Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Modification of CIP
2.3. Fabrication of MREs
2.4. Characterization
3. Results and Discussion
3.1. Morphology, Chemical Composition, and Magnetism of Surface-Modified CIP
3.2. Microstructures and Mechanical Properties of the MREs
3.3. Magnetorheological Properties of the MREs
3.4. Magnetic Field Response and Actuation Performance of the MREs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastola, A.K.; Hossain, M. A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos. Part B-Eng. 2020, 200, 108348. [Google Scholar] [CrossRef]
- Zhu, M.; Yao, Y.; Li, W.; Xiao, H.; Zhu, P.; Jiang, L.; Liao, N.; Peng, B.; Yu, M. CBi-AM: A fusion model for predicting inverse nonlinear dynamics of magnetorheological elastomer isolator. Mech. Syst. Signal Proc. 2025, 234, 112815. [Google Scholar] [CrossRef]
- Choi, Y.; Wereley, N.M. Vibration Isolation Performance of an Adaptive Magnetorheological Elastomer-Based Dynamic Vibration Absorber. Actuators 2022, 11, 157. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, S.; Deng, L.; Yang, J.; Zhang, S.; Du, H.; Li, W. Investigation of a new metamaterial magnetorheological elastomer isolator with tunable vibration bandgaps. Mech. Syst. Signal Proc. 2022, 170, 108806. [Google Scholar] [CrossRef]
- He, X.; Wu, J.; Xuan, S.; Sun, S.; Gong, X. Stretchable and Recyclable Liquid Metal Droplets Embedded Elastomer Composite with High Mechanically Sensitive Conductivity. ACS Appl. Mater. Interfaces 2022, 14, 9597–9607. [Google Scholar] [CrossRef]
- Li, D.; Sang, M.; Li, Z.; Gong, X.; Lou, C.; Li, W.; Wu, J.; Fan, Z.; Ma, Q.; Leung, K.C.-F.; et al. Magnetic flexible sensor with randomly distributed pine-branch microstructure for bidirectional recognition. Compos. Sci. Technol. 2024, 254, 110687. [Google Scholar] [CrossRef]
- Li, W.; Sang, M.; Liu, S.; Wang, B.; Cao, X.; Liu, G.; Gong, X.; Hao, L.; Xuan, S. Dual-mode biomimetic soft actuator with electrothermal and magneto-responsive performance. Compos. Part B-Eng. 2022, 238, 109880. [Google Scholar] [CrossRef]
- Boese, H.; Gerlach, T.; Ehrlich, J. Magnetorheological elastomers—An underestimated class of soft actuator materials. J. Intell. Mater. Syst. Struct. 2021, 32, 1550–1564. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Li, T.; Zhang, X.; Ding, J. Deformation and Locomotion of Untethered Small-Scale Magnetic Soft Robotic Turtle with Programmable Magnetization. J. Bionic Eng. 2024, 21, 754–763. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Z.; Jin, H.; Wei, R.; Bi, L.; Zhang, W. Magnetic soft robots: Design, actuation, and function. J. Alloys Compd. 2022, 922, 166219. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- García-Merino, J.A.; Mercado-Zúñiga, C.; Martínez-González, C.L.; Torres-SanMiguel, C.R.; Vargas-García, J.R.; Torres-Torres, C. Magneto-conductive encryption assisted by third-order nonlinear optical effects in carbon/metal nanohybrids. Mater. Res. Express 2017, 4, 035601. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Lee, S.-W.; Bae, S.-H.; Kim, N.-I.; Yun, J.-H.; Jung, J.-H.; Kim, Y.-G. Effect of Cyclic Shear Fatigue under Magnetic Field on Natural Rubber Composite as Anisotropic Magnetorheological Elastomers. Polymers 2022, 14, 1927. [Google Scholar] [CrossRef] [PubMed]
- N, A.; Jakkamputi, L.P.; Gnanasekaran, S.; Thangamuthu, M.; Rakkiyannan, J.; Bhalerao, Y.J. Dynamic Behavior Modeling of Natural-Rubber/Polybutadiene-Rubber-Based Hybrid Magnetorheological Elastomer Sandwich Composite Structures. Polymers 2023, 15, 4583. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Qi, S.; Fu, J.; Zhu, M.; Chen, D. Understanding the reinforcing behaviors of polyaniline-modified carbonyl iron particles in magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix. Compos. Sci. Technol. 2017, 139, 36–46. [Google Scholar] [CrossRef]
- Guo, F.; Li, Z.; Du, C.; Yu, G.; Mo, Z.; Cui, H.; Xu, Z.; Ye, J. Shear stiffening and magneto-induced properties of magnetorheological elastomer based on self-healing poly(urethane-urea) matrix. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 688, 133622. [Google Scholar] [CrossRef]
- Fernández Maestu, J.; García Díez, A.; Tubio, C.R.; Gómez, A.; Berasategui, J.; Costa, P.; Bou-Ali, M.M.; Etxebarria, J.G.; Lanceros-Méndez, S. Ternary Multifunctional Composites with Magnetorheological Actuation and Piezoresistive Sensing Response. ACS Appl. Electron. Mater. 2023, 5, 4296–4307. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, G.; Xu, J.; Wen, P.; Peng, B. Experimental and theoretical investigations on Magnetostrictive stresses of PDMS based magnetorheological elastomer films. Polym. Compos. 2024, 45, 12421–12433. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, Y.; Gong, X. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles. Smart Mater. Struct. 2017, 26, 075012. [Google Scholar] [CrossRef]
