Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution
Abstract
1. Introduction
2. Model and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mei, G.; Zheng, Y.; Fu, Y.; Huo, M. Polymerization-induced self-assembly of random bottlebrush copolymers. Polym. Chem. 2022, 13, 5389–5396. [Google Scholar] [CrossRef]
- MacFarlane, L.; Zhao, C.; Cai, J.; Qiu, H.; Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 2021, 12, 4661–4682. [Google Scholar] [CrossRef]
- Wen, W.; Huang, T.; Guan, S.; Zhao, Y.; Chen, A. Self-assembly of single chain janus nanoparticles with tunable liquid crystalline properties from stilbene-containing block copolymers. Macromolecules 2019, 52, 2956–2964. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Y.; Dong, X.; Zhou, Y.; Wang, D. Frustrated crystallisation and hierarchical self-assembly behaviour of comb-like polymers. Chem. Soc. Rev. 2013, 42, 2075–2099. [Google Scholar] [CrossRef]
- Sugihara, S.; Blanazs, A.; Armes, S.P.; Ryan, A.J.; Lewis, A.L. Aqueous dispersion polymerization: A new paradigm for in situ block copolymer self-assembly in concentrated solution. J. Am. Chem. Soc. 2011, 133, 15707–15713. [Google Scholar] [CrossRef] [PubMed]
- Rösler, A.; Vandermeulen, G.W.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev. 2001, 53, 95–108. [Google Scholar] [CrossRef]
- Ding, M.; Hou, L.; Duan, X.; Shi, T.; Li, W.; Shi, A.C. Translocation of micelles through a nanochannelNanochannel. Macromolecules 2022, 55, 6487–6492. [Google Scholar] [CrossRef]
- Nishimura, T.; Sasaki, Y.; Akiyoshi, K. Biotransporting self-assembled nanofactories using polymer vesicles with molecular permeability for enzyme prodrug cancer therapy. Adv. Mater. 2017, 29, 1702406. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Ezzat, M.; Huang, C.J. Lysolipid-inspired amphiphilic polymer nanostructures: Implications for drug delivery. ACS Appl. Nano Mater. 2022, 5, 107–112. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, T.; Lin, J. Self-assembly of graft copolymers in backbone-selective solvents: A route toward stable hierarchical vesicles. RSC Adv. 2013, 3, 19481–19491. [Google Scholar] [CrossRef]
- van den Broek, B.; Noom, M.C.; van Mameren, J.; Battle, C.; MacKintosh, F.C.; Wuite, G.J.L. Visualizing the formation and collapse of DNA toroids. Biophys. J. 2010, 98, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Gao, L.; Cai, C.; Lin, J.; Wang, L.; Tian, X. Polymeric toroidal self-assemblies: Diverse formation mechanisms and functions. Adv. Funct 2021, 32, 2106036. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Sun, Y.; Lin, G.; Manners, I.; Qiu, H. Surface-Initiated Living Self-Assembly of Polythiophene-Based Conjugated Block Copolymer into Erect Micellar Brushes. Angew. Chem. Int. Ed. 2024, 63, e202315740. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Q.; Duan, X.; Shi, T. Flow-driven translocation of a diblock copolymer through a nanopore. J. Phys. Chem. B 2019, 123, 8848–8852. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wu, J.; Chen, H.; Xu, X.; Yang, Y.B.; Ding, M. Inertial migration of polymer micelles in a square microchannel. Soft Matter 2024, 20, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Liu, D.; Ding, M. Flow-driven translocation of strung micelles formed by core–shell bottle-brush copolymers and the accompanying morphological transformation through a nanochannel. Macromolecules 2024, 57, 2786–2791. [Google Scholar] [CrossRef]
- Phan, Q.T.; Zhang, H.; Pham, D.A.; Rabanel, J.M.; Filippini, A.; Boffito, D.; Banquy, X. Multicompartment micro- and nanoparticles using supramolecular assembly of core–shell bottlebrush polymers. ACS Macro Lett. 2023, 12, 1589–1594. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, H.W.; Duan, C.; Li, W.H.; Ding, M.M. Self-assembled conformations of a core-shell comb-like chain with adjustable architectural parameters. Chin. J. Polym. Sci. 2023, 41, 1439–1446. [Google Scholar] [CrossRef]
- Liu, Y.T.; Li, Y.R.; Wang, X. Spontaneous onion shape vesicle formation and fusion of comb-like block copolymers studied by dissipative particle dynamics. RSC Adv. 2017, 7, 5130–5135. [Google Scholar] [CrossRef]
