Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of Candida albicans
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of BCt “Honeybees’ Chitosan”
- A
- Defatting step: Honeybees’ materials were treated in (7:3) chloroform–methanol mixture (12-fold, v/w) and stirred for 320 min at RT (“room temperature; 25 ± 2 °C”).
- B
- Demineralization phase: We treated the DDW washed materials from (A) with HCl solution (12-fold, v/w, with 2% concentration) at RT for 65 min.
- C
- D
- Deacetylation process: After DDW washing of collected materials from (C), they were treated with NaOH concentrated solution, e.g., 22-fold (v/w) of alkali solution with 59% (w/v) concentration, for 125 min at 118 °C. Extensive (4 times) DDW washings followed by drying were implemented after each stage. The final harvested BCt was subsequently lyophilized. The degree of BCt deacetylation (DD %) calculation was based on the next formula from its spectrum in FTIR “Fourier-transform infrared spectroscopy” [7]:
2.3. AgNP Biosynthesis with Royal Jelly
2.4. Construction of BCht/RJ/AgNP Nanocomposites
- F1: (2 RJ/AgNPs: 1 BCt);
- F2: (1 RJ/AgNPs: 1 BCt);
- F3: (1 RJ/AgNPs: 2 BCt).
2.5. Nanomaterials’ Characterization
2.5.1. FTIR “Fourier-Transform-Infrared-Spectroscopy” Examination
2.5.2. Nanomaterial Particles’ Size/Charge
2.5.3. Electron Microscopy Analysis: Transmission (TEM) and Scanning (SEM)
2.6. Determination of Anticandidal MIC “Minimum Inhibitory Concentration”
2.7. Antibiofilm Assessment
2.8. Assessment of “Yeast-to-Hyphae” Differentiation
3. Results and Discussion
3.1. Silver Nanoparticle Biosynthesis with Royal Jelly
3.2. Nanocomposite Construction and Characterization
3.3. Infrared (FTIR) Analysis
3.4. Size Analysis of Nanocomposites
3.5. Anticandidal and Antibiofilm Activity of Produced Materials
3.6. Electron Microscopy of Candida albicans Hyphal Formation
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACS | American Chemical Society |
RJ | Royal jelly |
BCht | Honeybee chitosan |
AgNPs | silver nanoparticles |
PBS | phosphate-buffered saline |
TEM | Transmission electron microscopy |
SEM | Scanning electron microscopy |
DLS | Dynamic light scattering |
FTIR | Fourier-transform infrared spectroscopy |
ζ | zeta potential |
DDW | double-distilled water |
MIC | minimum inhibitory concentration |
RT | Room temperature |
References
- Aranaz, I.; Alcántara, A.R.; Civera, M.C.; Arias, C.; Elorza, B.; Heras Caballero, A.; Acosta, N. Chitosan: An overview of its properties and applications. Polymers 2021, 13, 3256. [Google Scholar] [CrossRef] [PubMed]
- Marei, N.; Elwahy, A.H.; Salah, T.A.; El Sherif, Y.; El-Samie, E.A. Enhanced antibacterial activity of Egyptian local insects’ chitosan-based nanoparticles loaded with ciprofloxacin-HCl. Int. J. Biol. Macromol. 2019, 126, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial actions and applications of chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef] [PubMed]
- Tayel, A.A.; Ebaid, A.M.; Otian, A.M.; Mahrous, H.; El Rabey, H.A.; Salem, M.F. Application of edible nanocomposites from Chitosan/fenugreek seed mucilage/selenium nanoparticles for protecting lemon from green mold. Int. J. Biol. Macromol. 2024, 273, 13319. [Google Scholar] [CrossRef]
- Marei, N.H.; El-Samie, E.A.; Salah, T.; Saad, G.R.; Elwahy, A.H. Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 2016, 82, 871–877. [Google Scholar] [CrossRef]
- Youssef, D.M.; Alshubaily, F.A.; Tayel, A.A.; Alghuthaymi, M.A.; Al-Saman, M.A. Application of nanocomposites from bees products and nano-selenium in edible coating for catfish fillets biopreservation. Polymers 2022, 14, 2378. [Google Scholar] [CrossRef]
