The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Bacterial Strains and Growth Conditions
2.3. Extraction of EPS and Quantitative Analysis of Biopolymers
2.4. Adhesion Tests and Biofilm Growth
2.5. Fluorescence Microscopy of Biofilms and Aggregates
2.6. Atomic Force Microscopy (AFM)
2.7. Bioinformatics Analysis
2.8. Statistics
3. Results
3.1. The Chemical Composition of EPS Produced by Rhodococcus spp.
3.2. EPS in Rhodococcus Biofilms and Cell Aggregates
3.3. The Involvement of EPS in the Adhesion of Rhodococcus spp. To Solid Surfaces
3.4. Genes Involved in EPS Biosynthesis in Rhodococcus spp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Decho, A.W.; Gutierrez, T. Microbial extracellular polymeric substances (EPS) in ocean systems. Front. Microbiol. 2017, 8, 922. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, Y.; Hu, Y.; Jung, S. Bacterial succinoglycans: Structure, physical properties, and applications. Polymers 2022, 14, 276. [Google Scholar] [CrossRef]
- Wei, X.; Chen, Z.; Liu, A.; Yang, L.; Xu, Y.; Cao, M.; He, N. Advanced strategies for metabolic engineering of Bacillus to produce extracellular polymeric substances. Biotechnol. Adv. 2023, 67, 108199. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V. Extremotolerant Rhodococcus as an important resource for environmental biotechnology. In Actinomycetes in Marine and Extreme Environments: Unexhausted Sources for Microbial Biotechnology; Kurtböke, I., Ed.; Science Publishers, CRC Press: Boca Raton, FL, USA, 2024; pp. 209–246. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Krivoruchko, A.V.; Tyumina, E.A. The Rhodococcus ruber actinomycetes, key and universal biooxidizers of C2−C4 gaseous alkanes. Microbiology 2025, 94, 145–171. [Google Scholar] [CrossRef]
- More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage. 2014, 144, 1–25. [Google Scholar] [CrossRef]
- Ahuja, V.; Bhatt, A.K.; Banu, J.R.; Kumar, V.; Kumar, G.; Yang, Y.H.; Bhatia, S.K. Microbial exopolysaccharide composites in biomedicine and healthcare: Trends and advances. Polymers 2023, 15, 1801. [Google Scholar] [CrossRef]
- Vandana; Priyadarshanee, M.; Das, S. Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. Chemosphere 2023, 332, 138876. [Google Scholar] [CrossRef]
- Iwabuchi, N.; Sunairi, M.; Anzai, H.; Morisaki, H.; Nakajima, M. Relationships among colony morphotypes, cell-surface properties and bacterial adhesion to substrata in Rhodococcus. Colloids Surf. B Biointerfaces 2003, 30, 51–60. [Google Scholar] [CrossRef]
- Urai, M.; Yoshizaki, H.; Anzai, H.; Ogihara, J.; Iwabuchi, N.; Harayama, S.; Sunairi, M.; Nakajima, M. Structural analysis of mucoidan, an acidic extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr. Res. 2007, 342, 927–932. [Google Scholar] [CrossRef]
- Jiao, S.; Chen, J.; Yu, H.; Shen, Z. Tuning and elucidation of the colony dimorphism in Rhodococcus ruber associated with cell flocculation in large scale fermentation. Appl. Microbiol. Biotechnol. 2017, 101, 6321–6332. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, Q.; Wang, X.; Wu, Y.; Fu, C.; Wang, X.; Xu, H.; Li, L. Characterizing the contaminant-adhesion of a dibenzofuran degrader Rhodococcus sp. Microorganisms 2025, 13, 93. [Google Scholar] [CrossRef]
- Tian, H.; Li, Y.; Chen, H.; Zhang, J.; Hui, M.; Xu, X.; Su, Q.; Smets, B.F. Aerobic biodegradation of quinoline under denitrifying conditions in membrane-aerated biofilm reactor. Environ. Pollut. 2023, 326, 121507. [Google Scholar] [CrossRef]
