Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors
Abstract
1. Introduction
2. Experiments
2.1. Materials
2.2. Preparation of BMPDA
2.3. Loading of MBI
2.4. Fabrication of Coatings
2.5. Characterization
2.6. Release Behavior of Inhibitors from M-M@P Nanocontainers
2.7. Corrosion and Self-Healing Performance of WEP/M-M@P Coating
3. Results and Discussion
3.1. Characterization of BMPDA, M-M, and M-M@P
3.2. Release Performance of M-M@P
3.3. Anticorrosion and Self-Healing Performance
Nanocomposite Coatings in NaCl Solution at Different pH Values
3.4. Self-Healing Mechanism of WEP/M-M@P Coatings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.-M. Role of Organic and Eco-Friendly Inhibitors on the Corrosion Mitigation of Steel in Acidic Environments—A State-of-Art Review. Molecules 2021, 26, 3473. [Google Scholar] [CrossRef]
- Kousar, K.; Walczak, M.S.; Ljungdahl, T.; Wetzel, A.; Oskarsson, H.; Restuccia, P.; Ahmad, E.A.; Harrison, N.M.; Lindsay, R. Corrosion inhibition of carbon steel in hydrochloric acid: Elucidating the performance of an imidazoline-based surfactant. Corros. Sci. 2021, 180, 109195. [Google Scholar] [CrossRef]
- Yuan, S.; Zhao, X.; Jin, Z.; Deng, J.; Zhang, H.; Wu, S.; Duan, J.; Greenfield, D.T.; Hou, B. Fabrication of robust, durable and integrated Janus coating for corrosion and fouling protection in marine environment. Prog. Org. Coat. 2024, 187, 108152. [Google Scholar] [CrossRef]
- Zehra, S.; Mobin, M.; Aslam, J. An overview of the corrosion chemistry. Environ. Sustain. Corros. Inhib. 2022, 3–23. [Google Scholar] [CrossRef]
- Xu, D.; Gu, T.; Lovley, D.R. Microbially mediated metal corrosion. Nat. Rev. Microbiol. 2023, 21, 705–718. [Google Scholar] [CrossRef] [PubMed]
- Nieva, N.E.; Borgnino, L.; García, M.G. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ. Pollut. 2018, 242, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Jaiswal, A.; Ji, G.; Prakash, R. Waste Solanum melongena stem extract for corrosion inhibition of mild steel in 1M NaCl. Mater. Today Proc. 2021, 44, 2716–2720. [Google Scholar] [CrossRef]
- Guo, Z.; Hui, X.; Zhao, Q.; Guo, N.; Yin, Y.; Liu, T. Pigmented Pseudoalteromonas piscicida exhibited dual effects on steel corrosion: Inhibition of uniform corrosion and induction of pitting corrosion. Corros. Sci. 2021, 190, 109687. [Google Scholar] [CrossRef]
- Chen, X.; Qu, Z.; Xie, M.; Zhang, M.; Ai, J.; Ren, G.; Gao, Y.; Yang, Y. In-situ crosslinking reaction of graphene oxide & waterborne epoxy resin to construct continuous phase anticorrosive coating. Arab. J. Chem. 2024, 17, 105795. [Google Scholar] [CrossRef]
- Zhang, Z.; Yuan, H.; Qi, F.; Zhao, N.; Zhang, B.; Ouyang, X. Functionalized Modified BN@F-SiC Particle-Incorporating Epoxy: An Effective Hydrophobic Antiwear and Anticorrosion Coating Material. Ind. Eng. Chem. Res. 2021, 60, 8430–8441. [Google Scholar] [CrossRef]
- Song, W.; Zhao, X.; Jin, Z.; Ji, X.; Fan, L.; Yuan, S.; Ma, F.; Deng, J.; Duan, J.; Hou, B. Development of anti-corrosion coating with sandwich-like microvascular network for realization of self-healing and self-reporting properties based on coaxial electrospinning. Prog. Org. Coat. 2024, 196, 108744. [Google Scholar] [CrossRef]
