Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation
2.2.1. Description of Thermal Testing Equipment and Procedures
2.2.2. Description of Equipment and Measurement Procedures Used for Rheological Tests
3. Results and Discussion
3.1. Evaluation of DSC Results for PP/MWCNT and Their Regranulates
3.2. Evaluation of the Rheological Properties of PP/MWCNT and Regranulates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PP | propylene |
MWCNT | multi-walled carbon nanotubes |
REG | regranulates |
LVE | linear viscoelastic |
References
- Langmi, H.W.; Engelbrecht, N.; Modisha, P.M.; Bessarabov, D. Hydrogen storage. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 455–486. [Google Scholar] [CrossRef]
- Wolf, E. Large-Scale Hydrogen Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 129–142. [Google Scholar] [CrossRef]
- Abdin, Z.; Tang, C.; Liu, Y.; Catchpole, K. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience 2021, 24, 102966. [Google Scholar] [CrossRef]
- Burke, A.; Gardiner, A. UC Davis Research Reports Title Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications Permalink Publication Date. Available online: https://escholarship.org/uc/item/7425173j (accessed on 10 May 2025).
- Zhang, C.; Cao, X.; Bujlo, P.; Chen, B.; Zhang, X.; Sheng, X.; Liang, C. Review on the safety analysis and protection strategies of fast filling hydrogen storage system for fuel cell vehicle application. J. Energy Storage 2022, 45, 103451. [Google Scholar] [CrossRef]
- Stetson, N.T.; McWhorter, S.; Ahn, C.C. Introduction to hydrogen storage. In Compendium of Hydrogen Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–25. [Google Scholar] [CrossRef]
- Li, M.; Bai, Y.; Zhang, C.; Song, Y.; Jiang, S.; Grouset, D.; Zhang, M. Review on the research of hydrogen storage system fast refueling in fuel cell vehicle. Int. J. Hydrogen Energy 2019, 44, 10677–10693. [Google Scholar] [CrossRef]
- Liu, M.; Lin, K.; Zhou, M.; Wallwork, A.; Bissett, M.A.; Young, R.J.; Kinloch, I.A. Mechanism of gas barrier improvement of graphene/polypropylene nanocomposites for new-generation light-weight hydrogen storage. Compos. Sci. Technol. 2024, 249, 110483. [Google Scholar] [CrossRef]
- Berry, V. Impermeability of graphene and its applications. Carbon 2013, 62, 1–10. [Google Scholar] [CrossRef]
- Tsetseris, L.; Pantelides, S.T. Graphene: An impermeable or selectively permeable membrane for atomic species? Carbon 2014, 67, 58–63. [Google Scholar] [CrossRef]
- Wick, P.; Louw-Gaume, A.E.; Kucki, M.; Krug, H.F.; Kostarelos, K.; Fadeel, B.; Dawson, K.A.; Salvati, A.; Vázquez, E.; Ballerini, L.; et al. Classification Framework for Graphene-Based Materials. Angew. Chem. Int. Ed. 2024, 53, 7714–7718. [Google Scholar] [CrossRef]
- Kovtun, A.; Treossi, E.; Mirotta, N.; Scidà, A.; Liscio, A.; Christian, M.; Valorosi, F.; Boschi, A.; Young, R.J.; Galiotis, C.; et al. Benchmarking of graphene-based materials: Real commercial products versus ideal graphene. 2D Mater. 2019, 6, 025006. [Google Scholar] [CrossRef]
- Zhao, B.; Wei, H.; Peng, X.; Feng, J.; Jia, X. Experimental and Numerical Research on Temperature Evolution during the Fast-Filling Process of a Type III Hydrogen Tank. Energies 2022, 15, 3811. [Google Scholar] [CrossRef]
- Cui, Y.; Kundalwal, S.I.; Kumar, S. Gas barrier performance of graphene/polymer nanocomposites. Carbon 2016, 98, 313–333. [Google Scholar] [CrossRef]
- Cocca, M.; Di Lorenzo, M.L.; Malinconico, M.; Frezza, V. Influence of crystal polymorphism on mechanical and barrier properties of poly(l-lactic acid). Eur. Polym. J. 2011, 47, 1073–1080. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, K.; Yang, L. EGFR inhibitor erlotinib plus monoclonal antibody versus erlotinib alone for first-line treatment of advanced non-small cell lung carcinoma: A systematic review and meta-analysis. Int. Immunopharmacol. 2023, 119, 110001. [Google Scholar] [CrossRef]
- Ali, G.; Mehmood, A.; Ha, H.Y.; Kim, J.; Chung, K.Y. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Sci. Rep. 2017, 7, 40910. [Google Scholar] [CrossRef]
- Hidayah, N.M.S.; Liu, W.-W.; Lai, C.-W.; Noriman, N.Z.; Khe, C.-S.; Hashim, U.; Lee, H.C. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 2017, 1892, 150002. [Google Scholar] [CrossRef]
- Bata, A.; Gerse, P.; Kun, K.; Slezák, E.; Ronkay, F. Effect of recycling on the time- and temperature-dependent mechanical properties of PP/MWCNT composite liner materials. Results Eng. 2025, 25, 104150. [Google Scholar] [CrossRef]
- Prashantha, K.; Soulestin, J.; Lacrampe, M.F.; Krawczak, P.; Dupin, G.; Claes, M. Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 2009, 69, 1756–1763. [Google Scholar] [CrossRef]
