3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analytical Techniques
2.3. Synthesis of PS
2.4. Adsorption of Uranium
2.4.1. Adsorption Capacity
2.4.2. Competing Adsorption Experiments
2.5. Cell Line and Culture
Cytotoxicity Assay
2.6. Effect of Chelating Agents on U(VI)-Induced NRK-52E Cells Injury
2.7. U(VI) Uptake and Release
2.8. Statistical Analysis
3. Results
3.1. Characterizations
3.2. Adsorption of Uranium
3.3. Cytotoxicity Assay
3.4. Effect of Chelating Agents on U(VI)-Induced NRK-52E Cells Injury
3.5. U(VI) Uptake and Release
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Liu, J.; Zhang, W.; Zhou, J.; Luo, D.; Li, Z. Uranium (U) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. J. Hazard. Mater. 2021, 413, 125319. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Vicente, L.; Quiros, Y.; Pérez-Barriocanal, F.; López-Novoa, J.M.; López-Hernández, F.J.; Morales, A.I. Nephrotoxicity of Uranium: Pathophysiological, Diagnostic and Therapeutic Perspectives. Toxicol. Sci. 2010, 118, 324–347. [Google Scholar] [CrossRef]
- Gritsaenko, T.; Pierrefite-Carle, V.; Lorivel, T.; Breuil, V.; Carle, G.F.; Santucci-Darmanin, S. Natural uranium impairs the differentiation and the resorbing function of osteoclasts. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2017, 1861, 715–726. [Google Scholar] [CrossRef]
- Leydier, A.; Lin, Y.; Arrachart, G.; Turgis, R.; Lecerclé, D.; Favre-Reguillon, A.; Taran, F.; Lemaire, M.; Pellet-Rostaing, S. EDTA and DTPA modified ligands as sequestering agents for uranyl decorporation. Tetrahedron 2012, 68, 1163–1170. [Google Scholar] [CrossRef]
- Ansoborlo, E.; Prat, O.; Moisy, P.; Auwer, C.D.; Guilbaud, P.; Carriere, M.; Gouget, B.; Duffield, J.; Doizi, D.; Vercouter, T.; et al. Actinide speciation in relation to biological processes. Biochimie 2006, 88, 1605–1618. [Google Scholar] [CrossRef]
- Muller, D.; Houpert, P.; Napoli, M.H.; Métivier, H.; Paquet, F. Synergie potentielle entre deux toxiques rénaux: Le DTPA et l’uranium. Radioprotection 2006, 41, 413–420. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hiroishi, K.; Tokunoh, M.; Saegusa, T. Chelating properties of linear and branched poly(ethylenimines). Macromolecules 1987, 20, 1496–1500. [Google Scholar] [CrossRef]
- Lahrouch, F.; Chamayou, A.C.; Creff, G.; Duvail, M.; Hennig, C.; Rodriguez, M.J.L.; Auwer, C.D.; Di Giorgio, C. A Combined Spectroscopic/Molecular Dynamic Study for Investigating a Methyl-Carboxylated PEI as a Potential Uranium Decorporation Agent. Inorg. Chem. 2017, 56, 1300–1308. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, X.; Yang, C.; Wang, Y.; Fan, H. Adsorption of hydrogen sulfide by MOFs loaded with polyethyleneimine (PEI). J. China Coal Soc. 2024, 49, 3225–3234. [Google Scholar]
- Mei, S.; Yang, J.; Zhang, Q.; Zhao, F.; Yuan, J.; Hui, F.; Lv, J. Research progress on application of polyethyleneimine in the new field. New Chem. Mater. 2017, 45, 30–32+36. [Google Scholar]
- Sabin, J.; Alatorre-Meda, M.; Miñones, J.; Domínguez-Arca, V.; Prieto, G. New insights on the mechanism of polyethylenimine transfection and their implications on gene therapy and DNA vaccines. Colloids Surf. B Biointerfaces 2022, 210, 112219. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Li, J.; Yu, C.; Du, Y.; Song, M.; Zhang, B. Research advances of polyethylenimine-based nanosystems for gene delivery. Chin. J. Hosp. Pharm. 2024, 44, 853–858. [Google Scholar]