- Ji, X.; Duan, J.; Zhao, X.; Pourhashem, S.; Hou, B. Application of AIE luminogen-loaded core–shell fibers in self-warning and self-healing polymer coatings with enhanced corrosion resistance. Compos. Part A Appl. Sci. Manuf. 2024, 182, 108213. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X.; Wang, J.; Hu, W. Preparation, corrosion resistance and self-healing behavior of Cu-MBT@HNTs/epoxy coating. React. Funct. Polym. 2021, 160, 104826. [Google Scholar] [CrossRef]
- Alizadegan, F.; Eivaz Mohammadloo, H.; Mirabedini, S.M.; Asemabadi, Z.; Sardari, A. Preparation of self-healing water-based epoxy coatings containing microcapsules, treated CeO2 particles and 8HQS corrosion inhibitor, and study of their anti-corrosion properties. Prog. Org. Coat. 2024, 195, 108660. [Google Scholar] [CrossRef]
- Sun, J.; Li, W.; Zhan, Y.; Tian, L.; Tian, H. Two preparation processes for anti-corrosion and self-healing epoxy coatings containing the poly (calcium alginate) microcapsules loaded with tung oil. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128600. [Google Scholar] [CrossRef]
- Shahini, M.H.; Taheri, N.; Mohammadloo, H.E.; Ramezanzadeh, B. A comprehensive overview of nano and micro carriers aiming at curtailing corrosion progression. J. Taiwan Inst. Chem. Eng. 2021, 126, 252–269. [Google Scholar] [CrossRef]
- Ramezanpour, J.; Ramezanzadeh, B.; Mohammadloo, H.E. Smart Corrosion Resistance Coatings Based on Hybrid Nanomaterials: The Recent Advancements and Achievements. In Nano-Hybrid Smart Coatings: Advancements in Industrial Efficiency and Corrosion Resistance; ACS Symposium Series; ACS Publications: Washington, DC, USA, 2024; Volume 1469, pp. 139–184. [Google Scholar]
- Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Corrosion protective self-healing epoxy resin coatings based on inhibitor and polymeric healing agents encapsulated in organic and inorganic micro and nanocontainers. Nano-Struct. Nano-Objects 2018, 16, 381–395. [Google Scholar] [CrossRef]
- Sun, W.; Tang, E.; Zhao, L.; Yuan, M.; Liu, S.; Xing, X.; Liu, X. The waterborne epoxy composite coatings with modified graphene oxide nanosheet supported zinc ion and its self-healing anticorrosion properties. Prog. Org. Coat. 2023, 182, 107609. [Google Scholar] [CrossRef]
- Nguyen, T.D.H.; Nong, T.T.; Nguyen, V.Q.; Nguyen, T.Q.; Le, Q.T. Investigation on the storage of benzotriazole corrosion inhibitor in TiO2 nanotube. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 025016. [Google Scholar] [CrossRef]
- Hong, M.-S.; Park, Y.; Kim, T.; Kim, K.; Kim, J.-G. Polydopamine/carbon nanotube nanocomposite coating for corrosion resistance. J. Mater. 2020, 6, 158–166. [Google Scholar] [CrossRef]
- Kiani, S.; Haddadi-Asl, V.; Khosravi, A.; Eivaz Mohammadloo, H.; Ahmadi, H. Designing a smart polyurethane anti-corrosion coating loaded with APTES/IMZ modified halloysite nanotubes. Surf. Coat. Technol. 2024, 492, 131179. [Google Scholar] [CrossRef]
- Ress, J.; Martin, U.; Bastidas, D.M. Improved Corrosion Protection of Acrylic Waterborne Coating by Doping with Microencapsulated Corrosion Inhibitors. Coatings 2021, 11, 1134. [Google Scholar] [CrossRef]
- Keyvani, A.; Yeganeh, M.; Rezaeyan, H. Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel. Prog. Nat. Sci. Mater. Int. 2017, 27, 261–267. [Google Scholar] [CrossRef]