- Zheng, S.; Lin, T.; Chen, H.; Zhang, X.; Jiang, F. Impact of changes in biofilm composition response following chlorine and chloramine disinfection on nitrogenous disinfection byproduct formation and toxicity risk in drinking water distribution systems. Water Res. 2024, 253, 121331. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Z.; Qiu, Y.; Wang, X.; Wang, H.; Xiao, H.; Lu, Z. Efficient electrotransformation of Rhodococcus ruber YYL with abundant extracellular polymeric substances via a cell wall-weakening strategy. FEMS Microbiol. Lett. 2021, 368, fnab049. [Google Scholar] [CrossRef]
- Urai, M.; Anzai, H.; Iwabuchi, N.; Sunairi, M.; Nakajima, M. A novel viscous extracellular polysaccharide containing fatty acids from Rhodococcus rhodochrous ATCC 53968. Actinomycetologica 2004, 18, 15–17. [Google Scholar] [CrossRef]
- Hu, X.; Li, D.; Qiao, Y.; Wang, X.; Zhang, Q.; Zhao, W.; Huang, L. Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. Int. J. Biol. Macromol. 2020, 145, 646–654. [Google Scholar] [CrossRef]
- Li, F.; Hu, X.; Li, J.; Sun, X.; Luo, C.; Zhang, X.; Li, H.; Lu, J.; Li, Y.; Bao, M. Purification, structural characterization, antioxidant and emulsifying capabilities of exopolysaccharide produced by Rhodococcus qingshengii QDR4-2. J. Polym. Environ. 2023, 31, 64–80. [Google Scholar] [CrossRef]
- Behera, S.; Das, S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol. Res. 2023, 273, 127399. [Google Scholar] [CrossRef]
- Szcześ, A.; Czemierska, M.; Jarosz-Wilkołazka, A. calcium carbonate formation on mica supported extracellular polymeric substance produced by Rhodococcus opacus. J. Solid State Chem. 2016, 242, 212–221. [Google Scholar] [CrossRef]
- Santiso-Bellón, C.; Randazzo, W.; Carmona-Vicente, N.; Peña-Gil, N.; Cárcamo-Calvo, R.; Lopez-Navarro, S.; Navarro-Lleó, N.; Yebra, M.J.; Monedero, V.; Buesa, J.; et al. Rhodococcus spp. interacts with human norovirus in clinical samples and impairs its replication on human intestinal enteroids. Gut Microbes 2025, 17, 2469716. [Google Scholar] [CrossRef]
- Sutcliffe, I.C.; Brown, A.K.; Dover, L.G. The rhodococcal cell envelope: Composition, organisation and biosynthesis. In Biology of Rhodococcus; Alvarez, H.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 29–71. [Google Scholar] [CrossRef]
- Czemierska, M.; Szcześ, A.; Pawlik, A.; Wiater, A.; Jarosz-Wilkołazka, A. Production and characterisation of exopolymer from Rhodococcus opacus. Biochem. Eng. J. 2016, 112, 143–152. [Google Scholar] [CrossRef]
- Khan, S.T.; Ahamed, M.; Alhadlaq, H.A.; Musarrat, J.; Al-Khedhairy, A. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Arch. Oral Biol. 2013, 58, 1804–1811. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y.; Valéro, J.R. Wastewater sludge as raw material for microbial oils production. Appl. Energy 2014, 135, 192–201. [Google Scholar] [CrossRef]
- Huber, B.; Riedel, K.; Hentzer, M.; Heydorn, A.; Gotschlich, A.; Givskov, M.; Molin, S.; Eberl, L. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 2001, 147, 2517–2528. [Google Scholar] [CrossRef]
- Krivoruchko, A.V.; Iziumova, A.Y.; Kuyukina, M.S.; Plekhov, O.A.; Naimark, O.B.; Ivshina, I.B. Adhesion of Rhodococcus ruber IEGM 342 to polystyrene studied using contact and non-contact temperature measurement techniques. Appl. Microbiol. Biotechnol. 2018, 102, 8525–8536. [Google Scholar] [CrossRef]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, 206–214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Sanderford, M.; Sharma, S.; Tamura, K. MEGA12: Molecular Evolutionary Genetic Analysis version 12 for adaptive and green computing. Mol. Biol. Evol. 2024, 41, msae263. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. AntiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef] [PubMed]
