Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Plastic Injection Molding Method
2.3. Characterization Techniques
3. Results and Discussion
3.1. SEM and AFM Results of Pure PS and PS/MWCNT Composites
3.2. FTIR Analyses of Pure PS and PS/MWCNT Composites
3.3. TGA Analyses of Pure PS and PS/MWCNT Composites
3.4. Tensile and Hardness Tests of Pure PS and PS/MWCNT Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PS | Polystyrene |
MWCNT | Multi-walled Carbon Nanotube |
AFM | Atomic Force Microscopy |
TGA | Thermogravimetric Analysis |
SEM | Scanning Electron Microscopy |
FTIR | Fourier Transform Infrared |
References
- Asaletha, R.; Kumaran, M.G.; Thomas, S. Thermoplastic elastomers from blends of polystyrene and natural rubber: Morphology and mechanical properties. Eur. Polym. J. 1999, 35, 253–271. [Google Scholar] [CrossRef]
- Ayçiçek, S.; Özsoy, N.; Ayçiçek, M.; Özsoy, M.; Usta, M.; Akıncı, A. Properties of chemically foamed polypropylene materials for application to automobile interior door panels. Mater. Test. 2024, 66, 215–225. [Google Scholar] [CrossRef]
- Pilevar, Z.; Bahrami, A.; Beikzadeh, S.; Hosseini, H.; Jafari, S.M. Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends Food Sci. Technol. 2019, 91, 248–261. [Google Scholar] [CrossRef]
- Seco, A.; Echeverría, A.M.; Marcelino, S.; García, B.; Espuelas, S. Durability of polyester polymer concretes based on metallurgical wastes for the manufacture of construction and building products. Constr. Build. Mater. 2020, 240, 17907. [Google Scholar] [CrossRef]
- Quadflieg, T.; Stolyarov, O. Comparison of pull-out behavior of glass, basalt, and carbon rovings embedded in fine-grain concrete and geopolymer. Mater. Test. 2022, 64, 746–753. [Google Scholar] [CrossRef]
- Gaidhani, A.; Tribe, L.; Charpentier, P. Polystyrene carbon composite foam with enhanced insulation and fire retardancy for a sustainable future: Critical review. J. Cell. Plast. 2023, 59, 419–453. [Google Scholar] [CrossRef]
- Patole, A.S.; Patole, S.P.; Yoo, J.B.; An, J.H.; Kim, T.H. Fabrication of polystyrene/multiwalled carbon nanotube composite films synthesized by in situ microemulsion polymerization. Polym. Eng. Sci. 2013, 53, 1327–1336. [Google Scholar] [CrossRef]
- Wang, W.; Jiang, F.; Jiang, Y.; Lu, Y.; Zhang, L. Preparation and properties of polyurethane/multiwalled carbon nanotube nanocomposites by a spray drying process. J. Appl. Polym. Sci. 2012, 126, 789–795. [Google Scholar] [CrossRef]
- Elrasheedy, A.; Rabie, M.; El-Shazly, A.; Bassyouni, M.; Abdel-Hamid, S.M.S.; El Kady, M.F. Numerical investigation of fabricated MWCNTs/polystyrene nanofibrous membrane for DCMD. Polymers 2021, 13, 160. [Google Scholar] [CrossRef]
- Xing, W.; Yang, W.; Yang, W.; Hu, Q.; Si, J.; Lu, H.; Yang, B.; Song, L.; Hu, Y.; Yuen, R.K.K. Functionalized carbon nanotubes with phosphorus- and nitrogen-containing agents: Effective reinforcer for thermal, mechanical, and flame-retardant properties of polystyrene nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 22336–22345. [Google Scholar] [CrossRef]
- Arjmand, M.; Mahmoodi, M.; Park, S.; Sundararaj, U. Impact of foaming on the broadband dielectric properties of multi-walled carbon nanotube/polystyrene composites. J. Cell. Plast. 2014, 50, 551–562. [Google Scholar] [CrossRef]
- Valentová, H.; Ilčíková, M.; Czaniková, K.; Špitalský, Z.; Šlouf, M.; Nedbal, J.; Omastová, M. Dynamic Mechanical and Dielectric Properties of Ethylene Vinyl Acetate/Carbon Nanotube Composites. J. Macromol. Sci. Part B 2014, 53, 496–512. [Google Scholar] [CrossRef]
- Ma, L.; Dong, X.; Chen, M.; Zhu, L.; Wang, C.; Yang, F.; Dong, Y. Fabrication and Water Treatment Application of Carbon Nanotubes (CNTs)-Based Composite Membranes: A Review. Membranes 2017, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Xia, J.; Adamaquaye, P.; Zhao, G. High density interfaces enhanced microwave absorption in multifunctional carbon nanotubes-glass fiber-epoxy composites. Polym. Adv. Technol. 2022, 33, 818–830. [Google Scholar] [CrossRef]
- Kirchberg, S.; Chen, L.; Xie, L.; Ziegman, G.; Jiang, B.; Rickens, K.; Riemer, O. Replication of precise polymeric microlens arrays combining ultra-precision diamond ball-end milling and micro injection molding. Microsyst. Technol. 2012, 18, 459–465. [Google Scholar] [CrossRef]
- Cheng, Q.; Wang, J.; Wen, J.; Liu, C.; Jiang, K.; Li, Q.; Fan, S. Carbon nanotube/epoxy composites fabricated by resin transfer molding. Carbon 2010, 48, 260–266. [Google Scholar] [CrossRef]
