Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation
Abstract
1. Introduction
2. Applications and Preparations of Chitosan–Cellulose Packaging in Food Preservation
3. Antibacterial Action and Antioxidant Properties
3.1. Interaction of Cellulose Blends with Microbials
3.2. Chitosan Antibacterial Activity
3.3. Synergistic Effects of Chitosan and Cellulose Blends in Antibacterial Activity
3.4. Antioxidant Properties of Chitosan–Cellulose Blended Films
4. The Preparation of Chitosan–Cellulose Blends and Their Benefits and Drawbacks
4.1. The Preparation of Chitosan–Cellulose Blends
4.2. The Benefits and Drawbacks of Different Modifications of Chitosan–Cellulose Blends
5. Future Directions for Chitosan–Cellulose Blends
5.1. Integration of Nanotechnology
5.2. Functionalization and Surface Modification
5.3. Smart Packaging Solutions
5.4. Advanced Processing Techniques
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Madhumala, Y.; Soraganvi, V.S. Microbiology of Food Spoilage. In Frontiers in Food Biotechnology; Yaradoddi, J.S., Meti, B.S., Mudgulkar, S.B., Agsar, D., Eds.; Springer Nature: Singapore, 2024; pp. 67–80. [Google Scholar]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Mc Carthy, U.; Uysal, I.; Badia-Melis, R.; Mercier, S.; O’Donnell, C.; Ktenioudaki, A. Global food security—Issues, challenges and technological solutions. Trends Food Sci. Technol. 2018, 77, 11–20. [Google Scholar] [CrossRef]
- Heydari, M. Cultivating sustainable global food supply chains: A multifaceted approach to mitigating food loss and waste for climate resilience. J. Clean. Prod. 2024, 442, 141037. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Jafari, S.M.; Sharma, S. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 2020, 112, 107086. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Jagtiani, E. Advancements in nanotechnology for food science and industry. Food Front. 2022, 3, 56–82. [Google Scholar] [CrossRef]
- Akelah, A. Polymers in Food Packaging and Protection. In Functionalized Polymeric Materials in Agriculture and the Food Industry; Akelah, A., Ed.; Springer: Boston, MA, USA, 2013; pp. 293–347. [Google Scholar]
- Bopp, A.F. The Evolution of Food Preservation and Packaging. In Chemistry’s Role in Food Production and Sustainability: Past and Present; American Chemical Society: Washington, DC, USA, 2019; Volume 1314, pp. 211–228. [Google Scholar]
- Marsh, K.; Bugusu, B. Food Packaging—Roles, Materials, and Environmental Issues. J. Food Sci. 2007, 72, R39–R55. [Google Scholar] [CrossRef]
- Kaur, K.; Reddy, S.; Barathe, P.; Oak, U.; Shriram, V.; Kharat, S.S.; Govarthanan, M.; Kumar, V. Microplastic-associated pathogens and antimicrobial resistance in environment. Chemosphere 2022, 291, 133005. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Preparation and applications of chitosan and cellulose composite materials. J. Environ. Manag. 2022, 301, 113850. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-based biodegradable functional films for food packaging applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Saurabh, C.K.; Adnan, A.S.; Nurul Fazita, M.R.; Syakir, M.I.; Davoudpour, Y.; Rafatullah, M.; Abdullah, C.K.; Haafiz, M.K.M.; Dungani, R. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydr. Polym. 2016, 150, 216–226. [Google Scholar]
- Khattak, S.; Wahid, F.; Liu, L.-P.; Jia, S.-R.; Chu, L.-Q.; Xie, Y.-Y.; Li, Z.-X.; Zhong, C. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: Current state and perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 1989–2006. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans. Mar. Biotechnol. 2006, 8, 203–226. [Google Scholar] [CrossRef]