- Qian, B.; Zheng, Z.; Michailidis, M.; Fleck, N.; Bilton, M.; Song, Y.; Li, G.; Shchukin, D. Mussel-Inspired Self-Healing Coatings Based on Polydopamine-Coated Nanocontainers for Corrosion Protection. ACS Appl. Mater. Interfaces 2019, 11, 10283–10291. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lin, H.; Zhang, X.; Chen, Y.; Bai, W.; Lin, Y.; Jian, R.; Xu, Y. Self-healing epoxy composite coating based on polypyrrole@MOF nanoparticles for the long-efficiency corrosion protection on steels. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130601. [Google Scholar] [CrossRef]
- Li, C.; Zhao, X.; Meng, C.; Zhang, T.; Sun, S.; Hu, S. Application of hollow mesoporous organosilica nanoparticles as pH and redox double stimuli-responsive nanocontainer in the controlled release of corrosion inhibitor molecules. Prog. Org. Coat. 2021, 159, 106437. [Google Scholar] [CrossRef]
- Ahmadi, H.; Haddadi-Asl, V.; Mohammadloo, H.E. Advancing anticorrosion and antibacterial performance of mg AZ31 implants using novel pH-responsive polymeric surfactant for preparing PLGA nanoparticles. Surf. Coat. Technol. 2024, 482, 130738. [Google Scholar] [CrossRef]
- Ugazio, E.; Gastaldi, L.; Brunella, V.; Scalarone, D.; Jadhav, S.A.; Oliaro-Bosso, S.; Zonari, D.; Berlier, G.; Miletto, I.; Sapino, S. Thermoresponsive mesoporous silica nanoparticles as a carrier for skin delivery of quercetin. Int. J. Pharm. 2016, 511, 446–454. [Google Scholar] [CrossRef]
- Bai, W.; Zhang, X.; He, Z.; Qian, Y.; Jian, R.; Lin, Y.; Xu, Y. Intelligent anti-corrosion coating with multiple protections using active nanocontainers of ZnAl LDH equipped with ZIF-8 encapsulated environment-friendly corrosion inhibitors. Prog. Org. Coat. 2023, 185, 107940. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, X.; Wang, X.; Li, W.; Yang, H. Synthesis and controlled release kinetics of pH-sensitive hollow polyaniline microspheres encapsuled with the corrosion inhibitor. J. Mol. Liq. 2021, 342, 117497. [Google Scholar] [CrossRef]
- Ryu, J.H.; Messersmith, P.B.; Lee, H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces 2018, 10, 7523–7540. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Cao, J.; Li, H.; Li, J.; Jin, Q.; Ren, K.; Ji, J. Mussel-Inspired Polydopamine: A Biocompatible and Ultrastable Coating for Nanoparticles in Vivo. ACS Nano 2013, 7, 9384–9395. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Yan, Y.; Such, G.K.; Liang, K.; Ochs, C.J.; Postma, A.; Caruso, F. Immobilization and Intracellular Delivery of an Anticancer Drug Using Mussel-Inspired Polydopamine Capsules. Biomacromolecules 2012, 13, 2225–2228. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.H.; Ryu, J.; Hong, S.K.; Lee, H.; Park, C.B. General functionalization route for cell adhesion on non-wetting surfaces. Biomaterials 2010, 31, 2535–2541. [Google Scholar] [CrossRef]
- Li, H.; Jiang, B.; Li, J. Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Adv. Colloid Interface Sci. 2021, 295, 102489. [Google Scholar] [CrossRef]
- Xia, N.N.; Xiong, X.M.; Wang, J.; Rong, M.Z.; Zhang, M.Q. A seawater triggered dynamic coordinate bond and its application for underwater self-healing and reclaiming of lipophilic polymer. Chem. Sci. 2016, 7, 2736–2742. [Google Scholar] [CrossRef]