- Mahmud Zuhudi, N.Z.; Mohd Fadzil, F.A.; Muzafar, Z.; Ahmad Yahaya, A.N.; Mohd Nur, N.; Abdul Rahman, N.A.; Wan Jusoh, W.N. A Rheological Study of Fibre Reinforced Composites and the Factors that Affect Rheological Behaviour during Impregnation Process: A Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 89, 167–181. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Jin, J.; Song, M. A comparative study on the effect of carbon fillers on electrical and thermal conductivity of a cyanate ester resin. Polym. Test. 2017, 60, 293–298. [Google Scholar] [CrossRef]
- Kaseem, M.; Hamad, K.; Ko, Y.G. Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: A review. Eur. Polym. J. 2016, 79, 36–62. [Google Scholar] [CrossRef]
- Rezakalla, A.I.; Savostina, T.P. Study of mechanical properties of recycled polyethylene of high and low density. Mater. Plast. 2021, 58, 210–215. [Google Scholar] [CrossRef]
- Mathur, R.B.; Choudhary, V.; Singh, B.P. Carbon Nanotubes and Their Composites. In Syntheses and Applications of Carbon Nanotubes and Their Composites; Suzuki, S., Ed.; IntechOpen: London, UK, 2013. [Google Scholar]
- Kamal, M.R.; Kenig, S. Mold temperature effects on the mechanical performance of thermoplastics. Polym. Eng. Sci. 1985, 25, 5–13. [Google Scholar]
- Barrau, S.; Demont, P.; Peigney, A.; Laurent, C.; Lacabanne, C. DC and AC conductivity of carbon nanotube–polymer composites. Macromolecules 2003, 36, 9678–9680. [Google Scholar] [CrossRef]
- Du, F.; Scogna, R.C.; Zhou, W.; Brand, S.; Fischer, J.E.; Winey, K.I. Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004, 37, 9048–9055. [Google Scholar] [CrossRef]
- Li, Y.; Liang, G.; Song, Z.; Liu, Y.; Guo, S. Effect of surfactant on microstructure, surface hydrophilicity, mechanical and thermal properties of different multi-walled carbon nanotube/polystyrene composites. Mater. Res. Express 2018, 5, 125321. [Google Scholar] [CrossRef]
- Subramani, M.; Sepperumal, U. FTIR analysis of bacterial mediated chemical changes in polystyrene foam. Ann. Biol. Res. 2016, 7, 55–61. [Google Scholar]
- Hashem, R.; Mohamed, H. Effect of Nano Silica Incorporation on Colour and Mechanical Properties of Two Provisional Materials. Egypt. Dent. J. 2023, 69, 477–486. [Google Scholar] [CrossRef]
- Worzakowska, M. 2015 Thermal and mechanical properties of polystyrene modified with esters derivatives of 3-phenylprop-2-en-1-ol. J. Therm. Anal. Calorim. 2015, 121, 235–243. [Google Scholar] [CrossRef]
- Yardimci, A.I.; Yılmaz, S.; Selamet, Y. The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst. Diam. Relat. Mater. 2015, 60, 81–86. [Google Scholar] [CrossRef]
- Dong, W.; Li, W.; Wang, K.; Han, B.; Sheng, D.; Shah, S.P. Investigation on physicochemical and piezoresistive properties of smart MWCNT/cementitious composite exposed to elevated temperatures. Cem. Concr. Compos. 2020, 112, 103675. [Google Scholar] [CrossRef]
- Davis, J.R. (Ed.) Tensile Testing, 2nd ed.; ASM International: Materials Park, OH, USA, 2004; ISBN 978-0-87170-806-9. [Google Scholar]
- Mathur, R.B.; Singh, B.P.; Choudhary, V. Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites. Polym. Compos. 2008, 29, 717–727. [Google Scholar] [CrossRef]
- Qian, S.; Li, V.C. Simplified inverse method for determining the tensile strain capacity of strain hardening cementitious composites. J. Adv. Concr. Technol. 2007, 5, 235–246. [Google Scholar] [CrossRef]
- Rejab, M.R.M.; Madsen, B.; Thomason, J.L. Flexural properties of recycled polystyrene composite laminates reinforced with MWCNT filled kenaf fiber. Mater. Today Proc. 2022, 65, 1672–1677. [Google Scholar]
Materials | The Percentage Elongation (%) | Tensile Strength (N/mm2) | Hardness (Shore d) |
---|---|---|---|
Pure PS | 2.89 ± 0.07 | 14.15 ± 0.13 | 97.08 ± 0.27 |
PS + % 0.1 MWCNT | 0.93 ± 0.03 | 7.75 ± 0.15 | 98.06 ± 0.20 |
PS + % 0.2 MWCNT | 0.92 ± 0.03 | 7.75 ± 0.10 | 98.02 ± 0.24 |
PS + % 0.3 MWCNT | 1.91 ± 0.05 | 12.17 ± 0.22 | 95.06 ± 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gündoğan, K.; Karaağaç, D. Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties. Polymers 2025, 17, 1917. https://doi.org/10.3390/polym17141917
Gündoğan K, Karaağaç D. Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties. Polymers. 2025; 17(14):1917. https://doi.org/10.3390/polym17141917
Chicago/Turabian StyleGündoğan, Kadir, and Damla Karaağaç. 2025. "Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties" Polymers 17, no. 14: 1917. https://doi.org/10.3390/polym17141917
APA StyleGündoğan, K., & Karaağaç, D. (2025). Multi-Walled Carbon Nanotube (MWCNT)-Reinforced Polystyrene (PS) Composites: Preparation, Structural Analysis, and Mechanical and Thermal Properties. Polymers, 17(14), 1917. https://doi.org/10.3390/polym17141917