Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design
Abstract
1. Introduction
2. Methods
2.1. Preparation of Various Graft Polypropylene Systems
2.2. MD Simulation of Graft Polypropylene by COMPASS Forcefield
2.3. Atomic Quantities Computation of Equilibrated Polypropylene
3. Results and Discussion
3.1. One-Shot Screening of Graft Effect on Chain Mobility
3.2. Identification of Atomic Features Responsible for Graft Chain Mobility
3.2.1. Correlation Between Atomic Energy and Chain Mobility
3.2.2. Correlation Between Atomic Voronoi Volume and Chain Mobility
3.2.3. Correlation Between Atomic Stress and Chain Mobility
3.3. Sampling-Average Screening of Graft Chain Mobility
3.4. Energy Landscape Interpretation of Graft Chain Mobility
3.5. Arrhenius-Dependance Screening of Graft Chain Mobility
3.6. Thermal Stability Comparison by Three-Stage Virtual Screening
3.7. Precision Resolution of Ergodic Roughness Metrics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, A.; Misra, B.N. Grafting: A versatile means to modify polymers: Techniques, factors and applications. Prog. Polym. Sci. 2004, 29, 767–814. [Google Scholar] [CrossRef]
- Roy, D.; Guthrie, J.T.; Perrier, S. Graft Polymerization: Grafting Poly(styrene) from Cellulose via Reversible Addition−Fragmentation Chain Transfer (RAFT) Polymerization. Macromolecules 2005, 38, 10363–10372. [Google Scholar] [CrossRef]
- Henry, G.R.P.; Drooghaag, X.; Rousseaux, D.D.J.; Sclavons, M.; Devaux, J.; Marchand-Brynaert, J.; Carlier, V. A practical way of grafting maleic anhydride onto polypropylene providing high anhydride contents without sacrificing excessive molar mass. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2936–2947. [Google Scholar] [CrossRef]
- Zujovic, Z.; Chan, E.W.C.; Travas-Sejdic, J. Negatively Charged Poly(acrylic acid) Side Chains Grafted onto Poly(3-hexylthiophene): Impact on the Structural Order and Molecular Dynamics. Macromolecules 2024, 57, 7123–7137. [Google Scholar] [CrossRef]
- Sugiyama, F.; Kleinschmidt, A.T.; Kayser, L.V.; Rodriquez, D.; Finn, M.; Alkhadra, M.A.; Wan, J.M.-H.; Ramírez, J.; Chiang, A.S.-C.; Root, S.E.; et al. Effects of flexibility and branching of side chains on the mechanical properties of low-bandgap conjugated polymers. Polym. Chem. 2018, 9, 4354–4363. [Google Scholar] [CrossRef] [PubMed]
- Farhangi, S.; Weiss, H.; Duhamel, J. Effect of Side-Chain Length on the Polymer Chain Dynamics of Poly(alkyl methacrylate)s in Solution. Macromolecules 2013, 46, 9738–9747. [Google Scholar] [CrossRef]
- Duan, F.; Liu, G.; Zhang, J.; Zhao, X.; Wang, Q.; Zhao, Y. Side-Chain Architecture-Dependent Thermoresponsive Behaviors of Graft Polymers with Poly(N-isopropylacrylamide) Pendants. Macromolecules 2025, 58, 1594–1607. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, X.; Zhang, Y.; Hill, D.J.T.; Zhang, A.; Kong, D.; Hawker, C.J.; Whittaker, A.K.; Zhang, C. Discrete Side Chains for Direct Tuning Properties of Grafted Polymers. Macromolecules 2024, 57, 11753–11762. [Google Scholar] [CrossRef]
- Mravic, M.; Thomaston, J.L.; Tucker, M.; Solomon, P.E.; Liu, L.; DeGrado, W.F. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 2019, 363, 1418–1423. [Google Scholar] [CrossRef]