- Kim, S.; Yoo, H.Y.; Huang, J.; Lee, Y.; Park, S.; Park, Y.; Jin, S.; Jung, Y.M.; Zeng, H.; Hwang, D.S.; et al. Salt Triggers the Simple Coacervation of an Underwater Adhesive When Cations Meet Aromatic π Electrons in Seawater. ACS Nano 2017, 11, 6764–6772. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Wu, H.; Zhao, H.; Mao, F.; Wang, L. A mussel-inspired delivery system for enhancing self-healing property of epoxy coatings. J. Mater. Sci. Technol. 2021, 80, 36–49. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Kong, L.; Du, Y.; Da, Y.; Sun, Z.; Dong, Y.; Zhang, W.; Liu, Y.; Tian, X.; et al. High-Loading Smart Carrier Containing 2-Mercaptobenzimidazole-Zn2+-Polydopamine with pH-Responsive Function to Fabricate High-Performance Waterborne Epoxy Anticorrosion Coatings. ACS Appl. Mater. Interfaces 2024, 16, 19651–19662. [Google Scholar] [CrossRef]
- Sheng, X.; Mo, R.; Ma, Y.; Zhang, X.; Zhang, L.; Wu, H. Waterborne Epoxy Resin/Polydopamine Modified Zirconium Phosphate Nanocomposite for Anticorrosive Coating. Ind. Eng. Chem. Res. 2019, 58, 16571–16580. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Wu, H.; Zhao, H.; Wang, L. A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings. Corros. Sci. 2021, 193, 109891. [Google Scholar] [CrossRef]
- Stefanoni, M.; Angst, U.; Elsener, B. Local electrochemistry of reinforcement steel–distribution of open circuit and pitting potentials on steels with different surface condition. Corros. Sci. 2015, 98, 610–618. [Google Scholar] [CrossRef]
- Adlani, L.; Benzbiria, N.; Titi, A.; Timoudan, N.; Warad, I.; AlObaid, A.; Al-Maswari, B.M.; Benhiba, F.; Touzani, R.; Zarrok, H. Adsorption and Inhibition Mechanisms of New Pyrazole Derivatives for Carbon Steel Corrosion in Hydrochloric Acid Solutions Based on Experimental, Computational, and Theoretical Calculations. ACS Omega 2024, 9, 13746–13763. [Google Scholar] [CrossRef] [PubMed]
- Chai, W.; Huang, Y.; Peng, W.; Han, G.; Cao, Y.; Liu, J. Enhanced separation of pyrite from high-sulfur bauxite using 2-mercaptobenzimidazole as chelate collector: Flotation optimization and interaction mechanisms. Miner. Eng. 2018, 129, 93–101. [Google Scholar] [CrossRef]
- Fu, Q.; Li, X.; Zhang, Q.; Yang, F.; Wei, W.; Xia, Z. A facile and versatile approach for controlling electroosmotic flow in capillary electrophoresis via mussel inspired polydopamine/polyethyleneimine co-deposition. J. Chromatogr. A 2015, 1416, 94–102. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Ramazani, S.A.A.; Mahdavian, M.; Arjmand, M. Epoxy nanocomposite coatings with enhanced dual active/barrier behavior containing graphene-based carbon hollow spheres as corrosion inhibitor nanoreservoirs. Corros. Sci. 2021, 185, 109428. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Miller, D.J.; Freeman, B.D.; Paul, D.R.; Bielawski, C.W. Elucidating the Structure of Poly(dopamine). Langmuir 2012, 28, 6428–6435. [Google Scholar] [CrossRef]
- Della Vecchia, N.F.; Avolio, R.; Alfè, M.; Errico, M.E.; Napolitano, A.; d’Ischia, M.J.A.F.M. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv. Funct. Mater. 2013, 23, 1331–1340. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, H.; Hou, P.; Qian, B.; Wang, X.; Guo, C.; Wang, L. Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host–Guest Inclusion for Self-Healing Anticorrosion Application. ACS Appl. Mater. Interfaces 2018, 10, 36229–36239. [Google Scholar] [CrossRef]