- Sharaf, M.; Zahra, A.A.; Alharbi, M.; Mekky, A.E.; Shehata, A.M.; Alkhudhayri, A.; Ali, A.M.; Al Suhaimi, E.A.; Zakai, S.A.; Al Harthi, N.; et al. Bee chitosan nanoparticles loaded with apitoxin as a novel approach to eradication of common human bacterial, fungal pathogens and treating cancer. Front. Microbiol. 2024, 15, 1345478. [Google Scholar] [CrossRef]
- Al-saggaf, M.S. Formulation of insect chitosan stabilized silver nanoparticles with propolis extract as potent antimicrobial and wound healing composites. Int. J. Polym. Sci. 2021, 2021, 578032. [Google Scholar] [CrossRef]
- Kolahalam, L.A.; Viswanath, I.K.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Huq, M.A.; Ashrafudoulla, M.; Parvez, M.A.K.; Balusamy, S.R.; Rahman, M.M.; Kim, J.H.; Akter, S. Chitosan-coated polymeric silver and gold nanoparticles: Biosynthesis, characterization and potential antibacterial applications: A review. Polymers 2022, 14, 5302. [Google Scholar] [CrossRef]
- Mačák, L.; Velgosova, O.; Múdra, E.; Vojtko, M.; Dolinská, S.; Kromka, F. Preparation of Green Silver Nanoparticles and Eco-Friendly Polymer–AgNPs Nanocomposites: A Study of Toxic Properties across Multiple Organisms. Polymers 2024, 16, 1865. [Google Scholar] [CrossRef] [PubMed]
- Pandit, C.; Roy, A.; Ghotekar, S.; Khusro, A.; Islam, M.N.; Emran, T.B.; Lam, S.E.; Khandaker, M.U.; Bradley, D.A. Biological agents for synthesis of nanoparticles and their applications. J. King Saud Univ. Sci. 2022, 34, 101869. [Google Scholar] [CrossRef]
- Echegaray-Ugarte, T.S.; Cespedes-Loayza, A.L.; Cruz-Loayza, J.L.; Huayapa-Yucra, L.A.; Cruz, I.; de Carvalho, J.C.; Goyzueta-Mamani, L.D. Green synthesis of silver nanoparticles mediated by Punica granatum peel waste: An effective additive for natural rubber latex nanofibers enhancement. Polymers 2024, 16, 1531. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, M.M.; El-Hefnawy, M.E.; Tayel, A.A. Innovative anticancer nanocomposites from Corchorus olitorius mucilage/chitosan/selenium nanoparticles. Int. J. Biol. Macromol. 2024, 282, 137320. [Google Scholar] [CrossRef]
- Padmavathi, A.R.; P, S.M.; Das, A.; Priya, A.; Sushmitha, T.J.; Pandian, S.K.; Toleti, S.R. Impediment to growth and yeast-to-hyphae transition in Candida albicans by copper oxide nanoparticles. Biofouling 2020, 36, 56–72. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001, 183, 5385–5394. [Google Scholar] [CrossRef] [PubMed]
- Atriwal, T.; Azeem, K.; Husain, F.M.; Hussain, A.; Khan, M.N.; Alajmi, M.F.; Abid, M. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition. Front. Microbiol. 2021, 12, 638609. [Google Scholar] [CrossRef]
- Lohse, M.B.; Gulati, M.; Johnson, A.D.; Nobile, C.J. Development and regulation of single-and multi-species Candida albicans biofilms. Nat. Rev. Microbiol. 2018, 16, 19–31. [Google Scholar] [CrossRef]
- Douglas, L.J. Candida biofilms and their role in infection. Trends Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Mathé, L.; Van Dijck, P. Recent insights into Candida albicans biofilm resistance mechanisms. Curr. Genet. 2013, 59, 251–264. [Google Scholar] [CrossRef]
- Tayel, A.A.; Ghanem, R.A.; Al-Saggaf, M.S.; Elebeedy, D.; Abd El Maksoud, A.I. Application of Fish Collagen-Nanochitosan-Henna Extract Composites for the Control of Skin Pathogens and Accelerating Wound Healing. Int. J. Polym. Sci. 2021, 2021, 1907914. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Huang, Y.; Jin, Q.; Ji, J. Nanomaterial-based therapeutics for enhanced antifungal therapy. J. Mater. Chem. B 2024, 12, 9173–9198. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. J. Funct. Foods 2012, 4, 39–52. [Google Scholar] [CrossRef]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef]