- Joseph, S.M.; Krishnamoorthy, S.; Paranthaman, R.; Moses, J.A.; Anandharamakrishnan, C. A review on source-specific chemistry, functionality, and applications of chitin and chitosan. Carbohydr. Polym. Technol. Appl. 2021, 2, 100036. [Google Scholar] [CrossRef]
- Azmana, M.; Mahmood, S.; Hilles, A.R.; Rahman, A.; Arifin, M.A.B.; Ahmed, S. A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. Int. J. Biol. Macromol. 2021, 185, 832–848. [Google Scholar] [CrossRef] [PubMed]
- Praveen Kumar, G.; Shreeya Sai, R.; Deepali Venkatesh, P.; Priyadharsini, V.; Vidhya, S.; Chandrananthi, C.; Shreya, C.; Krithika, S.; Keerthana, G. An Update on Overview of Cellulose, Its Structure and Applications. In Cellulose; Alejandro Rodríguez, P., María, E.E.M., Eds.; IntechOpen: Rijeka, Croatia, 2019; Chapter 4. [Google Scholar]
- Elango, B.; Shirley, C.P.; Okram, G.S.; Ramesh, T.; Seralathan, K.-K.; Mathanmohun, M. Structural diversity, functional versatility and applications in industrial, environmental and biomedical sciences of polysaccharides and its derivatives—A review. Int. J. Biol. Macromol. 2023, 250, 126193. [Google Scholar] [CrossRef]
- Payne, C.M.; Knott, B.C.; Mayes, H.B.; Hansson, H.; Himmel, M.E.; Sandgren, M.; Ståhlberg, J.; Beckham, G.T. Fungal Cellulases. Chem. Rev. 2015, 115, 1308–1448. [Google Scholar] [CrossRef]
- Zanchetta, E.; Damergi, E.; Patel, B.; Borgmeyer, T.; Pick, H.; Pulgarin, A.; Ludwig, C. Algal cellulose, production and potential use in plastics: Challenges and opportunities. Algal Res. 2021, 56, 102288. [Google Scholar] [CrossRef]
- Zhou, S.; Nyholm, L.; Strømme, M.; Wang, Z. Cladophora Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Acc. Chem. Res. 2019, 52, 2232–2243. [Google Scholar] [CrossRef]
- Christina, K.; Subbiah, K.; Arulraj, P.; Krishnan, S.K.; Sathishkumar, P. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan, lignin and cellulose—A review. Int. J. Biol. Macromol. 2024, 257, 128550. [Google Scholar] [CrossRef]
- Xiong Chang, X.; Mujawar Mubarak, N.; Ali Mazari, S.; Sattar Jatoi, A.; Ahmad, A.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Siddiqui, M.T.H.; et al. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J. Ind. Eng. Chem. 2021, 104, 362–380. [Google Scholar] [CrossRef]
- Silva, F.; Domingues, F.C.; Nerín, C. Trends in microbial control techniques for poultry products. Crit. Rev. Food Sci. Nutr. 2018, 58, 591–609. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A. Meat Technology and Processing; Educohack Press: Delhi, India, 2025. [Google Scholar]
- Ntuli, V.; Sibanda, T.; Elegbeleye, J.A.; Mugadza, D.T.; Seifu, E.; Buys, E.M. Chapter 30—Dairy production: Microbial safety of raw milk and processed milk products. In Present Knowledge in Food Safety; Knowles, M.E., Anelich, L.E., Boobis, A.R., Popping, B., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 439–454. [Google Scholar]
- Magan, N.; Aldred, D.; Arroyo, M. Chapter 18—Mold prevention in bread. In Breadmaking, 3rd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Sawston, UK, 2012; pp. 541–560. [Google Scholar]
- Bolívar-Monsalve, J.; Ramírez-Toro, C.; Bolívar, G.; Ceballos-González, C. Mechanisms of action of novel ingredients used in edible films to preserve microbial quality and oxidative stability in sausages—A review. Trends Food Sci. Technol. 2019, 89, 100–109. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A review on food spoilage mechanisms, food borne diseases and commercial aspects of food preservation and processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Pongchaiphol, S.; Preechakun, T.; Raita, M.; Champreda, V.; Laosiripojana, N. Characterization of Cellulose–Chitosan-Based Materials from Different Lignocellulosic Residues Prepared by the Ethanosolv Process and Bleaching Treatment with Hydrogen Peroxide. ACS Omega 2021, 6, 22791–22802. [Google Scholar] [CrossRef]