- Yin, D.; Yu, Z.; Chen, L.; Cao, K. Enhancement of the Anti-Corrosion Performance of Composite Epoxy Coatings in Presence of BTA-loaded Copper-Based Metal-Organic Frameworks. Int. J. Electrochem. Sci. 2019, 14, 4240–4253. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, C.; Zhao, H.; Wang, L. Hierarchically self-reporting and self-healing photothermal responsive coatings towards smart corrosion protection. Chem. Eng. J. 2023, 467, 143463. [Google Scholar] [CrossRef]
- Knorr, D.B., Jr.; Tran, N.T.; Gaskell, K.J.; Orlicki, J.A.; Woicik, J.C.; Jaye, C.; Fischer, D.A.; Lenhart, J.L. Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings. Langmuir 2016, 32, 4370–4381. [Google Scholar] [CrossRef]
- Tran, N.T.; Flanagan, D.P.; Orlicki, J.A.; Lenhart, J.L.; Proctor, K.L.; Knorr, D.B., Jr. Polydopamine and Polydopamine–Silane Hybrid Surface Treatments in Structural Adhesive Applications. Langmuir 2018, 34, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Tian, L.; Fan, Y.; Ye, W.; Qiao, Z.A.; Zhao, J.; Ren, L.; Ming, W. Stimuli-responsive self-healing anticorrosion coatings: From single triggering behavior to synergetic multiple protections. Mater. Today Chem. 2021, 22, 100575. [Google Scholar] [CrossRef]
- Doneux, T.; Buess-Herman, C.; Lipkowski, J. Electrochemical and FTIR characterization of the self-assembled monolayer of 2-mercaptobenzimidazole on Au (1 1 1). J. Electroanal. Chem. 2004, 564, 65–75. [Google Scholar] [CrossRef]
- Chang, D.; Gao, Y.; Wang, L.; Liu, G.; Chen, Y.; Wang, T.; Tao, W.; Mei, L.; Huang, L.; Zeng, X. Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy. J. Colloid Interface Sci. 2016, 463, 279–287. [Google Scholar] [CrossRef]
- Oh, G.H.; Yoon, J.K.; Huh, J.Y.; Doh, J.M. Effect of frequency of plasma electrolytic oxidation on the microstructure and corrosion resistance of 6061 aluminium alloy. Surf. Coat. Technol. 2023, 471, 129861. [Google Scholar] [CrossRef]
- Zhou, C.; Li, Z.; Li, J.; Yuan, T.; Chen, B.; Ma, X.; Jiang, D.; Luo, X.; Chen, D.; Liu, Y. Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers. Chem. Eng. J. 2020, 385, 123835. [Google Scholar] [CrossRef]
- Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy. ACS Appl. Mater. Interfaces 2019, 11, 4425–4438. [Google Scholar] [CrossRef]
- de Faria, D.L.A.; Venâncio Silva, S.; de Oliveira, M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878. [Google Scholar] [CrossRef]
- Balouria, V.; Kumar, A.; Samanta, S.; Singh, A.; Debnath, A.K.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Gupta, S.K. Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 2013, 181, 471–478. [Google Scholar] [CrossRef]
- Hedenstedt, K.; Bäckström, J.; Ahlberg, E. In-Situ Raman Spectroscopy of α- and γ-FeOOH during Cathodic Load. J. Electrochem. Soc. 2017, 164, H621. [Google Scholar] [CrossRef]
- Hu, J.; Li, S.; Chu, J.; Niu, S.; Wang, J.; Du, Y.; Li, Z.; Han, X.; Xu, P. Understanding the Phase-Induced Electrocatalytic Oxygen Evolution Reaction Activity on FeOOH Nanostructures. ACS Catal. 2019, 9, 10705–10711. [Google Scholar] [CrossRef]
- Holten-Andersen, N.; Harrington, M.J.; Birkedal, H.; Lee, B.P.; Messersmith, P.B.; Lee, K.Y.C.; Waite, J.H. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli. Proc. Natl. Acad. Sci. USA 2011, 108, 2651–2655. [Google Scholar] [CrossRef] [PubMed]
- Kowalchyk, W.K.; Davis, K.L.; Morris, M.D. Surface-enhanced resonance Raman spectroscopy of iron-dopamine complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, 145–151. [Google Scholar] [CrossRef]
