Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Animals, and Treatments
2.2. Nutrient Intake and Apparent Total Digestibility
2.3. Ruminal Fermentation
2.4. Microbial Protein Synthesis
2.5. Urea and Creatinine Metabolism
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogata, T.; Makino, H.; Ishizuka, N.; Iwamoto, E.; Masaki, T.; Ikuta, K.; Kim, Y.; Sato, S. Long-term high-grain diet altered ruminal pH, fermentation, and rumen bacterial community composition and functions, leading to increased lactic acid production in Japanese Black cattle during fattening. PLoS ONE 2019, 14, e0225448. [Google Scholar] [CrossRef] [PubMed]
- Golder, H.M.; Celi, P.; Rabiee, A.R.; Lean, I.J. Effects of feed additives on rumen and blood profiles during a starch and fructose challenge. J. Dairy Sci. 2014, 97, 985–1004. [Google Scholar] [CrossRef]
- Honan, M.; Feng, X.; Tricarico, J.M.; Kebreab, E. Feed additives as a strategic approach to reduce enteric methane production in cattle: Modes of action, efficacy and safety. Anim. Prod. Sci. 2021, 62, 1303–1317. [Google Scholar] [CrossRef]
- Percio, C.; Barreta, D.A.; Silva, E.R.; Zotti, C.A. Bovinocultura de corte brasileira sem o uso de antibióticos: Consequências e alternativas. Horiz. Das Ciênc. Soc. Rurais 2019, 2, 306–321. [Google Scholar]
- Perna Junior, F.; Cassiano, E.C.O.; Martins, M.F.; Romero, L.A.; Zapata, D.C.V.; Pinedo, L.A.; Marino, C.T.; Rodrigues, P.H.M. Effect of tannins-rich extract from Acacia mearnsii or monensin as feed additives on ruminal fermentation efficiency in cattle. Livest. Sci. 2017, 203, 21–29. [Google Scholar] [CrossRef]
- Shah, S.; Joshi, R.; Rai, N.; Adhikari, R.; Pandit, R. Microstructural analysis of biowaste-derived hydroxyapatite-chitosan nanocomposites. Micro Nano Lett. 2022, 17, 369–376. [Google Scholar] [CrossRef]
- Goiri, I.; Oregui, L.M.; Garcia-Rodriguez, A. Use of chitosans to modulate ruminal fermentation of a 50:50 forage-to-concentrate diet in sheep. J. Anim. Sci. 2010, 88, 749–755. [Google Scholar] [CrossRef]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation, and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 2016, 92, fiv160. [Google Scholar] [CrossRef]
- Dias, A.O.C.; Goes, R.H.T.B.; Gandra, J.R.; Takiya, C.S.; Branco, A.F.; Jacauna, A.G.; Oliveira, R.T.; Souza, C.J.S.; Vaz, M.S.M. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed. Sci. Technol. 2017, 151, 215–227. [Google Scholar] [CrossRef]
- Watanabe, Y.; Suzuki, R.; Koike, S.; Nagashima, K.; Mochizuki, M.; Forster, R.J.; Kobayashi, Y. In vitro, the evaluation of cashew nut shell liquid as a methane-inhibiting and propionate-enhancing agent for ruminants. J. Dairy Sci. 2010, 93, 5258–5267. [Google Scholar] [CrossRef]
- Oh, S.S.; Suzuki, Y.; Hayashi, S.; Suzuki, Y.; Koike, S.; Kobayashi, Y. Potency of cashew nut shell liquid in rumen modulation under different dietary conditions and indication of its surfactant action against rumen bacteria. J. Anim. Sci. Technol. 2017, 59, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.I.S.; Goes, R.H.T.B.; Cônsolo, N.R.B.; Gandra, J.R.; Osmari, M.P.; Silva, C.C.; Oliveira, L.E.F.; Souza, T.M.; Barbosa, L.C.G.S.; Anschau, D.G.; et al. Effects of replacing dietary antibiotic supplementation with chitosan levels on rumen metabolism and nitrogen use in finishing steers fed forage-free diets. Trop. Anim. Sci. J. 2024, 47, 225–234. [Google Scholar] [CrossRef]