- Gevorgyan, S.; Schubert, R.; Falke, S.; Lorenzen, K.; Trchounian, K.; Betzel, C. Structural characterization and antibacterial activity of silver nanoparticles synthesized using a low-molecular-weight Royal Jelly extract. Sci. Rep. 2022, 12, 14077. [Google Scholar] [CrossRef]
- Gevorgyan, S.; Schubert, R.; Yeranosyan, M.; Gabrielyan, L.; Trchounian, A.; Lorenzen, K.; Trchounian, K. Antibacterial activity of royal jelly-mediated green synthesized silver nanoparticles. AMB Express 2021, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Kocharyan, M.; Marutyan, S.; Nadiryan, E.; Ginovyan, M.; Javrushyan, H.; Marutyan, S.; Avtandilyan, N. Royal Jelly–Mediated Silver Nanoparticles Show Promising Anticancer Effect on HeLa and A549 Cells Through Modulation of the VEGFa/PI3K/Akt/MMP-2 Pathway. Appl. Organomet. Chem. 2024, 38, e7726. [Google Scholar] [CrossRef]
- Alalawy, A.I.; El Rabey, H.A.; Almutairi, F.M.; Tayel, A.A.; Al-Duais, M.A.; Zidan, N.S.; Sakran, M.I. Effectual anticancer potentiality of loaded bee venom onto fungal chitosan nanoparticles. Int. J. Polym. Sci. 2020, 2020, 2785304. [Google Scholar] [CrossRef]
- El Rabey, H.; Almassabi, R.F.; Mohammed, G.M.; Abbas, N.H.; Bakry, N.; Althiyabi, A.S.; Alshubayli, I.H.; Tayel, A.A. Potent antibacterial nanocomposites from okra mucilage/chitosan/silver nanoparticles for multidrug-resistant Salmonella Typhimurium eradication. Green Process. Synth. 2024, 13, 20230225. [Google Scholar] [CrossRef]
- Thapliyal, D.; Verros, G.D.; Arya, R.K. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers 2025, 17, 247. [Google Scholar] [CrossRef]
- Honorato, L.; de Araujo, J.F.D.; Ellis, C.C.; Piffer, A.C.; Pereira, Y.; Frases, S.; de Sousa Araújo, G.R.; Pontes, B.; Mendes, M.T.; Pereira, M.D.; et al. Extracellular vesicles regulate biofilm formation and yeast-to-hypha differentiation in Candida albicans. MBio 2022, 13, e00301-22. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, K.; Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS ONE 2015, 10, e0117695. [Google Scholar] [CrossRef]
- Mendoza-Reséndez, R.; Gómez-Treviño, A.; Barriga-Castro, E.D.; Núñez, N.O.; Luna, C. Synthesis of antibacterial silver-based nanodisks and dendritic structures mediated by royal jelly. RSC Adv. 2014, 4, 1650–1658. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A. Antibacterial action of insect chitosan/gum Arabic nanocomposites encapsulating eugenol and selenium nanoparticles. J. King Saud Univ. Sci. 2022, 34, 102219. [Google Scholar] [CrossRef]
- Yao, C.J.; Yang, S.J.; Shieh, M.J.; Young, T.H. Development of a Chitosan-Silver Nanocomposite/β-1, 3-Glucan/Hyaluronic Acid Composite as an Antimicrobial System for Wound Healing. Polymers 2025, 17, 350. [Google Scholar] [CrossRef]
- Aborabu, A.A.S.; Tayel, A.A.; Assas, M.; Moussa, S.H.; Alalawy, A.I.; Almutairi, F.M.; Omar, A.A.D. Anti-Helicobacter pylori activity of nanocomposites from chitosan/broccoli mucilage/selenium nanoparticles. Sci. Rep. 2024, 14, 21693. [Google Scholar] [CrossRef] [PubMed]
- Lazarevska, S.; Makreski, P. Insights into the infrared and Raman spectra of fresh and lyophilized Royal Jelly and protein degradation IR spectroscopy study during heating. Maced. J. Chem. Chem. Eng. 2015, 34, 87–88. [Google Scholar] [CrossRef]
- Cebi, N.; Bozkurt, F.; Yilmaz, M.T.; Sagdic, O. An evaluation of FTIR spectroscopy for prediction of royal jelly content in hive products. J. Apic. Res. 2020, 59, 146–155. [Google Scholar] [CrossRef]