- Ciubuc, J.D.; Bennet, K.E.; Qiu, C.; Alonzo, M.; Durrer, W.G.; Manciu, F.S. Raman computational and experimental studies of dopamine detection. Biosensors 2017, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Haddadi, S.A.; Ramazani, S.A.A.; Mahdavian, M.; Taheri, P.; Mol, J.M.C. Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors. Chem. Eng. J. 2018, 352, 909–922. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, Q.; Cheng, L.; Wu, H.; Zhao, H.; Wang, L. Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chem. Eng. J. 2020, 389, 124435. [Google Scholar] [CrossRef]
- Habibiyan, A.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G.; Kasaeian, M. Rational assembly of mussel-inspired polydopamine (PDA)-Zn (II) complex nanospheres on graphene oxide framework tailored for robust self-healing anti-corrosion coatings application. Chem. Eng. J. 2020, 391, 123630. [Google Scholar] [CrossRef]
Samples | Time (d) | RP × 103 (Ω·cm2) | CPEP × 10−6 (S s−n·cm−2) | np | RL × 104 (Ω·cm2) | CPEL × 10−4 (S s−n·cm−2) | nL | Rct × 104 (Ω·cm2) | CPEd × 10−6 (S s−n·cm−2) | ndl |
---|---|---|---|---|---|---|---|---|---|---|
WEP | 1 | 1.56 | 9.20 | 0.85 | 1.57 | 12.9 | 1 | 1.84 | 3.81 | 0.77 |
3 | 1.21 | 24.7 | 0.82 | 1.04 | 0.06 | 0.69 | 1.18 | 1.27 | 0.98 | |
7 | 1.15 | 3.74 | 0.78 | 0.79 | 18.8 | 1 | 1.07 | 9.07 | 0.85 | |
15 | 1.49 | 60.9 | 1 | 0.51 | 0.52 | 0.86 | 0.99 | 2.72 | 0.73 | |
20 | 1.41 | 82.8 | 0.90 | 0.39 | 1.64 | 1 | 0.82 | 2.96 | 0.71 | |
WEP/M-M | 1 | 116.1 | 1.13 | 1 | 369 | 0.01 | 0.94 | 346.5 | 1.20 | 0.71 |
3 | 174.4 | 1.04 | 0.80 | 107.5 | 0.09 | 0.74 | 107.4 | 0.001 | 0.93 | |
7 | 48.4 | 1.12 | 0.90 | 99.1 | 0.32 | 0.68 | 50.6 | 4.31 | 1 | |
15 | 89.2 | 2.67 | 0.61 | 20.1 | 0.02 | 1 | 23.9 | 4.04 | 0.51 | |
20 | 62.8 | 2.35 | 0.66 | 12.3 | 0.15 | 1 | 15.1 | 2.24 | 0.41 | |
WEP/M-M@P | 1 | 287.0 | 0.42 | 0.80 | 31.2 | 0.09 | 0.76 | 50.26 | 0.006 | 1 |
3 | 394.7 | 0.89 | 0.95 | 384.4 | 0.07 | 0.76 | 651.6 | 1.24 | 0.80 | |
7 | 564.5 | 1.08 | 1 | 409.0 | 0.01 | 0.95 | 724.9 | 0.59 | 0.79 | |
15 | 359.6 | 0.68 | 0.85 | 435.4 | 0.06 | 0.79 | 751.4 | 0.097 | 0.76 | |
20 | 314.0 | 2.63 | 0.80 | 444.0 | 0.01 | 0.95 | 791.7 | 0.70 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Yang, M.; Tian, H.; Hou, J.; Su, J.; Wang, Z.; Zhang, Z.; Tian, Y.; Zhou, L.; Hu, G.; et al. Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors. Polymers 2025, 17, 2265. https://doi.org/10.3390/polym17162265
Ji X, Yang M, Tian H, Hou J, Su J, Wang Z, Zhang Z, Tian Y, Zhou L, Hu G, et al. Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors. Polymers. 2025; 17(16):2265. https://doi.org/10.3390/polym17162265
Chicago/Turabian StyleJi, Xiaohong, Minghui Yang, Huiwen Tian, Jin Hou, Jingqiang Su, Zhen Wang, Zixue Zhang, Yuefeng Tian, Liangliang Zhou, Guanghua Hu, and et al. 2025. "Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors" Polymers 17, no. 16: 2265. https://doi.org/10.3390/polym17162265
APA StyleJi, X., Yang, M., Tian, H., Hou, J., Su, J., Wang, Z., Zhang, Z., Tian, Y., Zhou, L., Hu, G., Yang, Y., Duan, J., & Hou, B. (2025). Acid-Responsive Self-Healing Waterborne Epoxy Coating: Preparation, Release Behavior, and Anticorrosion Performance Based on Bowl-Shaped Mesoporous Polydopamine Nanocontainer Loaded with 2-MBI Inhibitors. Polymers, 17(16), 2265. https://doi.org/10.3390/polym17162265