- de Queiroz Vieira, E.R.; Goes, R.H.T.B.; Diaz, T.G.; Osmari, M.P.; Seno, L.O.; Itavo, L.C.V.; Gandra, J.R.; Anschau, D.G.; Oliveira, R.T.; Silva, N.G.; et al. Chitosan combined with technical cashew nut shell liquid improves in vitro ruminal parameters and gas production kinetics. Rev. Bras. Zootec. 2022, 51, e20200186. [Google Scholar]
- Ferreira, M.A.; Valadares Filho, S.C.; Marcondes, M.I.; Paixão, M.L.; Paulino, M.F.; Valadares, R.F.D. Evaluation of markers in ruminant trials: Digestibility. Rev. Bras. Zootec. 2009, 38, 1568–1573. [Google Scholar] [CrossRef]
- Myers, W.D.; Ludden, P.A.; Nayigihugu, V.; Hess, B.W. Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci. 2004, 82, 179–183. [Google Scholar] [CrossRef]
- AOAC, Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Roertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hendrix, D.L. Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Sci. 1993, 33, 1306–1311. [Google Scholar] [CrossRef]
- Oliveira, R.T.; Goes, R.H.T.B.; Sabedot, M.R.; Osmari, M.P.; Silva, N.G.; Anschau, D.G.; Oliveira, S.S.; Picanço, Y.S. Intake, digestibility and recovery of grains from feces of steers fed different oilseeds. Rev. Bras. Saúde Produção Anim. 2020, 21, e2121272020. [Google Scholar] [CrossRef]
- Detmann, E.; Costa ESilva, L.F.; Rocha, G.C.; Palma, M.N.N.; Rodrigues, J.P.P. Métodos Para Análise de Alimentos-INCT, 2nd ed.; Suprema Gráfica: Viçosa, Brazil, 2021. [Google Scholar]
- Moss, A.; Jouany, J.P.; Newbols, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. INRA/EDP Sci. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Valadares Filho, S.C.; Valadares, R.F.D.; Chizzotti, F.H.M.; Campos, J.M.S.; Marcondes, M.I.; Fonseca, M.A. Intake, digestibility and urinary excretion of urea and purine derivatives in heifers with different body weights. Rev. Bras. Zootec. 2006, 35, 1813–1821. [Google Scholar] [CrossRef]
- Fujihara, T.; Ørskov, E.R.; Reeds, P.J.; Kyle, D.J. The effect of protein infusion on urinary excretion of purine derivatives in ruminants nourished by intragastric nutrition. J. Agric. Sci. 1987, 109, 7–12. [Google Scholar] [CrossRef]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of the Technical Details; International Feed Research Unit, Rowett Research Institute: Aberdeen, UK, 1992; p. 22. [Google Scholar]
- Verbic, J.; Chen, X.B.; Macleod, N.A.; Ørskov, E.R. Excretion of purine derivatives by ruminants. Effect of microbial nucleic acid infusion on purine derivative excretion by steers. J. Agric. Sci. 1990, 114, 243–248. [Google Scholar] [CrossRef]
- Rennó, L.N.; Valadares, R.F.D.; Valadares Filho, S.C.; Leão, M.I.; Coelho da Silva, J.F.; Cecon, P.R.; Gonçalves, L.C.; Dias, H.L.C.; Linhares, R.S. Concentração plasmática de ureia e excreções de ureia e creatinina em novilhos. Rev. Bras. Zootec. 2000, 29, 1235–1243. [Google Scholar] [CrossRef]
