Research Progress on the Synthesis, Modification, and Applications of Microbial Biopolymers
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PHAs | Polyhydroxyalkanoates |
PHB | Polyhydroxybutyrate |
EPSs | Exopolysaccharides |
SDG | Sustainable Development Goal |
WCO | Waste Cooking Oil |
MMC | Mixed Microbial Culture |
References
- Phuegyod, S.; Pramual, S.; Wattanavichean, N.; Assawajaruwan, S.; Amornsakchai, T.; Sukho, P.; Svasti, J.; Surarit, R.; Niamsiri, N. Microbial Poly(hydroxybutyrate-co-hydroxyvalerate) Scaffold for Periodontal Tissue Engineering. Polymers 2023, 15, 855. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, S.H.; Jung, H.J.; Cho, D.H.; Kim, B.C.; Bhatia, S.K.; Ahn, J.; Jeon, J.-M.; Yoon, J.-J.; Lee, J.; et al. Finding a Benign Plasticizer to Enhance the Microbial Degradation of Polyhydroxybutyrate (PHB) Evaluated by PHB Degrader Microbulbifer sp. SOL66. Polymers 2022, 14, 3625. [Google Scholar] [CrossRef]
- Jia, L.; Kaur, G.; Juneja, A.; Majumder, E.L.W.; Ramarao, B.V.; Kumar, D. Polyhydroxybutyrate production from non-recyclable fiber rejects and acid whey as mixed substrate by recombinant Escherichia coli. Biotechnol. Sustain. Mater. 2024, 1, 12. [Google Scholar] [CrossRef]
- Sánchez-León, E.; Huang-Lin, E.; Amils, R.; Abrusci, C. Production and Characterisation of an Exopolysaccharide by Bacillus amyloliquefaciens: Biotechnological Applications. Polymers 2023, 15, 1550. [Google Scholar] [CrossRef] [PubMed]
- Concepción, A.; Ricardo, A.; Enrique, S.-L. Biodegradation of Choline NTF2 by Pantoea agglomerans in Different Osmolarity. Characterization and Environmental Implications of the Produced Exopolysaccharide. Polymers 2023, 15, 3974. [Google Scholar] [CrossRef]
- Kaur, R.; Pathak, L.; Vyas, P. Biobased polymers of plant and microbial origin and their applications—A review. Biotechnol. Sustain. Mater. 2024, 1, 13. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Otari, S.V.; Jeon, J.-M.; Gurav, R.; Choi, Y.-K.; Bhatia, R.K.; Pugazhendhi, A.; Kumar, V.; Rajesh Banu, J.; Yoon, J.-J.; et al. Biowaste-to-bioplastic (polyhydroxyalkanoates): Conversion technologies, strategies, challenges, and perspective. Bioresour. Technol. 2021, 326, 124733. [Google Scholar] [CrossRef]
- Park, Y.-L.; Bhatia, S.K.; Gurav, R.; Choi, T.-R.; Kim, H.J.; Song, H.-S.; Park, J.-Y.; Han, Y.-H.; Lee, S.M.; Park, S.L.; et al. Fructose based hyper production of poly-3-hydroxybutyrate from Halomonas sp. YLGW01 and impact of carbon sources on bacteria morphologies. Int. J. Biol. Macromol. 2020, 154, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.K.; Patel, A.K.; Yang, Y.-H. The green revolution of food waste upcycling to produce polyhydroxyalkanoates. Trends Biotechnol. 2024, 42, 1273–1287. [Google Scholar] [CrossRef]
- Tohme, S.; Hacıosmanoğlu, G.G.; Eroğlu, M.S.; Kasavi, C.; Genç, S.; Can, Z.S.; Toksoy Oner, E. Halomonas smyrnensis as a cell factory for co-production of PHB and levan. Int. J. Biol. Macromol. 2018, 118, 1238–1246. [Google Scholar] [CrossRef]
- Romero Sanchez, M.T.; Martínez Tolibia, S.E.; García Barrera, L.J.; Sierra Martínez, P.; Gracida Rodríguez, J.N.; López Gayou, V.; López y López, V.E. Carbon:Nitrogen Ratio Affects Differentially the Poly-β-hydroxybutyrate Synthesis in Bacillus thuringiensis Isolates from México. Polymers 2025, 17, 1978. [Google Scholar] [CrossRef]
- Morya, R.; Andrianantenaina, F.H.; Pandey, A.K.; Yoon, Y.H.; Kim, S.-H. Polyhydroxyalkanoate production from rice straw hydrolysate: Insights into feast-famine dynamics and microbial community shifts. Chemosphere 2023, 341, 139967. [Google Scholar] [CrossRef]
- Zhu, Y.; Ai, M.; Jia, X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose–Xylose Mixtures. Front. Bioeng. Biotechnol. 2022, 9, 794331. [Google Scholar] [CrossRef]
