 2025, 192, 113606. [Google Scholar] [CrossRef]
- Aloraini, D.A.; Aburaia, W.A.; Saeed, A. An efcient attenuator for gamma rays and slow neutrons of elastic and transparent lead sodium zinc calcium borate glass. Opt. Quantum Electron. 2024, 56, 340. [Google Scholar] [CrossRef]
- Din, H.M.N.E.; Saeed, A.; Salem, E.; Shazly, R.M.E.; Wahab, M.A. Silicate Glass Reinforced by Bi and B as Efficient Protective Materials Against Gamma Rays and Neutrons. J. Nucl. Eng. Radiat. Sci. 2025, 11, 032001. [Google Scholar] [CrossRef]
- Hu, H.S.; Xu, H.; Zhang, G.G.; Wang, Q.S.; Xie, Z.S.; Zhu, J.; Zhang, J.F. Optimization Design of New Nuclear Radiation Shielding Materials. At. Energy Sci. Technol. 2005, 39, 363–366. [Google Scholar]
- Johansson, P.I.; Holmqvist, B. An Experimental Study of the Prompt Fission Neutron Spectrum Induced by 0.5 MeV Neutrons Incident on Uraniμm-235. Nucl. Sci. Eng. 1977, 62, 695–708. [Google Scholar] [CrossRef]
- Michaiewicz, Z.; Nazhiyath, G. Genocop III: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In Proceedings of the IEEE International Conference on Evolutionary Computation, Perth, WA, Australia, 29 November–1 December 1995; pp. 647–651. [Google Scholar]
- Kong, X.W.; Hu, W.Q.; Du, Z.F.; Sun, T.; Ma, Z.Q. Effect of surface modification on the microstructure and sintering characteristics of tungsten nanopowders prepared by a wet chemical method. Philos. Mag. Lett. 2021, 101, 253–263. [Google Scholar] [CrossRef]
- Dokmai, V.; Sinthiptharakoon, K.; Phuthong, W.; Pavarajarn, V. Anisotropic robustness of talc particles after surface modifications probed by atomic force microscopy force spectroscopy. Particuology 2021, 58, 308–315. [Google Scholar] [CrossRef]
- Li, X.M.; Wu, J.Y.; Tang, C.Y.; He, Z.K.; Yuan, P.; Sun, Y.; Lau, W.M.; Zhang, K.; Mei, J.; Huang, Y.H. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos. Part B Eng. 2019, 159, 355–361. [Google Scholar] [CrossRef]
- Kipcak, A.S.; Gurses, P.; Derun, E.M.; Tugrul, N.; Piskin, S. Characterization of boron carbide particles and its shielding behavior against neutron radiation. Energy Convers. Manag. 2013, 72, 39–44. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Lu, J.X.; Li, P.; Li, X.J.; Yuan, G.G.; Zuo, Y.F. Construction of high-efficiency fixing structure of waterborne paint on silicate-modified poplar surfaces by bridging with silane coupling agents. Prog. Org. Coat. 2022, 167, 106846. [Google Scholar] [CrossRef]
- Premalal, H.; Ismail, H.; Baharin, A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym. Test. 2002, 21, 833–839. [Google Scholar] [CrossRef]
- Ansari, M.N.M.; Ismail, H. The Effect of Silane Coupling Agent on Mechanical Properties of Feldspar Filled Polypropylene Composites. J. Reinf. Plast. Compos. 2009, 28, 3049–3060. [Google Scholar] [CrossRef]
- Fu, S.Y.; Lauke, B. Effects of fiber length and fiber orientation distributions on the tensile strength of short-fiber-reinforced polymers. Compos. Sci. Technol. 1996, 56, 1179–1190. [Google Scholar] [CrossRef]
- Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 1905, 17, 549–560. [Google Scholar] [CrossRef]
- Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20–25. [Google Scholar] [CrossRef]
- Nielsen, L.E. Simple theory of stress-strain properties of filled polymers. J. Appl. Polym. Sci. 1966, 10, 97–103. [Google Scholar] [CrossRef]
- Nicolais, L.; Nicodemo, L. The Effect of Particles Shape on Tensile Properties of Glassy Thermoplastic Composites. Int. J. Polym. Mater. 1974, 3, 229–243. [Google Scholar] [CrossRef]
Component | PMP | W | B4C | (g/cm3) |
---|---|---|---|---|
Optimal Results | 0.500 | 0.4865 | 0.0135 | 1.585 |
No. | Component | PMP | W | B4C | Density (g/cm3) |
---|---|---|---|---|---|
1 | Optimized | 0.5000 | 0.4865 | 0.0135 | 1.585 |
2 | Ratio 1 | 0.6000 | 0.3865 | 0.0135 | 1.341 |
3 | Ratio 2 | 0.7000 | 0.2865 | 0.0135 | 1.162 |
4 | Ratio 3 | 0.5000 | 0.4000 | 0.1000 | 1.514 |
5 | Ratio 4 | 0.5000 | 0.4500 | 0.0500 | 1.554 |
Content | Component (PMP Base Material) | Notes | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
coupling modification | 30%B4C | 30%m-B4C | 40%W | 40%m-W | -- | -- | -- | Binary material |
tungsten content | 0 | 1.35%B4C | 2%W + 1.35%B4C | 20%W + 1.35%B4C | 30%W + 1.35%B4C | 40%W + 1.35%B4C | 48.65%W + 1.35%B4C | Filler modified |
PMP | 0.0135 Fillers | 0.0335 Fillers | 0.2135 Fillers | 0.3135 Fillers | 0.4135 Fillers | 0.5 Fillers | |
---|---|---|---|---|---|---|---|
T5% (°C) | 407.66 | 408.7 | 408.87 | 414.65 | 416.67 | 418.85 | 419.37 |
T10% (°C) | 417.21 | 418.9 | 421.75 | 425.36 | 427.12 | 429.14 | 430.04 |
T50% (°C) | 439.42 | 441.78 | 448.07 | 450.36 | 452.78 | 457.45 | 467.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Luo, F.; Li, X.; Chen, X.; Guo, Z. Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays. Polymers 2025, 17, 2306. https://doi.org/10.3390/polym17172306
Yu M, Luo F, Li X, Chen X, Guo Z. Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays. Polymers. 2025; 17(17):2306. https://doi.org/10.3390/polym17172306
Chicago/Turabian StyleYu, Ming, Fan Luo, Xiaoling Li, Xianglei Chen, and Zhirong Guo. 2025. "Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays" Polymers 17, no. 17: 2306. https://doi.org/10.3390/polym17172306
APA StyleYu, M., Luo, F., Li, X., Chen, X., & Guo, Z. (2025). Design and Fabrication of High-Temperature-Resistant Poly(4-methyl-1-pentene) Loaded with Tungsten and Boron Carbide Particles Against Neutron and Gamma Rays. Polymers, 17(17), 2306. https://doi.org/10.3390/polym17172306