Poly(Vinyl Alcohol)–Carbon Nanotube Self−Adhesive Hydrogels for Wearable Strain Sensors
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PVA−Ca−CNT Hydrogel
2.3. Self−Adhesion Test of PVA−Ca−CNT Hydrogel
2.4. Characterization and Measurements
3. Results
3.1. Fabrication and Characterization of PVA−Ca−CNT Hydrogels
3.2. Self−Adhesive Properties of PVA−Ca−CNT Hydrogels
3.3. Strain Sensing Properties of PVA−Ca−CNT Hydrogels
3.4. Application of PVA−Ca−CNT Hydrogel Strain Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yi, N.; Zhang, C.; Wang, Z.; Zheng, Z.; Zhou, J.; Shang, R.; Zhou, P.; Zheng, C.; You, M.; Chen, H.; et al. Multi-functional Ti3C2Tx-silver@silk nanofiber composites with multi-dimensional heterogeneous structure for versatile wearable electronics. Adv. Funct. Mater. 2025, 35, 2412307. [Google Scholar] [CrossRef]
- Li, J.; Ma, J.; Feng, Q.; Xie, E.; Meng, Q.; Shu, W.; Wu, J.; Bian, L.; Han, F.; Li, B. Building osteogenic microenvironments with a double-network composite hydrogel for bone repair. Research 2023, 6, 21. [Google Scholar] [CrossRef]
- Savelyev, M.S.; Kuksin, A.V.; Murashko, D.T.; Otsupko, E.P.; Suchkova, V.V.; Popovich, K.D.; Vasilevsky, P.N.; Vasilevskaya, Y.O.; Kurilova, U.E.; Eganova, E.M.; et al. Formation of neurointerfaces based on electrically conductive biopolymers by two-photon polymerization method. Polymers 2025, 17, 1300. [Google Scholar] [CrossRef]
- Wang, L.; Xu, T.; He, X.; Zhang, X. Flexible, self-healable, adhesive and wearable hydrogel patch for colorimetric sweat detection. J. Mater. Chem. C 2021, 9, 14938–14945. [Google Scholar] [CrossRef]
- Hu, L.; Chee, P.L.; Sugiarto, S.; Yu, Y.; Shi, C.; Yan, R.; Yao, Z.; Shi, X.; Zhi, J.; Kai, D.; et al. Hydrogel-based flexible electronics. Adv. Mater. 2023, 35, 2205326. [Google Scholar] [CrossRef]
- Sun, Z.; Ou, Q.; Dong, C.; Zhou, J.; Hu, H.; Li, C.; Huang, Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. Exploration 2024, 4, 20220167. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Tan, S.; Li, Z.; Sun, J.; Li, Y.; Xie, Z.; Li, Z.; Han, F.; Liu, Y. Design strategies of PEDOT:PSS-based conductive hydrogels and their applications in health monitoring. Polymers 2025, 17, 1192. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Z.; Tang, W.; Dai, Y. Gel/hydrogel-based in situ biomaterial platforms for cancer postoperative treatment and recovery. Exploration 2023, 3, 20220173. [Google Scholar] [CrossRef]
- Guan, M.; Han, Z.; Liu, N.; Zhou, Z.; Qu, X.; Zhang, T.; Chen, S.; Wang, H. Electrical percolation network based on nano-cellulose template for flexible hydrogel bioelectrode. Carbohydr. Polym. 2025, 362, 123693. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.H.; Zhang, Z.; An, K.; He, T.; Sun, Z.; Pu, X.; Lee, C. A wearable multidimensional motion sensor for AI-enhanced VR sports. Research 2023, 6, 154. [Google Scholar] [CrossRef]
- Lai, R.; Chen, Y.; Chou, C.; Huang, H.; Mongkonkan, W.; Chiu, C.; Chen, Y.; Yu, M.; Hu, C.; Jungsuttiwong, S.; et al. Toughening self-healable and recyclable PDMS supramolecular elastomers through an end-capping agent and a metallic crosslinker. J. Mater. Chem. A 2025, 13, 14588–14600. [Google Scholar] [CrossRef]
- Zeng, S.; Qiu, Y.; Peng, Q.; Lin, J.; Yi, N.; Wang, Z.; Zhou, P.; Guo, Q.; Weng, M.; Yang, K. Neural network-assisted carbon nanotube hydrogel-based dual-modal sensors for material perception. J. Alloys Compd. 2025, 1013, 178534. [Google Scholar] [CrossRef]
