Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Hyperbranched Poly(VBC-co-HEMA) (hbP(VBC-co-HEMA))
2.3. Preparation of hbP-Crosslinked PU Membranes (hbP(VBC-co-HEMA)-PU)
2.4. Preparation of Quaternized hbP(VBC-co-HEMA)-PU (Q-hbP(VBC-co-HEMA)-PU) and Ion-Exchanged (OH-hbP(VBC-co-HEMA)-PU) Membranes
2.5. Characterization
2.6. Water Uptake (W.U.) and Swelling Ratio (S.R.)
2.7. Ionic Conductivity (IC)
2.8. Ion Exchange Capacity (IEC)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, D.H.; Das, G.; Yoon, H.H.; Kim, I.T. A composite anion conducting membrane based on quaternized cellulose and poly(phenylene oxide) for alkaline fuel cell applications. Polymers 2020, 12, 2676. [Google Scholar] [CrossRef] [PubMed]
- Lo Vecchio, C.; Carbone, A.; Gatto, I.; Baglio, V. Investigation of Fumasep® FAA3-50 membranes in alkaline direct methanol fuel cells. Polymers 2023, 15, 1555. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, A.M.; Bodner, M.; Hacker, V. A brief review of poly(vinyl alcohol)-based anion exchange membranes for alkaline fuel cells. Polymers 2022, 14, 3565. [Google Scholar] [CrossRef]
- Gjoshi, S.; Loukopoulou, P.; Plevova, M.; Hnat, J.; Bouzek, K.; Deimede, V. Cycloaliphatic quaternary ammonium functionalized poly(oxindole biphenyl) based anion-exchange membranes for water electrolysis: Stability and performance. Polymers 2023, 16, 99. [Google Scholar] [CrossRef] [PubMed]
- Racchi, O.; Baldassari, R.; Araya-Hermosilla, E.; Mattoli, V.; Minei, P.; Pozio, A.; Pucci, A. Polyketone-based anion-exchange membranes for alkaline water electrolysis. Polymers 2023, 15, 2027. [Google Scholar] [CrossRef]
- Roggi, A.; Guazzelli, E.; Resta, C.; Agonigi, G.; Filpi, A.; Martinelli, E. Vinylbenzyl chloride/Styrene-Grafted SBS copolymers via TEMPO-mediated polymerization for the fabrication of anion exchange membranes for water electrolysis. Polymers 2023, 15, 1826. [Google Scholar] [CrossRef]
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Firouzjaie, H.A.; Mustain, W.E. Catalytic advantages, challenges, and priorities in alkaline membrane fuel cells. ACS Catal. 2019, 10, 225–234. [Google Scholar] [CrossRef]
- Proch, S.; Stenström, M.; Eriksson, L.; Andersson, J.; Sjöblom, G.; Jansson, A.; Westlinder, J. Coated stainless steel as bipolar plate material for anion exchange membrane fuel cells (AEMFCs). Int. J. Hydrogen Energy 2020, 45, 1313–1324. [Google Scholar] [CrossRef]
- Marino, M.; Kreuer, K. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids. ChemSusChem 2015, 8, 513–523. [Google Scholar] [CrossRef]
- Chempath, S.; Boncella, J.M.; Pratt, L.R.; Henson, N.; Pivovar, B.S. Density functional theory study of degradation of tetraalkylammonium hydroxides. J. Phys. Chem. C 2010, 114, 11977–11983. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Feng, L.; Ye, J.; Zhang, W.; Huang, L.; Chen, D. Diamine crosslinked addition-type diblock poly(norbornene)s-based anion exchange membranes with high conductivity and stability for fuel cell applications. Polymers 2024, 16, 3534. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-T. Functionalized triblock copolymers with tapered design for anion exchange membrane fuel cells. Polymers 2024, 16, 2382. [Google Scholar] [CrossRef] [PubMed]
- Hren, M.; Makuc, D.; Plavec, J.; Roschger, M.; Hacker, V.; Genorio, B.; Božič, M.; Gorgieva, S. Efficiency of neat and quaternized-cellulose nanofibril fillers in chitosan membranes for direct ethanol fuel cells. Polymers 2023, 15, 1146. [Google Scholar] [CrossRef] [PubMed]
- Jheng, L.-C.; Cheng, C.-W.; Ho, K.-S.; Hsu, S.L.-C.; Hsu, C.-Y.; Lin, B.-Y.; Ho, T.-H. Dimethylimidazolium-functionalized polybenzimidazole and its organic–inorganic hybrid membranes for anion exchange membrane fuel cells. Polymers 2021, 13, 2864. [Google Scholar] [CrossRef]
- Chen, Q.-G.; Lee, M.-T. Anion exchange membranes for fuel cells based on quaternized polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymers with spacer-sidechain design. Polymers 2022, 14, 2860. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory studies of polymer compositions for well-kill under increased fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental research of the possibility of applying the hartmann–sprenger effect to regulate the pressure of natural gas in non-stationary conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