- Osmari, M.P.; Branco, A.F.; Diaz, T.G.; Matos, L.F.; Goes, R.H.T.B.; Teodoro, A.L. Technical cashew nut shell liquid associated with non-protein nitrogen sources in high-grain diets for ruminants: Intake and digestibility of nutrients, ruminal fermentation, and microbial protein synthesis. Semin. Ciênc. Agrárias 2019, 40, 259–270. [Google Scholar] [CrossRef]
- Coutinho, D.A.; Branco, A.F.; Dantos, G.T.; Osmari, M.P.; Teodoro, A.L.; Diaz, T.G. Intake, digestibility of nutrients, milk production and composition in dairy cows fed on diets containing cashew nut shell liquid. Acta Scientiarum Anim. Sci. 2014, 36, 311–316. [Google Scholar] [CrossRef]
- Zanferari, F.; Vendramini, T.H.A.; Rentas, M.F.; Gardinal, R.; Calomeni, G.D.; Mesquita, L.G.; Takiya, C.S.; Rennó, F.P. Effects of chitosan and whole raw soybeans on ruminal fermentation and bacterial populations, and milk fatty acid profile in dairy cows. J. Dairy Sci. 2018, 101, 10939–10952. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J. Dairy Sci. 2000, 83, 1598–1624. [Google Scholar] [CrossRef] [PubMed]
- Vyas, D.; McGeough, E.J.; Mohammed, R.; McGinn, S.S.; McCallister, T.A.; Beauchemin, K.A. Effects of Propionibacterium strains on ruminal fermentation, nutrient digestibility and methane emissions in beef cattle fed a corn grain finishing diet. Animal 2014, 8, 1807–1815. [Google Scholar] [CrossRef]
- Jiménez-Ocampo, R.; Valencia-Salazar, S.; Pinzón-Diaz, C.E.; Herrera-Torres, E.; Aguilar-Pérez, C.F.; Arango, J.; Ku-Wera, J.C. The role of chitosan as a possible agent for enteric methane mitigation in ruminants. Animals 2019, 9, 942. [Google Scholar] [CrossRef]
- Santos, M.V.; Goes, R.H.T.B.; Takiya, C.S.; Cabral, L.S.; Mombach, M.A.; Oliveira, R.T.; Silva, N.G.; Anschau, D.G.; Freitas Júnior, J.E.; Araújo, M.L.G.M.L.; et al. Effect of increasing doses of chitosan to grazing beef steers on the relative population and transcript abundance of Archaea and cellulolytic and amylolytic bacteria. Anim. Biotechnol. 2023, 34, 246–252. [Google Scholar] [CrossRef]
- Gandra, J.R.; Del Valle, T.A.; Takiya, C.S.; Freitas Junior, J.E.; Oliveira, E.R.; Gandra, E.R.S.; Pedrini, C.A.; Mendes, P.V.C. Effects of ricinoleic acid from castor oil and cashew nutshell liquid on nutrient digestibility and ruminal fermentation in dairy heifers. Rev. Bras. Saúde Produção Anim. 2022, 23, 23–33. [Google Scholar] [CrossRef]
- Pereira, D.C.; Goes, R.H.T.B.; Martinez, A.C.; Gandra, J.R.; Presendo, E.; Santos, M.V.; Oliveira, R.T.; Silva, N.G.; Ribeiro, M.G.; Alvez, J.L.R. In vitro evaluation of the association of chitosan and cashew nut shell liquid as additives for ruminants. Rev. Bras. Saúde Produção Anim. 2019, 20, e05102019. [Google Scholar] [CrossRef]
- Osmari, M.P.; Branco, A.F.; Goes, R.H.T.B.; Diaz, T.G.; Matos, L.F. Increasing dietary doses of cashew nut shell liquid on rumen and intestinal digestibility of nutrients in steers fed a high-grain diet. Arch. Zootec. 2017, 66, 375–381. [Google Scholar]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef]
- Branco, A.F.; Gianllongo, F.; Frederick, T.; Weeks, H.; Oh, J.; Hristov, A.N. Effect of cashew nut shell technical liquid on ruminal methane emission and lactation performance of dairy cows. J. Dairy Sci. 2015, 98, 4030–4040. [Google Scholar] [CrossRef]