- Krivoruchko, A.; Kuyukina, M.; Peshkur, T.; Cunningham, C.J.; Ivshina, I. Rhodococcus strains from the Specialized Collection of Alkanotrophs for biodegradation of aromatic compounds. Molecules 2023, 28, 2393. [Google Scholar] [CrossRef]
- Ivshina, I.; Kuyukina, M.; Krivoruchko, A.; Elkin, A.; Peshkur, T.; Cunningham, C.J. Resistant Rhodococcus for biodegradation of diesel fuel at high concentration and low temperature. Microorganisms 2024, 12, 2605. [Google Scholar] [CrossRef]
- Pen, Y.; Zhang, Z.J.; Morales-García, A.L.; Mears, M.; Tarmey, D.S.; Edyvean, R.G.; Banwart, S.A.; Geoghegan, M. Effect of extracellular polymeric substances on the mechanical properties of Rhodococcus. Biochim. Biophys. Acta-Biomembr. 2015, 1848, 518–526. [Google Scholar] [CrossRef]
- Maddela, N.R.; Meng, F. Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Sci. Total Environ. 2020, 713, 136402. [Google Scholar] [CrossRef]
- Maddela, N.R.; Zhou, Z.; Yu, Z.; Zhao, S.; Meng, F. Functional determinants of extracellular polymeric substances in membrane biofouling: Experimental evidence from pure-cultured sludge bacteria. Appl. Environ. Microbiol. 2018, 84, e00756-18. [Google Scholar] [CrossRef]
- Pátek, M.; Grulich, M.; Nešvera, J. Stress response in Rhodococcus strains. Biotechnol. Adv. 2021, 53, 107698. [Google Scholar] [CrossRef]
- El-Shanshoury, A.E.-R.R.; Allam, N.G.; Basiouny, E.M.; Azab, M.M. Optimization of exopolysaccharide production by soil actinobacterium Streptomyces plicatus under submerged culture conditions. Egypt. J. Exp. Biol. 2022, 18, 151–160. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Bayandina, E.A.; Kostrikina, N.A.; Sorokin, V.V.; Mulyukin, A.L.; Ivshina, I.B. Adaptations of Rhodococcus rhodochrous biofilms to oxidative stress induced by copper(II) oxide nanoparticles. Langmuir 2025, 41, 1356–1367. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Krivoruchko, A.V.; Kuyukina, M.S.; Peshkur, T.A.; Cunningham, C.J. Adhesion of Rhodococcus bacteria to solid hydrocarbons and enhanced biodegradation of these compounds. Sci. Rep. 2022, 12, 21559. [Google Scholar] [CrossRef]
- Ivshina, I.B.; Kuyukina, M.S.; Litvinenko, L.V.; Golysheva, A.A.; Kostrikina, N.A.; Sorokin, V.V.; Mulyukin, A.L. Bioaccumulation of molybdate ions by alkanotrophic Rhodococcus leads to significant alterations in cellular ultrastructure and physiology. Ecotoxicol. Environ. Saf. 2024, 274, 116190. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, M.; Zampolii, J.; Zannoni, D. Genomics of Rhodococcus. In Biology of Rhodococcus, Microbiology Monographs 16; Alvarez, H.M., Ed.; Springer Nature: Cham, Switzerland, 2019; pp. 23–60. [Google Scholar] [CrossRef]