- Ge, Q.; Liang, X.; Ding, L.; Hou, J.; Miao, J.; Wu, B.; Yang, Z.; Xu, T. Guiding the self-assembly of hyperbranched anion exchange membranes utilized in alkaline fuel cells. J. Membr. Sci. 2019, 573, 595–601. [Google Scholar] [CrossRef]
- Yang, Q.; Li, L.; Lin, C.X.; Gao, X.L.; Zhao, C.H.; Zhang, Q.G.; Zhu, A.M.; Liu, Q.L. Hyperbranched poly(arylene ether ketone) anion exchange membranes for fuel cells. J. Membr. Sci. 2018, 560, 77–86. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, J.; Hou, J.; Yang, Z.; Xu, T. Hyperbranched polystyrene copolymer makes superior anion exchange membrane. ACS Appl. Polym. Mater. 2018, 1, 76–82. [Google Scholar] [CrossRef]
- Xing, W.; Ghahfarokhi, A.J.; Xie, C.; Naghibi, S.; Campbell, J.A.; Tang, Y. Mechanical properties of a supramolecular nanocomposite hydrogel containing hydroxyl groups enriched hyper-branched polymers. Polymers 2021, 13, 805. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Barman, R.; Ghosh, S. Hyperbranched vs. linear poly(disulfide) for intracellular drug delivery. Polym. Chem. 2022, 13, 5188–5192. [Google Scholar] [CrossRef]
- Alregeb, F.; Khalili, F.; Sweileh, B.; Ali, D.K. Synthesis and characterization of chelating hyperbranched polyester nanoparticles for Cd(II) ion removal from water. Molecules 2022, 27, 3656. [Google Scholar] [CrossRef]
- Yang, L.; Han, P.; Gu, Z. Grafting of a novel hyperbranched polymer onto carbon fiber for interfacial enhancement of carbon fiber reinforced epoxy composites. Mater. Des. 2021, 200, 109456. [Google Scholar] [CrossRef]
- Lin, C.X.; Zhuo, Y.Z.; Lai, A.N.; Zhang, Q.G.; Zhu, A.M.; Ye, M.L.; Liu, Q.L. Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells. J. Membr. Sci. 2016, 513, 206–216. [Google Scholar] [CrossRef]
- Cao, K.; Peng, J.; Shan, C.; Liu, Z.; Liang, M.; Wang, L.; Hu, W.; Liu, B. Beneficial use of hyperbranched polymer in cross-linked anion exchange membranes for fuel cells. Int. J. Energy Res. 2022, 46, 24395–24407. [Google Scholar] [CrossRef]
- Ma, X.; Liu, A.; Si, J.; Xiang, Q.; Yuan, W.; Lu, X.; Yuan, C.; Chen, B.; Luo, W.; Wang, J. Hydrophobicity regulation of hyperbranched poly(aryl piperidine) anion exchange membranes for fuel cells. Macromolecules 2024, 57, 9346–9354. [Google Scholar] [CrossRef]
- Wu, X.; Chen, N.; Klok, H.A.; Lee, Y.M.; Hu, X. Branched poly(aryl piperidinium) membranes for anion-exchange membrane fuel cells. Angew. Chem. Int. Ed. 2022, 134, e202114892. [Google Scholar] [CrossRef]
- Miravet, J.F.; Fréchet, J.M. New hyperbranched poly(siloxysilanes): Variation of the branching pattern and end-functionalization. Macromolecules 1998, 31, 3461–3468. [Google Scholar] [CrossRef]
- Fawcett, A.; Hetherington, C.; Mee, R.W.; McBride, F. Cycles frustrating fractal formation in an AB2 step growth polymerization. Chem. Commun. 1997, 1801–1802. [Google Scholar] [CrossRef]
- Liu, M.; Vladimirov, N.; Fréchet, J.M. A new approach to hyperbranched polymers by ring-opening polymerization of an AB monomer: 4-(2-hydroxyethyl)-ε-caprolactone. Macromolecules 1999, 32, 6881–6884. [Google Scholar] [CrossRef]
- Jia, Z.; Li, G.; Zhu, Q.; Yan, D.; Zhu, X.; Chen, H.; Wu, J.; Tu, C.; Sun, J. Hybrid polymerization of vinyl and hetero-ring groups of glycidyl methacrylate resulting in thermoresponsive hyperbranched polymers displaying a wide range of lower critical solution temperatures. Chem. Eur. J. 2009, 15, 7593–7600. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-M.; Chen, H.-H.; Huang, C.-F. Polymerization and degradation of aliphatic polyesters synthesized by atom transfer radical polyaddition. Polym. Chem. 2015, 6, 4565–4574. [Google Scholar] [CrossRef]
