Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Studied Rubber Blend
2.2. Rubber Blend Mixing
2.3. Experimental Data Processing
2.4. GRNN Modelling
2.5. GRNN Training
3. Results and Discussion
3.1. Experimental Results
3.2. GRNN Model Training and Simulation Results
3.3. GRNN Model Performance Evaluation and Accuracy Metrics
3.4. GRNN Model Scalability and Adaptability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dick, J.S. Rubber Technology—Compounding and Testing for Performance, 3rd ed.; Hanser: Munich, Germany, 2020. [Google Scholar]
- Wang, M.J.; Morris, M. Rubber Reinforcement with Particulate Fillers, 1st ed.; Hanser: Munich, Germany, 2021. [Google Scholar]
- Wypych, G. Handbook of Fillers, 5th ed.; ChemTec: Toronto, ON, Canada, 2021. [Google Scholar]
- Dick, J.S.; Pawlowski, H. Practical Rubber Rheology and Dynamic Properties, 1st ed.; Hanser: Munich, Germany, 2023. [Google Scholar]
- Mark, J.E.; Erman, B.; Roland, C.M. The Science and Technology of Rubber, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Ahmed, I.; Poudyal, H.; Chandy, A. Fill Factor Effects in Highly-Viscous Non-Isothermal Rubber Mixing Simulations. Int. Polym. Process. 2019, 34, 182–194. [Google Scholar] [CrossRef]
- Shanling, H.; Wenzheng, D.; He, S.; Peng, X.; Shoudong, Z.; Long, C.; Yong, L. Real-time rubber quality model based on CNN-LSTM deep learning theory. Mater. Today Commun. 2023, 35, 106110. [Google Scholar] [CrossRef]
- Ghoreishy, M.H.R. A state-of-the-art review on the mathematical modelling and computer simulation of rubber vulcanization process. Iran. Polym. J. 2016, 25, 89–109. [Google Scholar] [CrossRef]
- Kopal, I.; Labaj, I.; Vršková, J.; Harničárová, M.; Valíček, J.; Tozan, H. Intelligent Modelling of the Real Dynamic Viscosity of Rubber Blends Using Parallel Computing. Polymers 2023, 15, 3636. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.K. Artificial Neural Networks: A Complete Introduction, 1st ed.; Lambert: Saarbrücken, Germany, 2022. [Google Scholar]
- Hammad, M.M. Artificial Neural Network and Deep Learning: Fundamentals and Theory, 1st ed.; Convex: London, UK, 2024. [Google Scholar]
- Mercioni, M.A.; Holban, S. A Brief Review of the Most Recent Activation Functions for Neural Networks. In Proceedings of the 17th International Conference on Engineering of Modern Electric Systems (EMES), Oradea, Romania, 1–2 June 2023; pp. 1–6. [Google Scholar]
- Madhiarasan, M.; Louzazni, M. Analysis of Artificial Neural Network: Architecture, Types, and Forecasting Applications. J. Electr. Comput. Eng. 2022, 2022, 5416722. [Google Scholar] [CrossRef]
- Krzywanski, J.; Sosnowski, M.; Grabowska, K.; Zylka, A.; Lasek, L.; Kijo-Kleczkowska, A. Advanced Computational Methods for Modelling, Prediction and Optimisation—A Review. Materials 2024, 17, 3521. [Google Scholar] [CrossRef]