- Selianitis, D.; Pispas, S. Multi-responsive poly(oligo(ethylene glycol)methyl methacrylate)-co-poly(2-(diisopropylamino)ethyl methacrylate) hyperbranched copolymers via reversible addition fragmentation chain transfer polymerization. Polym. Chem. 2021, 12, 6582–6593. [Google Scholar] [CrossRef]
- Qi, M.; Li, K.; Zheng, Y.; Rasheed, T.; Zhou, Y. Hyperbranched multiarm copolymers with a ucst phase transition: Topological effect and the mechanism. Langmuir 2018, 34, 3058–3067. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, N.; Lee, J.H.; Akiba, I.; Nishimura, T. Exploring the effects of glyco-copolymer architectures on the solution self-assembly of amphiphilic thermoresponsive linear, star, and cyclic polymers. Polym. Chem. 2023, 14, 3834–3842. [Google Scholar] [CrossRef]
- Mukkamala, R.S.; Hore, M.J.A. Simulation and analysis of molecular bottlebrush dynamics in dilute solutions. Macromolecules 2024, 57, 445–455. [Google Scholar] [CrossRef]
- Mohammadi, E.; Joshi, S.Y.; Deshmukh, S.A. A review of computational studies of bottlebrush polymers. Comp. Mater. Sci. 2021, 199, 110720. [Google Scholar] [CrossRef]
- Li, Z.; Tang, M.; Liang, S.; Zhang, M.; Biesold, G.M.; He, Y.; Hao, S.M.; Choi, W.; Liu, Y.; Peng, J.; et al. Bottlebrush polymers: From controlled synthesis, self-assembly, properties to applications. Prog. Polym. Sci. 2021, 116, 101387. [Google Scholar] [CrossRef]
- Zhao, B. Shape-changing bottlebrush polymers. J. Phys. Chem. B 2021, 125, 6373–6389. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Martinez, M.R.; Olszewski, M.; Sheiko, S.S.; Matyjaszewski, K. Molecular bottlebrushes as novel materials. Biomacromolecules 2019, 20, 27–54. [Google Scholar] [CrossRef] [PubMed]
- Rzayev, J. Molecular bottlebrushes: New opportunities in nanomaterials fabrication. ACS Macro Lett. 2012, 1, 1146–1149. [Google Scholar] [CrossRef]
- Kent, E.W.; Lewoczko, E.M.; Zhao, B. Effect of buffer anions on pearl-necklace morphology of tertiary amine-containing binary heterografted linear molecular bottlebrushes in acidic aqueous buffers. Langmuir 2020, 36, 13320–13330. [Google Scholar] [CrossRef]
- Nese, A.; Li, Y.; Averick, S.; Kwak, Y.; Konkolewicz, D.; Sheiko, S.S.; Matyjaszewski, K. Synthesis of amphiphilic poly(n-vinylpyrrolidone)-b-poly(vinyl acetate) molecular bottlebrushes. ACS Macro Lett. 2012, 1, 227–231. [Google Scholar] [CrossRef]
- Lyubimov, I.; Wessels, M.G.; Jayaraman, A. Molecular dynamics simulation and PRISM theory study of assembly in solutions of amphiphilic bottlebrush block copolymers. Macromolecules 2018, 51, 7586–7599. [Google Scholar] [CrossRef]
- He, Y.; Li, L.; Ding, M.; Li, W. Flow-driven translocation of comb-like copolymer micelles through a nanochannel. Soft Matter 2023, 19, 9166–9172. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, T.; Gou, J.; Zhang, L.; Tao, X.; Tian, B.; Tian, P.; Yu, D.; Song, J.; Liu, X.; et al. Strategies for improving the payload of small molecular drugs in polymeric micelles. J. Control. Release 2017, 261, 352–366. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, A.; Hezaveh, S.; Zhao, Y.; Kawakatsu, T.; Roccatano, D.; Milano, G. Micellar drug nanocarriers and biomembranes: How do they interact? Phys. Chem. Chem. Phys. 2014, 16, 5093–5105. [Google Scholar] [CrossRef]
- Liu, Y.T.; Li, Y.R.; Wang, X. Dynamic evolution of a vesicle formed by comb-like block copolymer-tethered nanoparticles: A dissipative particle dynamics simulation study. Phys. Chem. Chem. Phys. 2017, 19, 27313–27319. [Google Scholar] [CrossRef]
- Kramarenko, E.Y.; Pevnaya, O.S.; Khokhlov, A.R. Stoichiometric polyelectrolyte complexes as comb copolymers. J. Chem. Phys. 2005, 122, 084902. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Lin, Y.L.; Sheng, Y.J.; Tsao, H.K. Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers. Macromolecules 2013, 46, 5644–5656. [Google Scholar] [CrossRef]
- Li, M.; Li, G.L.; Zhang, Z.; Li, J.; Neoh, K.G.; Kang, E.T. Self-assembly of pH-responsive and fluorescent comb-like amphiphilic copolymers in aqueous media. Polymer 2010, 51, 3377–3386. [Google Scholar] [CrossRef]