- Tran, D.T.; Gumyusenge, A.; Luo, X.; Roders, M.; Yi, Z.; Ayzner, A.L.; Mei, J. Effects of Side Chain on High Temperature Operation Stability of Conjugated Polymers. ACS Appl. Polym. Mater. 2020, 2, 91–97. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Z.; Schoenholz, S.; Cubuk, E.D.; Smedskjaer, M.M.; Sun, Y.; Wang, W.; Bauchy, M. Learning Molecular Dynamics: Predicting the Dynamics of Glasses by a Machine Learning Simulator. Mater Horiz. 2023, 10, 3416–3428. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.J.; Radhakrishnan, R.; Composto, R.J. Molecular Dynamics Study of the Effect of Grafting Density on Ion Diffusivity in a MARTINI Coarse-Grained Strong Polyelectrolyte Brush. Macromolecules 2024, 57, 6003–6012. [Google Scholar] [CrossRef]
- Xu, X.; Xu, W.S. Melt Properties and String Model Description of Glass Formation in Graft Polymers of Different Side-Chain Lengths. Macromolecules 2022, 55, 3221–3235. [Google Scholar] [CrossRef]
- Chen, G.; Dormidontova, E.E. Cyclic vs Linear Bottlebrush Polymers in Solution: Side-Chain Length Effect. Macromolecules 2023, 56, 3286–3295. [Google Scholar] [CrossRef]
- Xu, X.; Douglas, J.F.; Xu, W.S. Influence of Side-Chain Length and Relative Rigidities of Backbone and Side Chains on Glass Formation of Branched Polymers. Macromolecules 2021, 54, 6327–6341. [Google Scholar] [CrossRef]
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar]
- Pervaje, A.K.; Pasquinelli, M.A.; Khan, S.A.; Santiso, E.E. Multiscale Constitutive Modeling of the Mechanical Properties of Polypropylene Fibers from Molecular Simulation Data. Macromolecules 2022, 55, 728–744. [Google Scholar] [CrossRef]
- Deckers, F.; Rasim, K.; Schröder, C. Molecular dynamics simulation of polypropylene: Diffusion and sorption of H2O, H2O2, H2, O2 and determination of the glass transition temperature. J. Polym. Res. 2022, 29, 463. [Google Scholar] [CrossRef]
- Sastry, S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids. Nature 2001, 409, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Sastry, S.; Debenedetti, P.G.; Stillinger, F.H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid. Nature 1998, 393, 554–557. [Google Scholar] [CrossRef]
- Nicolas, A.; Ferrero, E.E.; Martens, K.; Barrat, J.L. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev. Mod. Phys. 2018, 90, 045006. [Google Scholar] [CrossRef]
- Lacks, D.J. Energy Landscapes and the Non-Newtonian Viscosity of Liquids and Glasses. Phys. Rev. Lett. 2001, 87, 225502. [Google Scholar] [CrossRef] [PubMed]
- Debenedetti, P.G.; Stillinger, F.H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Mannan, S.; Bihani, V.; Krishnan, N.M.A.; Mauro, J.C. Navigating energy landscapes for materials discovery: Integrating modeling, simulation, and machine learning. Mater. Genome Eng. Adv. 2024, 2, e25. [Google Scholar] [CrossRef]
- Tang, L.; Liu, H.; Ma, G.; Du, T.; Mousseau, N.; Zhou, W.; Bauchy, M. The energy landscape governs ductility in disordered materials. Mater. Horiz. 2021, 8, 1242–1252. [Google Scholar] [CrossRef]
- Chen, K.; Schweizer, K.S. Theory of aging, rejuvenation, and the nonequilibrium steady state in deformed polymer glasses. Phys. Rev. E 2010, 82, 041804. [Google Scholar] [CrossRef]
- Thirumalaiswamy, A.; Riggleman, R.A.; Crocker, J.C. Exploring canyons in glassy energy landscapes using metadynamics. Proc. Natl. Acad. Sci. USA 2022, 119, e2210535119. [Google Scholar] [CrossRef]
- Barkema, G.T.; Mousseau, N. Event-Based Relaxation of Continuous Disordered Systems. Phys. Rev. Lett. 1996, 77, 4358–4361. [Google Scholar] [CrossRef]
- Bauchy, M.; Wang, M.; Yu, Y.; Wang, B.; Krishnan, N.M.A.; Masoero, E.; Ulm, F.-J.; Pellenq, R. Topological Control on the Structural Relaxation of Atomic Networks under Stress. Phys. Rev. Lett. 2017, 119, 035502. [Google Scholar] [CrossRef]