- Ye, J.C. Artificial Neural Networks and Backpropagation. In Geometry of Deep Learning: A Signal Processing Perspective; Springer: Singapore, 2022; pp. 91–112. [Google Scholar]
- Abdolrasol, M.G.M.; Hussain, S.M.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial Neural Networks Based Optimisation Techniques: A Review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Goulermas, J.Y.; Zeng, X.-J.; Liatsis, P.; Ralph, J.F. Generalized Regression Neural Networks with Multiple-Bandwidth Sharing and Hybrid Optimisation. IEEE Trans. Syst. Man Cybern. B 2007, 37, 1434–1445. [Google Scholar] [CrossRef]
- Sadollah, A.; Travieso-Gonzalez, C.M. (Eds.) Recent Trends in Artificial Neural Networks—From Training to Prediction, 1st ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Bratina, M.; Šušterič, Z.; Šter, B.; Lottič, U.; Dobnikar, A. Predictive Control of Rubber Mixing Process Based on Neural Network Models. KGK Kautsch. Gummi Kunstst. 2009, 62, 378–382. [Google Scholar]
- Golmohammadi, M.; Aryanpour, M. Analysis and evaluation of machine learning applications in materials design and discovery. Mater. Today Commun. 2023, 35, 105494. [Google Scholar] [CrossRef]
- Bahiuddin, I.; Mazlan, S.A.; Imaduddin, F.; Shapiai, M.I.; Ubaidillah; Sugeng, D.A. Review of modelling schemes and machine learning algorithms for fluid rheological behaviour analysis. J. Mech. Behav. Mater. 2024, 33, 20220309. [Google Scholar] [CrossRef]
- Lukas, M.; Leineweber, S.; Reitz, B.; Overmeyer, L.; Aschemann, A.; Klie, B.; Giese, U. Minimising Temperature Deviations in Rubber Mixing Process by Using Artificial Neural Networks. Rubber Chem. Technol. 2024, 97, 371–379. [Google Scholar] [CrossRef]
- Park, K.; Park, H.; Bae, H. A Data-Driven Recipe Simulation for Synthetic Rubber Production. IEEE Access 2022, 10, 129408–129418. [Google Scholar] [CrossRef]
- Raj, A.; Tyagi, B.; Sharma, G.S.; Sahai, A.; Sharma, R.S. Optimising the process parameters with statistical and soft computing techniques for enhanced mechanical properties of acrylonitrile butadiene styrene material samples fabricated via fused filament fabrication technique. Prog. Addit. Manuf. 2025, 10, 2559–2583. [Google Scholar] [CrossRef]
- Calabia, R.O.A.; Gomez, J.E.D.; Lasala, I.M.; Ligsay, C.M.A.; Maalihan, R.D.; Aquino, A.P.; Sangalang, R.H. Epoxidised Philippine natural rubber for tough and versatile 3D printable resins: A mixture design and neural network approach. J. Rubber Res. 2025, 1–13. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef]
- Al-Mahasneh, A.J.; Anavatti, S.; Garratt; Pratama, M. Applications of General Regression Neural Networks in Dynamic Systems. In Digital Systems; Asadpour, V., Ed.; IntechOpen: London, UK, 2018; pp. 133–154. [Google Scholar]
- ISO 2393:2014; Rubber Test Mixes—Preparation, Mixing and Vulcanization: Equipment and Procedures. International Organisation for Standardisation (ISO): Geneva, Switzerland, 2014.