Ingredients | (g/kg de MS) | ||
---|---|---|---|
Whole corn | 850 | ||
Protein, vitamin, and mineral pellet 1 | 150 | ||
Chemical composition | |||
g/kg DM | Corn | Pellet | Diet |
Dry matter | 850 | 912.1 | 845.8 |
Organic matter | 957 | 822.5 | 933.2 |
Crude protein | 95 | 394.7 | 137 |
Neutral detergent fiber | 96 | 372.9 | 241 |
Acid detergent fiber | 18 | 236.9 | 63.5 |
Starch | 750 | 38.9 | 651 |
Total digestible nutrients | 797.86 | 682.36 | 737.38 |
Item | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CHI | CSNLt | CHI + CSNLt | MON | |||
Intake (g/d) | |||||||
Dry matter | 7.46 a | 7.23 ab | 8.09 a | 6.60 b | 7.41 a | 0.387 | 0.032 |
Dry matter, %BW | 2.24 | 1.89 | 2.10 | 2.26 | 2.20 | 0.122 | 0.554 |
Corn kernel | 6.34 ab | 6.15 b | 6.87 a | 5.61 b | 6.29 ab | 0.329 | 0.017 |
Pellet | 1.12 ab | 1.08 b | 1.21 a | 0.990 b | 1.11 ab | 0.058 | 0.026 |
Organic matter | 7.16 a | 6.95 ab | 7.77 a | 6.34 b | 7.11 a | 0.376 | 0.018 |
Crude protein | 0.984 a | 0.954 ab | 1.06 a | 0.872 b | 0.984 a | 0.051 | 0.026 |
NDF | 2.45 a | 2.32 ab | 2.83 a | 1.94 b | 2.42 a | 0.231 | 0.017 |
Starch | 3.86 a | 3.71 ab | 3.27 a | 3.30 b | 3.82 a | 0.387 | 0.032 |
Digestibility (g/kg) | |||||||
Dry matter | 534 | 454 | 504 | 568 | 504 | 4.194 | 0.124 |
Organic matter | 568 | 488 | 530 | 596 | 535 | 4.398 | 0.147 |
Crude protein | 700 | 616 | 686 | 718 | 702 | 5.470 | 0.149 |
NDF | 486 | 404 | 456 | 502 | 445 | 7.347 | 0.161 |
Starch | 792 b | 826 a | 806 b | 854 a | 815 b | 3.143 | 0.008 |
Excretion of intact corn kernel (g/kg) | |||||||
Corn kernel | 306.5 a | 268.2 ab | 301.6 a | 241.6 b | 276.7 ab | 2.985 | 0.012 |
Item | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CHI | CSNLt | CHI + CSNLt | MON | |||
pH | 6.21 | 6.22 | 6.20 | 6.28 | 6.28 | 0.006 | 0.654 |
N-NH3, mg/dL | 20.96 a | 25.82 a | 23.83 a | 15.14 b | 22.61 a | 0.026 | 0.014 |
mmol/L | |||||||
Acetate | 44.56 b | 57.94 a | 54.37 a | 37.75 c | 47.53 b | 0.120 | 0.045 |
Propionate | 30.16 a | 26.14 ab | 24.57 b | 33.51 a | 26.23 ab | 0.131 | 0.038 |
Butyrate | 13.72 b | 19.04 a | 20.25 a | 10.65 c | 11.71 bc | 0.087 | 0.012 |
Isobutyrate | 1.18 | 1.23 | 1.40 | 1.03 | 1.21 | 0.018 | 0.236 |
Isovalerate | 4.05 | 4.37 | 3.66 | 3.07 | 4.61 | 0.040 | 0.414 |
Valerate | 1.97 | 1.65 | 2.07 | 3.10 | 2.48 | 0.042 | 0.447 |
Brach chain fatty acids | 7.20 | 7.24 | 7.13 | 7.19 | 8.30 | 0.046 | 0.484 |
Total | 95.64 | 110.36 | 106.32 | 89.11 | 93.76 | 0.173 | 0.784 |
Acetate/propionate | 1.93 | 2.24 | 2.47 | 1.79 | 2.06 | 0.028 | 0.654 |
Methane | 17.25 ab | 25.81 a | 26.50 a | 12.03 b | 18.86 ab | 0.097 | 0.018 |
Item | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CHI | CSNLt | CHI + CSNLt | MON | |||
g/d | |||||||
N-intake | 157.44 a | 152.64 ab | 169.60 a | 139.42 b | 156.26 a | 0.227 | 0.027 |
N-feces | 16.13 | 21.68 | 25.63 | 14.23 | 19.53 | 0.149 | 0.224 |
N-urine | 21.40 | 27.37 | 12.49 | 13.66 | 6.08 | 0.132 | 0.324 |
N-absorbed | 141.31 | 130.96 | 143.97 | 125.19 | 136.73 | 0.242 | 0.442 |
N-retained | 119.91 b | 103.59 c | 131.48 a | 111.53 b | 130.65 a | 0.246 | 0.007 |