- Berthier, L.; Ediger, M.D. How to “measure” a structural relaxation time that is too long to be measured? J. Chem. Phys. 2020, 153, 044501. [Google Scholar] [CrossRef]
- Schoenholz, S.S.; Cubuk, E.D.; Sussman, D.M.; Kaxiras, E.; Liu, A.J. A structural approach to relaxation in glassy liquids. Nat. Phys. 2016, 12, 469–471. [Google Scholar] [CrossRef]
- Park, J.M.; Park, C.S.; Kwak, S.K.; Sun, J.Y. Glass transition temperature as a unified parameter to design self-healable elastomers. Sci. Adv. 2024, 10, eadp0729. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Smedskjaer, M.M.; Bauchy, M. Deciphering a structural signature of glass dynamics by machine learning. Phys. Rev. B 2022, 106, 214206. [Google Scholar] [CrossRef]
- Gopinath, G.; Lee, C.S.; Gao, X.Y.; An, X.-D.; Chan, C.-H.; Yip, C.-T.; Deng, H.-Y.; Lam, C.-H. Diffusion-Coefficient Power Laws and Defect-Driven Glassy Dynamics in Swap Acceleration. Phys. Rev. Lett. 2022, 129, 168002. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, L.; Wei, Z.; Smedskjaer, M.M.; Zheng, X.R.; Bauchy, M. De Novo Atomistic Discovery of Disordered Mechanical Metamaterials by Machine Learning. Adv. Sci. 2024, 11, 2304834. [Google Scholar] [CrossRef]
- Xie, T.; France-Lanord, A.; Wang, Y.; Shao-Horn, Y.; Grossman, J.C. Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. Nat. Commun. 2019, 10, 2667. [Google Scholar] [CrossRef]
- Liu, H.; Dong, S.; Tang, L.; Krishnan, N.A.; Masoero, E.; Sant, G.; Bauchy, M. Long-term creep deformations in colloidal calcium–silicate–hydrate gels by accelerated aging simulations. J. Colloid Interface Sci. 2019, 542, 339–346. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, S.; Tang, L.; Bao, E.; Li, E.; Yang, C.; Zhao, Z.; Sant, G.; Smedskjaer, M.M.; Guo, L.; et al. Predicting the early-stage creep dynamics of gels from their static structure by machine learning. Acta Mater. 2021, 210, 116817. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Z.; Zhou, Q.; Chen, R.; Yang, K.; Wang, Z.; Tang, L.; Bauchy, M. Challenges and opportunities in atomistic simulations of glasses: A review. Comptes Rendus Géoscience 2022, 354 (Suppl. S1), 35–77. [Google Scholar] [CrossRef]
- Bapst, V.; Keck, T.; Grabska-Barwińska, A.; Donner, C.; Cubuk, E.D.; Schoenholz, S.S.; Obika, A.; Nelson, A.W.R.; Back, T.; Hassabis, D.; et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 2020, 16, 448–454. [Google Scholar] [CrossRef]
- Wilkinson, C.J.; Mauro, J.C. Explorer.py: Mapping the energy landscapes of complex materials. SoftwareX 2021, 14, 100683. [Google Scholar] [CrossRef]
- Jewett, A.I.; Stelter, D.; Lambert, J.; Saladi, S.M.; Roscioni, O.M.; Ricci, M.; Autin, L.; Maritan, M.; Bashusqeh, S.M.; Keyes, T.; et al. Moltemplate: A Tool for Coarse-Grained Modeling of Complex Biological Matter and Soft Condensed Matter Physics. J. Mol. Biol. 2021, 433, 166841. [Google Scholar] [CrossRef]
- Yamamoto, T. Molecular Dynamics of Crystallization in a Helical Polymer Isotactic Polypropylene from the Oriented Amorphous State. Macromolecules 2014, 47, 3192–3202. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; Veld, P.J.I.‘t.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D.; et al. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications—Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.C.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef]
- GitHub. lammps/tools/msi2lmp/frc_files/compass_published.frc at Develop lammps/lammps. Available online: https://github.com/lammps/lammps/blob/develop/tools/msi2lmp/frc_files/compass_published.frc (accessed on 26 July 2025).