- Liu, H.; Gao, N.; Meng, Z.; Zhang, A.; Wen, C.; Li, H.; Zhang, J. Construction and Test of Baler Feed Rate Detection Model Based on Power Monitoring. Agronomy 2023, 13, 425. [Google Scholar] [CrossRef]
- Kwaśniewski, D.; Juliszewski, T.; Walczyk, J.; Tylek, P.; Adamczyk, F.; Szczepaniak, J. Fuel Consumption and Effectiveness of Elimination of Energy-crop Willow Plantation. Agric. Eng. 2017, 21, 55–63. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.K.; Fu, N.; Liu, J.; Wang, J.; Srebric, J. Investigating the Impact of Data Normalisation Methods on Predicting Electricity Consumption in a Building Using different Artificial Neural Network Models. Sustain. Cities Soc. 2024, 105, 105570. [Google Scholar]
- Ghosh, S. Kernel Smoothing: Principles, Methods and Applications, 1st ed.; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Helias, M.; Dahmen, D. Statistical Field Theory for Neural Networks, 1st ed.; Springer: Berlin, Germany, 2020. [Google Scholar]
- Probert, M. Machine learning with neural networks: An introduction for scientists and engineers. Contemp. Phys. 2021, 62, 236–237. [Google Scholar] [CrossRef]
- Mahlich, C.; Vente, T.; Beel, J. e-Fold Cross-Validation for energy-aware Machine Learning Evaluations. arXiv 2024, arXiv:2410.09463. [Google Scholar]
- Zhao, Q.; Niu, F.; Liu, J.; Yin, H. Research Progress of Natural Rubber Wet Mixing Technology. Polymers 2024, 16, 1899. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Du, Y.; Gong, Y.; Liu, G.; Li, Z.; Yu, G.; Zhao, S. Effects of mixing temperature on the extrusion rheological behaviours of rubber-based compounds. RSC Adv. 2021, 11, 35703–35710. [Google Scholar] [CrossRef] [PubMed]
- Payungwong, N.; Wu, J.; Sakdapipanich, J. Unlocking the potential of natural rubber: A review of rubber particle sizes and their impact on properties. Polymer 2024, 308, 127419. [Google Scholar] [CrossRef]
- Wang, S.Q.; Ravindranath, S.; Wang, Y.; Boukany, P. New theoretical considerations in polymer rheology: Elastic breakdown of chain entanglement network. J. Chem. Phys. 2007, 127, 064903. [Google Scholar] [CrossRef]
- Patti, A.; Lecocq, H.; Acierno, D.; Cassagnau, P. The universal usefulness of stearic acid as surface modifier: Applications to the polymer formulations and composite processing. J. Ind. Eng. Chem. 2021, 96, 1–33. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, A.; Wang, L. Premature vulcanization behaviours of rubber compounds under high shear rates processing. J. Appl. Polym. Sci. 2006, 102, 5414–5420. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory studies of polymer compositions for well-kill under increased fracturing. PJPME 2020, 20, 37–48. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
Materials | Contents (phr) | Function | Producer |
---|---|---|---|
Natural rubber grade 1500 | 100 | Matrix | Synthos Kralupy a.s., Kralupy nad Vltavou, Czech Republic |
Carbon black type N550 (CB) | 35 | Filler | Makrochem Sp. z o.o., Lublin, Poland |
Zinc oxide (ZnO) | 3 | Vulcanization activator | SlovZink a.s., Koseca, Slovakia |
Stearic acid | 1 | Vulcanization activator | Setuza a.s., Ústí nad Labem, Czech Republic |
Sulfur Crystex OT33 (S) | 1.75 | Vulcanizing agent | Eastman Chemical company, Kingsport, TN, USA |
TBBS | 1 | Vulcanization accelerator | Duslo a.s., Šaľa, Slovakia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopal, I.; Labaj, I.; Vršková, J.; Harničárová, M.; Valíček, J.; Bakošová, A.; Tozan, H.; Khanna, A. Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network. Polymers 2025, 17, 1868. https://doi.org/10.3390/polym17131868
Kopal I, Labaj I, Vršková J, Harničárová M, Valíček J, Bakošová A, Tozan H, Khanna A. Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network. Polymers. 2025; 17(13):1868. https://doi.org/10.3390/polym17131868
Chicago/Turabian StyleKopal, Ivan, Ivan Labaj, Juliána Vršková, Marta Harničárová, Jan Valíček, Alžbeta Bakošová, Hakan Tozan, and Ashish Khanna. 2025. "Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network" Polymers 17, no. 13: 1868. https://doi.org/10.3390/polym17131868
APA StyleKopal, I., Labaj, I., Vršková, J., Harničárová, M., Valíček, J., Bakošová, A., Tozan, H., & Khanna, A. (2025). Predictive Modelling and Optimisation of Rubber Blend Mixing Using a General Regression Neural Network. Polymers, 17(13), 1868. https://doi.org/10.3390/polym17131868