- Han, F.; Xie, X.; Wang, T.; Cao, C.; Li, J.; Sun, T.; Liu, H.; Geng, S.; Wei, Z.; Li, J.; et al. Wearable hydrogel-based epidermal sensor with thermal compatibility and long term stability for smart colorimetric multi-signals monitoring. Adv. Healthc. Mater. 2023, 12, 2201730. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, E.A.; Kenawy, E.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar] [CrossRef]
- Yang, J.; An, J.; Sun, Y.; Zhang, J.; Zu, L.; Li, H.; Jiang, T.; Chen, B.; Wang, Z.L. Transparent self-powered triboelectric sensor based on PVA/PA hydrogel for promoting human-machine interaction in nursing and patient safety. Nano Energy 2022, 97, 107199. [Google Scholar] [CrossRef]
- Manchi, P.; Paranjape, M.V.; Kurakula, A.; Kavarthapu, V.S.; Kim, C.; Yu, J.S. Graphene oxide-incorporated PVA/sodium alginate composite hydrogel-based flexible and sensitive single-electrode TENGs for efficient energy harvesting and smart security applications. Nano Energy 2025, 142, 111184. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Liu, X.; Qin, Z.; Yang, Y.; Zang, J.; Zhao, X. Fatigue-resistant adhesion of hydrogels. Nat. Commun. 2020, 11, 1071. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Gao, S.; Guo, Q.; Wang, C.; Qiao, Y.; Qiu, D. A solvent-exchange strategy to regulate noncovalent interactions for strong and antiswelling hydrogels. Adv. Mater. 2020, 32, 2004579. [Google Scholar] [CrossRef]
- Wu, S.; Hua, M.; Alsaid, Y.; Du, Y.; Ma, Y.; Zhao, Y.; Lo, C.; Wang, C.; Wu, D.; Yao, B.; et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the hofmeister effect. Adv. Mater. 2021, 33, 2007829. [Google Scholar] [CrossRef]
- Song, Y.; Ao, Q.; Jiang, T.; Tong, X.; Ding, R.; Li, X.; Tang, J. Sustainable and high performance MXene hydrogel with interlocked structure for machine learning-facilitated human-interactive sensing. Chem. Eng. J. 2024, 499, 156432. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 2023, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Niu, H.; Li, Y.; Li, Y. Machine-learning enabled biocompatible capacitive-electromyographic bimodal flexible sensor for facial expression recognition. Adv. Funct. Mater. 2025, 35, 2418463. [Google Scholar] [CrossRef]
- Yang, J.; Bai, R.; Chen, B.; Suo, Z. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 2020, 30, 1901693. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, G.; Yi, N.; Guo, Q.; Han, F.; Weng, M. Poly(Vinyl Alcohol)–Carbon Nanotube Self−Adhesive Hydrogels for Wearable Strain Sensors. Polymers 2025, 17, 2249. https://doi.org/10.3390/polym17162249
Zeng G, Yi N, Guo Q, Han F, Weng M. Poly(Vinyl Alcohol)–Carbon Nanotube Self−Adhesive Hydrogels for Wearable Strain Sensors. Polymers. 2025; 17(16):2249. https://doi.org/10.3390/polym17162249
Chicago/Turabian StyleZeng, Guofan, Nuozhou Yi, Qiaohang Guo, Fei Han, and Mingcen Weng. 2025. "Poly(Vinyl Alcohol)–Carbon Nanotube Self−Adhesive Hydrogels for Wearable Strain Sensors" Polymers 17, no. 16: 2249. https://doi.org/10.3390/polym17162249
APA StyleZeng, G., Yi, N., Guo, Q., Han, F., & Weng, M. (2025). Poly(Vinyl Alcohol)–Carbon Nanotube Self−Adhesive Hydrogels for Wearable Strain Sensors. Polymers, 17(16), 2249. https://doi.org/10.3390/polym17162249