- Fennell, C.J.; Gezelter, J.D. Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. J. Chem. Phys. 2006, 124, 234104. [Google Scholar] [CrossRef]
- Evans, D.J.; Holian, B.L. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Shi, Y.; Katz, M.B.; Li, H.; Falk, M.L. Evaluation of the Disorder Temperature and Free-Volume Formalisms via Simulations of Shear Banding in Amorphous Solids. Phys. Rev. Lett. 2007, 98, 185505. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.P.; Plimpton, S.J.; Mattson, W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 2009, 131, 154107. [Google Scholar] [CrossRef] [PubMed]
- Binder, K.; Kob, W. Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics; World Scientific: Singapore, 2011. [Google Scholar]
- Jay, A.; Gunde, M.; Salles, N.; Poberžnik, M.; Martin-Samos, L.; Richard, N.; de Gironcoli, S.; Mousseau, N.; Hémeryck, A. Activation–Relaxation Technique: An efficient way to find minima and saddle points of potential energy surfaces. Comput. Mater. Sci. 2022, 209, 111363. [Google Scholar] [CrossRef]
- Zubieta Rico, P.F.; Schneider, L.; Pérez-Lemus, G.R.; Alessandri, R.; Dasetty, S.; Nguyen, T.D.; Menéndez, C.A.; Wu, Y.; Jin, Y.; Xu, Y.; et al. PySAGES: Flexible, advanced sampling methods accelerated with GPUs. npj Comput. Mater. 2024, 10, 35. [Google Scholar] [CrossRef]
- Crabb, E.; France-Lanord, A.; Leverick, G.; Stephens, R.; Shao-Horn, Y.; Grossman, J.C. Importance of Equilibration Method and Sampling for Ab Initio Molecular Dynamics Simulations of Solvent–Lithium-Salt Systems in Lithium-Oxygen Batteries. J. Chem. Theory Comput. 2020, 16, 7255–7266. [Google Scholar] [CrossRef] [PubMed]
- Karuth, A.; Alesadi, A.; Xia, W.; Rasulev, B. Predicting glass transition of amorphous polymers by application of cheminformatics and molecular dynamics simulations. Polymer 2021, 218, 123495. [Google Scholar] [CrossRef]
- Ma, D.; Hou, J.; Zhang, G.; Meng, S.; Zhang, R.; Xiong, J.; He, W.; Zhang, X.; Zhang, M.; Zhang, Z. Significantly Enhancing the Energy-Storage Properties of Polypropylene Films by Physically Manipulating Their Permittivity and Crystalline Behavior with Polar Organic Molecules. Adv. Funct. Mater. 2025, 35, 2418631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Meng, S.; Li, L. Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design. Polymers 2025, 17, 2298. https://doi.org/10.3390/polym17172298
Liu H, Meng S, Li L. Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design. Polymers. 2025; 17(17):2298. https://doi.org/10.3390/polym17172298
Chicago/Turabian StyleLiu, Han, Sen Meng, and Liantang Li. 2025. "Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design" Polymers 17, no. 17: 2298. https://doi.org/10.3390/polym17172298
APA StyleLiu, H., Meng, S., & Li, L. (2025). Energy Landscape-Guided Virtual Screening of Side-Chain Engineering in Polymer Dynamics Design. Polymers, 17(17), 2298. https://doi.org/10.3390/polym17172298