- Ghadimi-Garjan, R.; Javadi, A.; Jafarizadeh-Malmiri, H.; Anarjan, N.; Mirzaei, H. Lyophilized royal jelly preparation in nanoscale and evaluation of its physicochemical properties and bactericidal activity. Food Sci. Nutr. 2023, 11, 3404–3413. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Diab, A.M.; Elzahy, A.F.; Mazrou, K.E.; Tayel, A.A.; Moussa, S.H.; Arru, L. Green biosynthesized selenium nanoparticles by cinnamon extract and their antimicrobial activity and application as edible coatings with nano-chitosan. J. Food Qual. 2021, 2021, 670709. [Google Scholar] [CrossRef]
- Al-duais, M.A.; El Rabey, H.A.; Mohammed, G.M.; Al-Awthan, Y.S.; Althiyabi, A.S.; Attia, E.S.; Rezk, S.M.; Tayel, A.A. The anticancer activity of fucoidan coated selenium nanoparticles and curcumin nanoparticles against colorectal cancer lines. Sci. Rep. 2025, 15, 287. [Google Scholar] [CrossRef]
- Musa, A.A.; Bello, A.; Adams, S.M.; Onwualu, A.P.; Anye, V.C.; Bello, K.A.; Obianyo, I.I. Nano-enhanced polymer composite materials: A review of current advancements and challenges. Polymers 2025, 17, 893. [Google Scholar] [CrossRef] [PubMed]
- Bapat, R.A.; Chaubal, T.V.; Joshi, C.P.; Bapat, P.R.; Choudhury, H.; Pandey, M.; Gorain, B.; Kesharwani, P. An overview of application of silver nanoparticles for biomaterials in dentistry. Mater. Sci. Eng. C 2018, 91, 881–898. [Google Scholar] [CrossRef]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, E.O. Green Silver Nanoparticles: An Antibacterial Mechanism. Antibiotics 2024, 14, 5. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tao, L.; Yu, X.; Zheng, H.; Wu, J.; Hu, F. Royal jelly proteins and their derived peptides: Preparation, properties, and biological activities. J. Agric. Food Chem. 2021, 69, 14415–14427. [Google Scholar] [CrossRef]
- Bava, R.; Puteo, C.; Lombardi, R.; Garcea, G.; Lupia, C.; Spano, A.; Liguori, G.; Palma, E.; Britti, D.; Castagna, F. Antimicrobial Properties of Hive Products and Their Potential Applications in Human and Veterinary Medicine. Antibiotics 2025, 14, 172. [Google Scholar] [CrossRef]
Material/Composite | Ps Range (nm) | Ps Mean (nm) | Charge (mV) |
---|---|---|---|
BCt | >1000 | >1000 | 38.6 |
RJ | >1000 | >1000 | −22.4 |
RJ/AgNPs | 2.21–9.42 | 3.61 | −27.2 |
BCht/RJ/AgNPs (F1) | 28.61–168.27 | 63.19 | +33.8 |
BCht/RJ/AgNPs (F2) | 13.23–81.86 | 27.65 | +29.3 |
BCht/RJ/AgNPs (F3) | 24.33–116.65 | 52.74 | −11.5 |
Material/Composite | MIC (mg/L) | Biofilm Reduction * (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
C. albicans T | C. albicans I | C. albicans II | C. albicans T | C. albicans I | C. albicans II | ||||
0.5× | 1.0× | 0.5× | 1.0× | 0.5× | 1.0× | ||||
BCt | 600 | 575 | 650 | 59.2 | 88.6 | 65.3 | 92.3 | 57.7 | 87.2 |
RJ/AgNPs | 225 | 225 | 250 | 70.3 | 94.1 | 76.8 | 97.9 | 74.1 | 93.4 |
BCht/RJ/AgNPs (F1) | 225 | 175 | 200 | 75.5 | ND | 74.7 | ND | 70.3 | ND |
BCht/RJ/AgNPs (F2) | 150 | 125 | 175 | 79.6 | ND | 82.6 | ND | 81.2 | ND |
BCht/RJ/AgNPs (F3) | 175 | 150 | 200 | 78.1 | ND | 80.4 | ND | 77.7 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghuthaymi, M.A. Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of Candida albicans. Polymers 2025, 17, 1916. https://doi.org/10.3390/polym17141916
Alghuthaymi MA. Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of Candida albicans. Polymers. 2025; 17(14):1916. https://doi.org/10.3390/polym17141916
Chicago/Turabian StyleAlghuthaymi, Mousa Abdullah. 2025. "Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of Candida albicans" Polymers 17, no. 14: 1916. https://doi.org/10.3390/polym17141916
APA StyleAlghuthaymi, M. A. (2025). Antifungal Nanocomposites from Honeybee Chitosan and Royal Jelly-Mediated Nanosilver for Suppressing Biofilm and Hyphal Formation of Candida albicans. Polymers, 17(14), 1916. https://doi.org/10.3390/polym17141916