mmol/d | |||||||
Allantoin | 221.42 | 162.40 | 221.64 | 201.87 | 202.18 | 0.423 | 0.841 |
Uric acid | 47.43 | 14.13 | 29.26 | 35.23 | 55.46 | 0.207 | 0.751 |
Total purines | 268.81 | 176.54 | 250.84 | 237.09 | 257.64 | 0.443 | 0.801 |
Purines absorbed | 303.45 | 193.47 | 280.71 | 267.42 | 198.37 | 0.482 | 0.872 |
g/d | |||||||
Microbial nitrogen | 220.62 | 140.66 | 204.09 | 194.43 | 183.77 | 0.411 | 0.847 |
Microbial protein | 1378.90 | 879.14 | 1275.54 | 1215.18 | 1198.59 | 1.028 | 0.847 |
Item | Experimental Diets 1 | SEM 2 | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | CHI | CSNLt | CHI + CSNLt | MON | |||
Urine (mg/dL) | |||||||
Urea | 801.28 | 813.02 | 834.42 | 802.35 | 793.49 | 28.56 | 0.357 |
Creatinine | 1.42 | 1.86 | 1.78 | 1.77 | 2.43 | 0.12 | 0.328 |
N-urea | 352.69 | 354.35 | 361.64 | 355.97 | 338.55 | 12.98 | 0.325 |
N-Creatinine | 0.529 | 0.746 | 0.802 | 0.722 | 0.688 | 0.015 | 0.357 |
Blood (mg/dL) | |||||||
Urea | 20.75 | 20.79 | 22.59 | 23.22 | 24.08 | 1.88 | 0.335 |
Creatinine | 2.76 | 2.57 | 2.00 | 2.31 | 2.92 | 0.74 | 0.247 |
N-urea | 9.60 | 9.35 | 10.92 | 10.88 | 10.15 | 1.05 | 0.635 |
N-Creatinine | 1.19 | 1.12 | 1.18 | 1.13 | 1.16 | 0.32 | 0.345 |
Excretion (mg/kg BW) | |||||||
Urea | 887.58 | 820.64 | 783.50 | 889.66 | 669.22 | 15.89 | 0.868 |
Creatinine | 27.47 | 27.75 | 27.41 | 27.53 | 27.51 | 3.21 | 0.865 |
Clearance (mg/kg BW) | |||||||
Urea | 45.45 | 44.85 | 42.00 | 43.96 | 44.00 | 2.65 | 0.881 |
Creatinine | 5.95 | 6.07 | 6.06 | 5.98 | 6.25 | 1.23 | 0.865 |
Fractional excretion (%) | |||||||
Urea | 69.95 | 67.78 | 66.23 | 68.23 | 67.18 | 4.88 | 0.885 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, R.T.; de Goes, R.H.d.T.e.B.; Gandra, J.R.; da Cruz, F.N.F.; da Silva, N.G.; Oliveira, L.d.S.; Royer, J.L.; Batista Domiciano, L.G.; Azevedo, T.L.P.; Araújo, C.M.C. Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle. Polymers 2025, 17, 1860. https://doi.org/10.3390/polym17131860
de Oliveira RT, de Goes RHdTeB, Gandra JR, da Cruz FNF, da Silva NG, Oliveira LdS, Royer JL, Batista Domiciano LG, Azevedo TLP, Araújo CMC. Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle. Polymers. 2025; 17(13):1860. https://doi.org/10.3390/polym17131860
Chicago/Turabian Stylede Oliveira, Raquel Tenório, Rafael Henrique de Tonissi e Buschinelli de Goes, Jefferson Rodrigues Gandra, Fernanda Naiara Fogaça da Cruz, Nayara Gonçalves da Silva, Lara de Souza Oliveira, Jaqueline Luiza Royer, Lucas Gabriel Batista Domiciano, Tainá Lorraine Pereira Azevedo, and Carolina Marques Costa Araújo. 2025. "Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle" Polymers 17, no. 13: 1860. https://doi.org/10.3390/polym17131860
APA Stylede Oliveira, R. T., de Goes, R. H. d. T. e. B., Gandra, J. R., da Cruz, F. N. F., da Silva, N. G., Oliveira, L. d. S., Royer, J. L., Batista Domiciano, L. G., Azevedo, T. L. P., & Araújo, C. M. C. (2025). Chitosan and Cashew Nut Shell Liquid as Sustainable Additives: Enhancing Starch Digestibility and Reducing Methane Emissions in High-Grain Diets for Feedlot Cattle. Polymers, 17(13), 1860. https://doi.org/10.3390/polym17131860