- Tang, Z.; Pan, X.; Zhou, H.; Li, L.; Ding, M. Conformation of a comb-like chain free in solution and confined in a nanochannel: From linear to bottlebrush structure. Macromolecules 2022, 55, 8668–8675. [Google Scholar] [CrossRef]
- Hao, P.; Mai, X.; Chen, Q.; Ding, M. Conformation of an amphiphilic comb-like copolymer in a selective solvent. Chin. J. Polym. Sci. 2023, 41, 1386–1391. [Google Scholar] [CrossRef]
- Yethiraj, A. A Monte Carlo simulation study of branched polymers. J. Chem. Phys. 2006, 125, 204901. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.P.; Paul, W.; Rathgeber, S.; Binder, K. Characteristic length scales and radial monomer density profiles of molecular bottle-brushes: Simulation and experiment. Macromolecules 2010, 43, 1592–1601. [Google Scholar] [CrossRef]
- Wessels, M.G.; Jayaraman, A. Molecular dynamics simulation study of linear, bottlebrush, and star-like amphiphilic block polymer assembly in solution. Soft Matter 2019, 15, 3987–3998. [Google Scholar] [CrossRef]
- Bejagam, K.K.; Singh, S.K.; Ahn, R.; Deshmukh, S.A. Unraveling the conformations of backbone and side chains in thermosensitive bottlebrush polymers. Macromolecules 2019, 52, 9398–9408. [Google Scholar] [CrossRef]
- Dutta, S.; Wade, M.A.; Walsh, D.J.; Guironnet, D.; Rogers, S.A.; Sing, C.E. Dilute solution structure of bottlebrush polymers. Soft Matter 2019, 15, 2928–2941. [Google Scholar] [CrossRef]
- Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057–5086. [Google Scholar] [CrossRef]
- Reddy, G.; Yethiraj, A. Implicit and explicit solvent models for the simulation of dilute polymer solutions. Macromolecules 2006, 39, 8536–8542. [Google Scholar] [CrossRef]
- Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237–5247. [Google Scholar] [CrossRef]
- Ermak, D.L.; McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 1978, 69, 1352–1360. [Google Scholar] [CrossRef]
- Kumar, S.; Larson, R.G. Brownian dynamics simulations of flexible polymers with spring–spring repulsions. J. Chem. Phys. 2001, 114, 6937–6941. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Lin, S. Effect of molecular architecture on phase behavior of graft copolymers. J. Phys. Chem. B 2008, 112, 9720–9728. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Li, W.; Qiu, F.; Shi, A.C. lanet-satellite micellar superstructures formed by abcb terpolymers in solution. ACS Macro Lett. 2017, 6, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Parent, L.R.; Bakalis, E.; Ramirez-Hernandez, A.; Kammeyer, J.K.; Park, C.; de Pablo, J.J.; Zerbetto, F.; Patterson, J.P.; Gianneschi, N.C. Directly Observing Micelle Fusion and Growth in Solution by Liquid-Cell Transmission Electron Microscopy. J. Am. Chem. Soc. 2017, 139, 17140–17151. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Li, Y.; Park, J.H.; Lee, D.S. pH-triggered unimer/vesicle-transformable and biodegradable polymersomes based on PEG-b-PCL–grafted poly (β-amino ester) for anti-cancer drug delivery. Polymer 2013, 54, 102–110. [Google Scholar] [CrossRef]
- Tseng, Y.C.; Chang, H.Y.; Sheng, Y.J.; Tsao, H.K. Atypical vesicles and membranes with monolayer and multilayer structures formed by graft copolymers with diblock side-chains: Nonlamellar structures and curvature-enhanced permeability. Soft Matter 2022, 18, 7559–7568. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Tian, K.; Zhu, R.; Ding, M.; Xu, Z. Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution. Polymers 2025, 17, 1870. https://doi.org/10.3390/polym17131870
Chen Q, Tian K, Zhu R, Ding M, Xu Z. Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution. Polymers. 2025; 17(13):1870. https://doi.org/10.3390/polym17131870
Chicago/Turabian StyleChen, Qiaoyue, Kun Tian, Ruiqi Zhu, Mingming Ding, and Zhanwen Xu. 2025. "Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution" Polymers 17, no. 13: 1870. https://doi.org/10.3390/polym17131870
APA StyleChen, Q., Tian, K., Zhu, R., Ding, M., & Xu, Z. (2025). Self-Assembly of Amphiphilic Comb-like Copolymers into Micelles and Vesicles in Solution. Polymers, 17(13), 1870. https://doi.org/10.3390/polym17131870