- Kalia, V.C.; Patel, S.K.S.; Karthikeyan, K.K.; Jeya, M.; Kim, I.-W.; Lee, J.-K. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers 2024, 16, 410. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Liu, X.; Zhang, L.-Z.; Yang, J.-S.; Guo, W.-K.; Zheng, S.; Wang, J.-L.; Wu, F.-Q.; Yan, X.; Wu, Q.; et al. Cell Sizes Matter for Industrial Bioproduction, a Case of Polyhydroxybutyrate. Adv. Sci. 2025, 12, 2412256. [Google Scholar] [CrossRef]
- Lim, G.; Oh, S.-J.; Han, Y.; Yun, J.; Joo, J.C.; Kim, H.-T.; Koh, H.G.; Park, S.-H.; Park, K.; Yang, Y.-H. Discovery of a High 3-Hydroxyhexanoate Containing Poly-3-hydroxybutyrate-co-3-hydroxyhexanoate Producer-, Cupriavidus sp. Oh_1 with Enhanced Fatty Acid Metabolism. Polymers 2025, 17, 1824. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Cen, X.; Ni, B.-J.; Zheng, M. Bioplastic polyhydroxyalkanoate conversion in waste activated sludge. J. Environ. Manag. 2024, 370, 122866. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, C.; Kenny, S.T.; Narancic, T.; Babu, R.; Connor, K.O. Conversion of waste cooking oil into medium chain polyhydroxyalkanoates in a high cell density fermentation. J. Biotechnol. 2019, 306, 9–15. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Singh, D.; Pant, D.; Gupta, R.K.; Busi, S.; Singh, R.V.; Lee, J.-K. Polyhydroxyalkanoate Production by Methanotrophs: Recent Updates and Perspectives. Polymers 2024, 16, 2570. [Google Scholar] [CrossRef]
- Kora, E.; Antonopoulou, G.; Zhang, Y.; Yan, Q.; Lyberatos, G.; Ntaikou, I. Investigating the efficiency of a two-stage anaerobic-aerobic process for the treatment of confectionery industry wastewaters with simultaneous production of biohydrogen and polyhydroxyalkanoates. Environ. Res. 2024, 248, 118526. [Google Scholar] [CrossRef] [PubMed]
- Laumeyer, C.M.; Zimmer, J.; Steinmetz, H. From fruit juice wastewater to biopolymer—How the mixed microbial culture and PHA content develop over time. Chem. Eng. J. 2025, 503, 158314. [Google Scholar] [CrossRef]
- Wu, Y.; Zhu, B.; Wei, N. Antimicrobial peptide-functionalized polyhydroxyalkanoate bio-beads as a bactericidal material for water disinfection. Environ. Sci. Water Res. Technol. 2023, 9, 2880–2890. [Google Scholar] [CrossRef]
- Qader, I.N.; Kök, M.; Mohammed, K.S.; Coskun, M.; Öner, E.Ö.; Aydoğdu, Y. Development of a PLA/PHA-TiO2 Polymer Blend with Improved Physicochemical and Thermal Properties. J. Polym. Environ. 2025, 33, 2502–2514. [Google Scholar] [CrossRef]
- Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. Microb. Ecol. 2017, 73, 353–367. [Google Scholar] [CrossRef]
- Dalton, B.; Bhagabati, P.; De Micco, J.; Padamati, R.B.; O’Connor, K. A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022, 12, 319. [Google Scholar] [CrossRef]
- Posada, J.A.; Naranjo, J.M.; López, J.A.; Higuita, J.C.; Cardona, C.A. Design and analysis of poly-3-hydroxybutyrate production processes from crude glycerol. Process Biochem. 2011, 46, 310–317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatia, S.K. Research Progress on the Synthesis, Modification, and Applications of Microbial Biopolymers. Polymers 2025, 17, 2053. https://doi.org/10.3390/polym17152053
Bhatia SK. Research Progress on the Synthesis, Modification, and Applications of Microbial Biopolymers. Polymers. 2025; 17(15):2053. https://doi.org/10.3390/polym17152053
Chicago/Turabian StyleBhatia, Shashi Kant. 2025. "Research Progress on the Synthesis, Modification, and Applications of Microbial Biopolymers" Polymers 17, no. 15: 2053. https://doi.org/10.3390/polym17152053
APA StyleBhatia, S. K. (2025). Research Progress on the Synthesis, Modification, and Applications of Microbial Biopolymers. Polymers, 17(15), 2053. https://doi.org/10.3390/polym17152053