- Vatandoost, H.; Hemmatian, M.; Sedaghati, R.; Rakheja, S. Dynamic characterization of isotropic and anisotropic magnetorheological elastomers in the oscillatory squeeze mode superimposed on large static pre-strain. Compos. Part B Eng. 2020, 182, 107648. [Google Scholar] [CrossRef]
- Kobzili, L.; Aguib, S.; Chikh, N.; Djedid, T.; Meloussi, M. Modeling and simulation of the static and vibratory behavior of hybrid composite plate off-axis anisotropic. Compos. Struct. 2021, 273, 114297. [Google Scholar] [CrossRef]
- Kumar, V.; Park, S.-S. Stretchable Magneto-Mechanical Configurations with High Magnetic Sensitivity Based on “Gel-Type” Soft Rubber for Intelligent Applications. Gels 2024, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Yang, W.; Gao, Y.; Scarpa, F.; Li, Y. Magnetorheological elastomers with particle chain orientation: Modelling and experiments. Smart Mater. Struct. 2019, 28, 095008. [Google Scholar] [CrossRef]
- Pickering, K.L.; Raa Khimi, S.; Ilanko, S. The effect of silane coupling agent on iron sand for use in magnetorheological elastomers Part 1: Surface chemical modification and characterization. Compos. Part A-Appl. Sci. Manuf. 2015, 68, 377–386. [Google Scholar] [CrossRef]
- Chen, D.; Yu, M.; Zhu, M.; Qi, S.; Fu, J. Carbonyl iron powder surface modification of magnetorheological elastomers for vibration absorbing application. Smart Mater. Struct. 2016, 25, 115005. [Google Scholar] [CrossRef]
- An, J.S.; Kwon, S.H.; Choi, H.J.; Jung, J.H.; Kim, Y.G. Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance. Compos. Struct. 2017, 160, 1020–1026. [Google Scholar] [CrossRef]
- Behrooz, M.; Sutrisno, J.; Zhang, L.; Fuchs, A.; Gordaninejad, F. Behavior of magnetorheological elastomers with coated particles. Smart Mater. Struct. 2015, 24, 035026. [Google Scholar] [CrossRef]
- Jamari, S.K.M.; Nordin, N.A.; Ubaidillah, U.; Aziz, S.A.A.; Mazlan, S.A.; Nazmi, N. Enhancement of the rheological properties of magnetorheological elastomer via polystyrene-grafted carbonyl iron particles. J. Appl. Polym. Sci. 2021, 138, 50860. [Google Scholar] [CrossRef]
- Cvek, M.; Mrlík, M.; Ilčíková, M.; Mosnáček, J.; Münster, L.; Pavlínek, V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer-Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules 2017, 50, 2189–2200. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Chen, L.; Gong, X.; Jiang, W.; Zhang, P.; Chen, Z. Effects of rubber/magnetic particle interactions on the performance of magnetorheological elastomers. Polym. Test 2006, 25, 262–267. [Google Scholar] [CrossRef]
- Knorr, D.B.; Tran, N.T.; Gaskell, K.J.; Orlicki, J.A.; Woicik, J.C.; Jaye, C.; Fischer, D.A.; Lenhart, J.L. Synthesis and Characterization of Aminopropyltriethoxysilane-Polydopamine Coatings. Langmuir 2016, 32, 4370–4381. [Google Scholar] [CrossRef]
- Zhao, J.; Li, D.; Sun, B.; Jiang, L.; Zhou, Y.; Wen, S.; Jerrams, S.; Ma, J.; Chen, S. Surface modification of carbonyl iron particles using dopamine and silane coupling agent for high-performance magnetorheological elastomers. Polym. Test 2023, 119, 107935. [Google Scholar] [CrossRef]
- Payne, A.R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 2003, 6, 57–63. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Pang, H.; Sun, S.; Xu, Z.; Shen, L.; Cao, X.; Sun, C.; Wang, B.; Gong, X. Flexible anisotropic magneto-sensitive elastomer films with out-of-plane particle chain for bionic actuator. Compos. Part A-Appl. Sci. Manuf. 2021, 150, 106591. [Google Scholar] [CrossRef]
- Abd Rashid, R.Z.; Johari, N.; Mazlan, S.A.; Abdul Aziz, S.A.; Nordin, N.A.; Nazmi, N.; Aqida, S.N.; Johari, M.A.F. Effects of silica on mechanical and rheological properties of EPDM-based magnetorheological elastomers. Smart Mater. Struct. 2021, 30, 105033. [Google Scholar] [CrossRef]
- Tran, N.T.; Flanagan, D.P.; Orlicki, J.A.; Lenhart, J.L.; Proctor, K.L.; Knorr, D.B. Polydopamine and Polydopamine–Silane Hybrid Surface Treatments in Structural Adhesive Applications. Langmuir 2018, 34, 1274–1286. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Zhao, Z.; Zhang, X.; Zhu, J.; Liu, Y. Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators. Polymers 2025, 17, 2228. https://doi.org/10.3390/polym17162228
Du X, Zhao Z, Zhang X, Zhu J, Liu Y. Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators. Polymers. 2025; 17(16):2228. https://doi.org/10.3390/polym17162228
Chicago/Turabian StyleDu, Xiushang, Zhenjie Zhao, Xuhang Zhang, Jingyi Zhu, and Yingdan Liu. 2025. "Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators" Polymers 17, no. 16: 2228. https://doi.org/10.3390/polym17162228
APA StyleDu, X., Zhao, Z., Zhang, X., Zhu, J., & Liu, Y. (2025). Magneto-Responsive Networks Filled with Polydopamine and Silane Coupling Agent Dual-Modified Carbonyl Iron Particles for Soft Actuators. Polymers, 17(16), 2228. https://doi.org/10.3390/polym17162228