- Jäger, M.; Schubert, S.; Ochrimenko, S.; Fischer, D.; Schubert, U.S. Branched and linear poly(ethylene imine)-based conjugates: Synthetic modification, characterization, and application. Chem. Soc. Rev. 2012, 41, 4755. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, Y.; Xiao, H.; Zhao, H.; Liu, Q. Recent progress of non-viral vector polyethylenimine in the application of gene delivery. Yao Xue Xue Bao 2020, 2869–2882. [Google Scholar] [CrossRef]
- Foxley, M.A.; Wright, S.N.; Lam, A.K.; Friedline, A.W.; Strange, S.J.; Xiao, M.T.; Moen, E.L.; Rice, C.V. Targeting Wall Teichoic Acid in Situ with Branched Polyethylenimine Potentiates β-Lactam Efficacy against MRSA. ACS Med. Chem. Lett. 2017, 8, 1083–1088. [Google Scholar] [CrossRef]
- Li, X.; Zuo, Y.; Lin, X.; Guo, B.; Jiang, H.; Guan, N.; Zheng, H.; Huang, Y.; Gu, X.; Yu, B.; et al. Develop Targeted Protein Drug Carriers through a High-Throughput Screening Platform and Rational Design. Adv. Healthc. Mater. 2024, 13, 2401793. [Google Scholar] [CrossRef]
- Lahrouch, F.; Sofronov, O.; Creff, G.; Rossberg, A.; Hennig, C.; Auwer, C.D.; Di Giorgio, C. Polyethyleneimine methylphosphonate: Towards the design of a new class of macromolecular actinide chelating agents in the case of human exposition. Dalton Trans. 2017, 46, 13869–13877. [Google Scholar] [CrossRef]
- Albelda-Berenguer, M.; Monachon, M.; Joseph, E. Siderophores: From natural roles to potential applications. Adv. Appl. Microbiol. 2019, 106, 193–225. [Google Scholar]
- Wang, E.; Lv, X.; Liu, S.; Dong, Q.; Li, J.; Li, H.; Su, B. A Selective Separation Mechanism for Mono/divalent Cations and Properties of a Hollow-Fiber Composite Nanofiltration Membrane Having a Positively Charged Surface. Membranes 2023, 14, 1. [Google Scholar] [CrossRef]
- Kosak, T.M.; Conrad, H.A.; Korich, A.L.; Lord, R.L. Ether Cleavage Re-Investigated: Elucidating the Mechanism of BBr3-Facilitated Demethylation of Aryl Methyl Ethers. Eur. J. Org. Chem. 2015, 2015, 7460–7467. [Google Scholar] [CrossRef]
- Wang, X.; Dai, X.; Shi, C.; Wan, J.; Silver, M.A.; Zhang, L.; Chen, L.; Yi, X.; Chen, B.; Zhang, D.; et al. A 3,2-Hydroxypyridinone-based Decorporation Agent that Removes Uranium from Bones In Vivo. Nat. Commun. 2019, 10, 2570. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, B.; He, P.; Wang, Z.; Tang, K.; Mou, Z.; Tan, Y.; Wu, L.; Chen, G.; Li, X.; et al. Cinnamic Acid: A Low-Toxicity Natural Bidentate Ligand for Uranium Decorporation. Inorg. Chem. 2024, 63, 7464–7472. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ni, S.; Wang, W.; Zhao, Y.; Meng, Y.; Liu, H.; Yang, L. Facile and scalable synthesis of functionalized hierarchical porous polymers for efficient uranium adsorption. Water Res. 2024, 257, 121683. [Google Scholar] [CrossRef] [PubMed]
- Bruno, K. Using drug-excipient interactions for siRNA delivery. Adv. Drug Deliv. Rev. 2011, 63, 1210–1226. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, K.; Liu, S.; Zhang, F.; Cui, W.; Tian, Y.; Liu, S.; Wang, L. 3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation. Polymers 2025, 17, 2256. https://doi.org/10.3390/polym17162256
Liang K, Liu S, Zhang F, Cui W, Tian Y, Liu S, Wang L. 3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation. Polymers. 2025; 17(16):2256. https://doi.org/10.3390/polym17162256
Chicago/Turabian StyleLiang, Kai, Sifan Liu, Fan Zhang, Wenjin Cui, Ying Tian, Shuchen Liu, and Lin Wang. 2025. "3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation" Polymers 17, no. 16: 2256. https://doi.org/10.3390/polym17162256
APA StyleLiang, K., Liu, S., Zhang, F., Cui, W., Tian, Y., Liu, S., & Wang, L. (2025). 3,4-Dihydroxybenzenesulfonyl-Functionalized Polyethyleneimine for Uranium Chelation. Polymers, 17(16), 2256. https://doi.org/10.3390/polym17162256