- Garrido-Sanz, D.; Redondo-Nieto, M.; Martín, M.; Rivilla, R. Comparative genomics of the Rhodococcus genus shows wide distribution of biodegradation traits. Microorganisms 2020, 8, 774. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Huang, Y.; Zhang, P.-P.; Ding, X.-M.; Op den Camp, H.J.M.; Quan, Z.-X. Horizontal gene transfer of genes encoding copper-containing membrane-bound monooxygenase (CuMMO) and soluble di-iron monooxygenase (SDIMO) in ethane- and propane-oxidizing Rhodococcus bacteria. Appl. Environ. Microbiol. 2021, 87, e00227-21. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Di Benedetto, G.; Firrincieli, A.; Presentato, A.; Frascari, D.; Cappelletti, M. Unravelling the role of the group 6 soluble di-iron monooxygenase (SDIMO) SmoABCD in alkane metabolism and chlorinated alkane degradation. Microb. Biotechnol. 2024, 17, e14453. [Google Scholar] [CrossRef]
- Baek, S.; Lee, E.-J. PhoU: A multifaceted regulator in microbial signaling and homeostasis. Curr. Opin. Microbiol. 2024, 77, 102401. [Google Scholar] [CrossRef]
- Carniello, V.; Peterson, B.W.; van der Mei, H.C.; Busscher, H.J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 2018, 261, 1–14. [Google Scholar] [CrossRef]
Strain | EPS Carbohydrates, mg·L−1 | Strain | EPS Carbohydrates, mg·L−1 |
---|---|---|---|
R. ruber IEGM 231 | 58.2 ± 24.0 | R. cercidiphylli IEGM 1184 | 8.8 ± 1.6 |
R. erythropolis IEGM 1399 | 32.2 ± 13.2 | R. opacus IEGM 262 | 8.8 ± 1.9 |
R. globerulus IEGM 1203 | 31.9 ± 9.9 | R. rhodochrous IEGM 1161 | 8.0 ± 3.5 |
R. rhodochrous IEGM 1298 | 27.6 ± 1.3 | R. erythropolis IEGM 788 | 7.3 ± 1.8 |
R. qingshengii IEGM 1359 | 23.9 ± 3.5 | R. jostii IEGM 68 | 6.7 ± 1.6 |
R. fascians IEGM 1233 | 23.7 ± 4.9 | R. qingshengii IEGM 1270 | 6.3 ± 2.7 |
R. cerastii IEGM 1243 | 23.1 ± 9.2 | Rhodococcus sp. IEGM 1414 | 5.7 ± 1.3 |
R. ruber IEGM 1263 | 21.8 ± 1.3 | R. pyridinivorans IEGM 1142 | 5.6 ± 1.1 |
R. ruber IEGM 1135 | 20.2 ± 4.2 | R. corynebacterioides IEGM 1202 | 5.3 ± 1.8 |
R. erythropolis IEGM 708 | 18.4 ± 7.7 | R. rhodochrous IEGM 1362 | 3.8 ± 1.1 |
R. qingshengii IEGM 267 | 18.4 ± 8.8 | Rhodococcus sp. IEGM 1409 | 2.9 ± 0.6 |
R. erythropolis IEGM 1348 | 16.8 ± 5.3 | Rhodococcus sp. IEGM 1401 | 2.6 ± 0.1 |
R. wratislaviensis IEGM 1171 | 13.5 ± 1.7 | R. aetherivorans IEGM 1367 | 2.5 ± 0.3 |
R. erythropolis IEGM 1321 | 13.2 ± 1.4 | R. cerastii IEGM 1327 | 2.3 ± 0.7 |
R. opacus IEGM 249 | 12.8 ± 1.7 | R. ruber IEGM 1391 | 2.3 ± 0.6 |
R. cerastii IEGM 1278 | 10.7 ± 1.3 | R. erythropolis IEGM 1415 | 2.2 ± 0.8 |
R. ruber IEGM 1121 | 10.5 ± 4.6 | R. pyridinivorans IEGM 66 | 1.9 ± 0.5 |
R. rhodochrous IEGM 107 | 9.9 ± 3.2 | Rhodococcus sp. IEGM 1408 | 1.9 ± 0.3 |
R. jostii IEGM 60 | 9.6 ± 3.4 | R. rhodochrous IEGM 64 | 1.6 ± 0.3 |
R. rhodochrous IEGM 1360 | 9.4 ± 3.7 | R. erythropolis IEGM 1020 | 0.9 ± 0.4 |
R. rhodochrous IEGM 1162 | 9.2 ± 3.7 | R. erythropolis IEGM 766 | 0.8 ± 0.3 |
R. rhodochrous IEGM 1363 | 8.9 ± 1.1 | R. aetherivorans IEGM 1250 | 0.6 ± 0.2 |
Strain | Lipids, mg·L−1 | Proteins, mg·L−1 | Nucleic Acids, mg·L−1 |
---|---|---|---|
R. erythropolis IEGM 1415 | 71.7 ± 7.2 | Below detectable level | 0.167 ± 0.019 |
R. qingshengii IEGM 1359 | 54.0 ± 8.5 | 0.112 ± 0.014 | 0.363 ± 0.199 |
R. globerulus IEGM 1203 | 50.0 ± 21.1 | Below detectable level | 0.126 ± 0.067 |
R. ruber IEGM 1122 | 43.3 ± 12.2 | Below detectable level | 0.077 ± 0.019 |
R. pyridinivorans IEGM 66 | 40.7 ± 11.2 | Below detectable level | 0.252 ± 0.086 |
R. cerastii IEGM 1327 | 34.0 ± 9.9 | 0.365 ± 0.164 | 0.151 ± 0.027 |
R. opacus IEGM 2226 | 34.0 ± 1.4 | 0.301 ± 0.091 | 0.254 ± 0.024 |
R. rhodochrous IEGM 107 | 32.0 ± 9.7 | 1.131 ± 0.091 | 2.735 ± 1.276 |
R. qingshengii IEGM 1270 | 31.3 ± 8.4 | 0.014 ± 0.002 | 0.111 ± 0.014 |
R. pyridinivorans IEGM 1142 | 26.3 ± 3.2 | 0.023 ± 0.004 | 0.177 ± 0.004 |
R. wratislaviensis IEGM 1171 | 23.0 ± 10.1 | 0.094 ± 0.008 | 0.308 ± 0.131 |