- Huang, C.-F.; Kuo, S.-W.; Moravčíková, D.; Liao, J.-C.; Han, Y.-M.; Lee, T.-H.; Wang, P.-H.; Lee, R.-H.; Tsiang, R.C.-C.; Mosnáček, J. Effect of variations of CuIIX2/L, surface area of Cu0, solvent, and temperature on atom transfer radical polyaddition of 4-vinylbenzyl 2-bromo-2-isobutyrate inimers. RSC Adv. 2016, 6, 51816–51822. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Chou, L.-C.; Huang, C.-F. Iron-catalysed atom transfer radical polyaddition for the synthesis and modification of novel aliphatic polyesters displaying lower critical solution temperature and pH-dependent release behaviors. Polym. Chem. 2019, 10, 3912–3921. [Google Scholar] [CrossRef]
- Huang, W.; Yang, J.; Xia, Y.; Wang, X.; Xue, X.; Yang, H.; Wang, G.; Jiang, B.; Li, F.; Komarneni, S. Light and temperature as dual stimuli lead to self-assembly of hyperbranched azobenzene-terminated poly(N-isopropylacrylamide). Polymers 2016, 8, 183. [Google Scholar] [CrossRef]
- Xu, P.; Huang, X.; Pan, X.; Li, N.; Zhu, J.; Zhu, X. Hyperbranched polycaprolactone through RAFT polymerization of 2-methylene-1,3-dioxepane. Polymers 2019, 11, 318. [Google Scholar] [CrossRef]
- Tao, Y.; He, J.; Wang, Z.; Pan, J.; Jiang, H.; Chen, S.; Yang, Y. Synthesis of branched polystyrene and poly(styrene-b-4-methoxystyrene) by nitroxyl stable radical controlled polymerization. Macromolecules 2001, 34, 4742–4748. [Google Scholar] [CrossRef]
- Christ, E.M.; Müller, S.S.; Berger-Nicoletti, E.; Frey, H. Hydroxyfunctional oxetane-inimers with varied polarity for the synthesis of hyperbranched polyether polyols via cationic ROP. J. Polym. Sci., Part A Polym. Chem. 2014, 52, 2850–2859. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Liu, Q.; Li, S.; Perrier, S.; Zhao, Y. Facile synthesis of hyperbranched and star-shaped polymers by RAFT polymerization based on a polymerizable trithiocarbonate. Macromolecules 2011, 44, 2034–2049. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Gaynor, S.G.; Müller, A.H. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl) oxy) ethyl acrylate. Macromolecules 1997, 30, 7034–7041. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H. Recent progress on hyperbranched polymers synthesized via radical-based self-condensing vinyl polymerization. Polymers 2017, 9, 188. [Google Scholar] [CrossRef]
- Chen, Z.-C.; Chiu, C.-L.; Huang, C.-F. Tuning the solubility of copper complex in atom transfer radical self-condensing vinyl polymerizations to control polymer topology via one-pot to the synthesis of hyperbranched core star polymers. Polymers 2014, 6, 2552–2572. [Google Scholar] [CrossRef]
- Gaynor, S.G.; Edelman, S.; Matyjaszewski, K. Synthesis of branched and hyperbranched polystyrenes. Macromolecules 1996, 29, 1079–1081. [Google Scholar] [CrossRef]
- Park, J.-S.; Choi, J.-H.; Woo, J.-J.; Moon, S.-H. An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci. 2006, 300, 655–662. [Google Scholar] [CrossRef]
- Hagesteijn, K.F.; Jiang, S.; Ladewig, B.P. A review of the synthesis and characterization of anion exchange membranes. J. Mater. Sci. 2018, 53, 11131–11150. [Google Scholar] [CrossRef]
Sample | Molar Feed Ratio | Product Ratio | Mn,NMR | Mn,GPC | ĐM | BI a | ||
---|---|---|---|---|---|---|---|---|
VBC | HEMA | VBC | HEMA | |||||
hbP1 | 90 | 10 | 84 | 16 | 18,910 | 2215 | 1.25 | 0.12 |
hbP2 | 80 | 20 | 81 | 19 | 4431 | 1902 | 1.28 | 0.43 |
hbP3 | 70 | 30 | 66 | 34 | 2091 | 1574 | 1.46 | 0.75 |
Sample | Tg (°C) | Td5% (°C) | Td10% (°C) | Residual Mass (%) |
---|---|---|---|---|
hbP1 | 51.48 | 226.3 | 278.1 | 34 |
hbP2 | 49.49 | 224.1 | 283.5 | 22 |
hbP3 | 45.20 | 208.8 | 267.9 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.H.; Huang, C.-F.; Jamnongkan, T. Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes. Polymers 2025, 17, 1930. https://doi.org/10.3390/polym17141930
Nguyen NH, Huang C-F, Jamnongkan T. Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes. Polymers. 2025; 17(14):1930. https://doi.org/10.3390/polym17141930
Chicago/Turabian StyleNguyen, Nhat Hong, Chih-Feng Huang, and Tongsai Jamnongkan. 2025. "Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes" Polymers 17, no. 14: 1930. https://doi.org/10.3390/polym17141930
APA StyleNguyen, N. H., Huang, C.-F., & Jamnongkan, T. (2025). Synthesis of Multifunctional Hyperbranched Polymers via Atom Transfer Radical Self-Condensing Vinyl Polymerization for Applications in Polyurethane-Based Anion Exchange Membranes. Polymers, 17(14), 1930. https://doi.org/10.3390/polym17141930