- Gupta, A.; Choudhary, V. Effect of multi-walled carbon nanotubes on mechanical and rheological properties of poly(trimethylene terephthalate). J. Mater. Sci. 2014, 49, 3839–3846. [Google Scholar] [CrossRef]
- Zadhoush, A.; Reyhani, R.; Naeimirad, M. Evaluation of surface modification impact on PP/MWCNT nanocomposites by rheological and mechanical characterization, assisted with morphological image processing. Polym. Compos. 2018, 40, E501–E510. [Google Scholar] [CrossRef]
- Verma, P.; Verma, M.; Gupta, A.; Chauhan, S.S.; Malik, R.S.; Choudhary, V. Multi walled carbon nanotubes induced viscoelastic response of polypropylene copolymer nanocomposites: Effect of filler loading on rheological percolation. Polym. Test. 2016, 55, 1–9. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, M.W.; Kim, S.H.; Youn, J.R. Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips. Eur. Polym. J. 2008, 44, 1620–1630. [Google Scholar] [CrossRef]
- Yetgin, S.H. Effect of multi walled carbon nanotube on mechanical, thermal and rheological properties of polypropylene. J. Mater. Res. Technol. 2019, 8, 4725–4735. [Google Scholar] [CrossRef]
- Stan, F.; Sandu, L.I.; Fetecau, C.; Rosculet, R. Effect of Reprocessing on the Rheological, Electrical, and Mechanical Properties of Polypropylene/Carbon Nanotube Composites. J. Micro Nano-Manuf. 2017, 5, 021005. [Google Scholar] [CrossRef]
- Petchwattana, N.; Covavisaruch, S.; Phetsang, K. Multi-walled Carbon Nanotube Filled Polypropylene Nanocomposites: Electrical, Mechanical, Rheological, Thermal and Morphological Investigations. In Proceedings of the 3rd International Conference on Industrial Application Engineering 2015 (ICIAE2015), Kitakyushu, Japan, 28–31 March 2015; pp. 358–365. [Google Scholar] [CrossRef]
- McNally, T.; McShane, P.; Nally, G.M.; Murphy, W.R.; Cook, M.; Miller, A. Rheology, phase morphology, mechanical, impact and thermal properties of polypropylene/metallocene catalysed ethylene 1-octene copolymer blends. Polymer 2002, 43, 3785–3793. [Google Scholar] [CrossRef]
- Kontopoulou, M.; Wang, W.; Gopakumar, T.; Cheung, C. Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends. Polymer 2003, 44, 7495–7504. [Google Scholar] [CrossRef]
- Bata, A.; Gerse, P.; Slezák, E.; Ronkay, F. Time- and temperature-dependent mechanical and rheological behaviours of injection moulded biodegradable organoclay nanocomposites. Adv. Ind. Eng. Polym. Res. 2024, 7, 482–496. [Google Scholar] [CrossRef]
- Bansal, S.; Kumar, N.; Jindal, P. Effect of MWCNT Composition on the Hardness of PP/MWCNT Composites. Mater. Today Proc. 2017, 4, 3867–3871. [Google Scholar] [CrossRef]
- Romankiewicz, A.; Sterzynski, T. The lamellar distribution in isotactic polypropylene modified by nucleation and processing. Macromol. Symp. 2002, 180, 241–256. [Google Scholar] [CrossRef]
- Schönherr, H.; Vancso, G.J. Visualization of Macromolecules and Polymer Morphology. In Scanning Force Microscopy of Polymers; Springer: Berlin/Heidelberg, Germany, 2010; pp. 79–187. [Google Scholar] [CrossRef]
- Bartczak, Z.; Galeski, A. Homogeneous nucleation in polypropylene and its blends by small-angle light scattering. Polymer 1990, 31, 2027–2038. [Google Scholar] [CrossRef]
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
Crystal Modulation | ||||
---|---|---|---|---|
α (monoclinic) iPP | 0.936 |
Composites | Second Heating | Cooling | ||||
---|---|---|---|---|---|---|
(J/g) | (°C) | (J/g) | (J/g) | (°C) | (°C) | |
PP | 105 | 164.2 | 50.0 | 100 | 119.5 | 114.1 |
PP REG | 108 | 164.0 | 51.7 | 115 | 123.5 | 120.9 |
PP 0.3/MWCNT | 115 | 164.7 | 54.9 | 117 | 127.9 | 125.1 |
PP 0.3/MWCNT REG | 114 | 164.4 | 54.7 | 117 | 127.4 | 124.9 |
PP 0.5/MWCNT | 115 | 164.7 | 55.0 | 113 | 128.5 | 125.7 |
PP 0.5/MWCNT REG | 113 | 164.8 | 54.3 | 111 | 128.5 | 125.7 |
PP 1/MWCNT | 117 | 164.0 | 55.8 | 118 | 131.4 | 128.1 |
PP 1/MWCNT REG | 115 | 164.1 | 54.9 | 115 | 130.8 | 127.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bata, A.; Ronkay, F.; Zhang, C.; Gerse, P. Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials. Polymers 2025, 17, 2178. https://doi.org/10.3390/polym17162178
Bata A, Ronkay F, Zhang C, Gerse P. Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials. Polymers. 2025; 17(16):2178. https://doi.org/10.3390/polym17162178
Chicago/Turabian StyleBata, Attila, Ferenc Ronkay, Caizhi Zhang, and Péter Gerse. 2025. "Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials" Polymers 17, no. 16: 2178. https://doi.org/10.3390/polym17162178
APA StyleBata, A., Ronkay, F., Zhang, C., & Gerse, P. (2025). Effect of Recycling on the Thermal and Rheological Properties of PP/MWCNT Composites Used as Liner Materials. Polymers, 17(16), 2178. https://doi.org/10.3390/polym17162178