R. erythropolis IEGM 1399 | 20.7 ± 6.8 | 0.043 ± 0.003 | 0.287 ± 0.079 |
R. opacus IEGM 249 | 19.0 ± 7.9 | Below detectable level | 0.078 ± 0.018 |
R. jostii IEGM 68 | 17.3 ± 9.1 | Below detectable level | 0.062 ± 0.024 |
Rhodococcus sp. IEGM 1401 | 15.6 ± 1.6 | 0.244 ± 0.032 | 0.181 ± 0.013 |
Most Similar Known Cluster | Similarity, % | Type | Number of Strains | Strains |
---|---|---|---|---|
ectoine Other | 75 | ectoine | 1 | R. rhodochrous IEGM 107 |
coelichelin NRP | 27 | NRPS | 1 | R. erythropolis IEGM 1321 |
oxalomycin B NRP + Polyketide | 12 | NRPS | 1 | R. wratislaviensis IEGM 1171 |
acarbose Saccharide | 7 | PKS-like, amglyccycl | 5 | R. cerastii IEGM 1243, R. erythropolis IEGM 788, IEGM 1020, IEGM 1321, R. ruber IEGM 1391 |
glycopeptidolipid Saccharide | 7 | NRPS | 1 | R. opacus IEGM 2226 |
maduramicin Polyketide + Saccharide | 7 | NRPS | 1 | R. wratislaviensis IEGM 1171 |
SF2575 Polyketide: Type II polyketide + Saccharide: Hydrid/tailoring saccharide | 6 | NRPS, terpene | 24 | R. aetherivorans IEGM 1367, R. cerastii IEGM 1243, IEGM 1278, IEGM 1327, R. corynebacterioides IEGM 1202, R. erythropolis IEGM 708, IEGM 766, IEGM 1020, IEGM 1321, IEGM 1348, R. globerulus IEGM 1203, R. opacus IEGM 249, IEGM 2226, R. pyridinivorans IEGM 1142, R. rhodochrous IEGM 107, IEGM 1360, IEGM 1362, R. ruber IEGM 231, IEGM 1121, IEGM 1391, R. wratislaviensis IEGM 1171, Rhodococcus sp. IEGM 1408, IEGM 1409, IEGM 1414 |
Coumermycin A1 Saccharide: Hydrid/tailoring saccharide + Other: Aminocoumarin | 6 | T1PKS | 1 | R. ruber IEGM 1391 |
hydromycin A Saccharide | 6 | arylpolyene | 1 | R. cerastii IEGM 1278 |
kendomycin B Polyketide | 6 | NRPS | 1 | R. rhodochrous IEGM 107 |
K-252a Alkaloid | 5 | NRPS-like | 1 | R. ruber IEGM 1391 |
prejadomycin/rabelomycin/gaudimycin C/gaudimycin D/UWM6/gaudimycin A Polyketide: Type II polyketide + Saccharide: Hydrid/tailoring saccharide | 4 | NRPS | 1 | R. rhodochrous IEGM 1362 |
Iomaiviticin A/Iomaiviticin C/Iomaiviticin D/Iomaiviticin E Polyketide: Type II polyketide + Saccharide: Hydrid/tailoring saccharide | 3 | NRPS | 1 | R. qingshengii IEGM 1359 |
EPS-related biosynthetic gene clusters are not found | 16 | R. aetherivorans IEGM 1250, R. cercidiphylli IEGM 1184, R. erythropolis IEGM 1399, IEGM 1415, R. fascians IEGM 1233, R. jostii IEGM 60, IEGM 68, R. opacus IEGM 262, R. qingshengii IEGM 1270, R. rhodochrous IEGM 1161, IEGM 1162, IEGM 1298, IEGM 1363, R. ruber IEGM 560, IEGM 1122, IEGM 1263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivoruchko, A.; Nurieva, D.; Luppov, V.; Kuyukina, M.; Ivshina, I. The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons. Polymers 2025, 17, 1912. https://doi.org/10.3390/polym17141912
Krivoruchko A, Nurieva D, Luppov V, Kuyukina M, Ivshina I. The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons. Polymers. 2025; 17(14):1912. https://doi.org/10.3390/polym17141912
Chicago/Turabian StyleKrivoruchko, Anastasiia, Daria Nurieva, Vadim Luppov, Maria Kuyukina, and Irina Ivshina. 2025. "The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons" Polymers 17, no. 14: 1912. https://doi.org/10.3390/polym17141912
APA StyleKrivoruchko, A., Nurieva, D., Luppov, V., Kuyukina, M., & Ivshina, I. (2025). The Lipid- and Polysaccharide-Rich Extracellular Polymeric Substances of Rhodococcus Support Biofilm Formation and Protection from Toxic Hydrocarbons. Polymers, 17(14), 1912. https://doi.org/10.3390/polym17141912