- Lim, C.; Hwang, D.S.; Lee, D.W. Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydr. Polym. 2021, 259, 117782. [Google Scholar] [CrossRef] [PubMed]
- Pereira, N.R.L.; Lopes, B.; Fagundes, I.V.; de Moraes, F.M.; Morisso, F.D.P.; Parma, G.O.C.; Zepon, K.M.; Magnago, R.F. Bio-packaging based on cellulose acetate from banana pseudostem and containing Butia catarinensis extracts. Int. J. Biol. Macromol. 2022, 194, 32–41. [Google Scholar] [CrossRef]
- Paula, H.C.B.; Silva, R.B.C.; Santos, C.M.; Dantas, F.D.S.; de Paula, R.C.M.; de Lima, L.R.M.; de Oliveira, E.F.; Figueiredo, E.A.T.; Dias, F.G.B. Eco-friendly synthesis of an alkyl chitosan derivative. Int. J. Biol. Macromol. 2020, 163, 1591–1598. [Google Scholar] [CrossRef]
- Lepetit, A.; Drolet, R.; Tolnai, B.; Montplaisir, D.; Zerrouki, R. Alkylation of microfibrillated cellulose—A green and efficient method for use in fiber-reinforced composites. Polymer 2017, 126, 48–55. [Google Scholar] [CrossRef]
- Linhorst, M.; Wattjes, J.; Moerschbacher, B.M. Chitin Deacetylase as a Biocatalyst for the Selective N-Acylation of Chitosan Oligo- and Polymers. ACS Catal. 2021, 11, 14456–14466. [Google Scholar] [CrossRef]
- Zhang, N.; Bi, F.; Xu, F.; Yong, H.; Bao, Y.; Jin, C.; Liu, J. Structure and functional properties of active packaging films prepared by incorporating different flavonols into chitosan based matrix. Int. J. Biol. Macromol. 2020, 165, 625–634. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Anisiei, A.; Rosca, I.; Marin, L. Quaternized chitosan-based nanofibers with strong antibacterial and antioxidant activity designed as ecological active food packaging. Food Packag. Shelf Life 2023, 39, 101157. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Sun, X.; Zhang, Y.; Dong, M.; Wang, X.; Li, L.; Wang, L. Fabrication and Characterization of Quercetagetin-Loaded Nanoparticles Based on Shellac and Quaternized Chitosan: Improvement of Encapsulation Efficiency and Acid and Storage Stabilities. J. Agric. Food Chem. 2021, 69, 15670–15680. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, H.-J.; Yoon, K.S.; Rhim, J.-W. Cellulose nanofiber/deacetylated quaternary chitosan composite packaging film for growth inhibition of Listeria monocytogenes in raw salmon. Food Packag. Shelf Life 2023, 35, 101040. [Google Scholar] [CrossRef]
- Phuangkaew, T.; Booranabunyat, N.; Kiatkamjornwong, S.; Thanyasrisung, P.; Hoven, V.P. Amphiphilic quaternized chitosan: Synthesis, characterization, and anti-cariogenic biofilm property. Carbohydr. Polym. 2022, 277, 118882. [Google Scholar] [CrossRef]
- Hu, D.; Wang, L. Preparation and characterization of antibacterial films based on polyvinyl alcohol/quaternized cellulose. React. Funct. Polym. 2016, 101, 90–98. [Google Scholar] [CrossRef]
- Huang, K.-X.; Zhou, L.-Y.; Chen, J.-Q.; Peng, N.; Chen, H.-X.; Gu, H.-Z.; Zou, T. Applications and perspectives of quaternized cellulose, chitin and chitosan: A review. Int. J. Biol. Macromol. 2023, 242, 124990. [Google Scholar] [CrossRef]
- Deng, Z.; Jung, J.; Zhao, Y. Development, characterization, and validation of chitosan adsorbed cellulose nanofiber (CNF) films as water resistant and antibacterial food contact packaging. LWT Food Sci. Technol. 2017, 83, 132–140. [Google Scholar] [CrossRef]
- Noorbakhsh-Soltani, S.M.; Zerafat, M.M.; Sabbaghi, S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr. Polym. 2018, 189, 48–55. [Google Scholar] [CrossRef]
- Gao, Q.; Lei, M.; Zhou, K.; Liu, X.; Wang, S.; Li, H. Preparation of a microfibrillated cellulose/chitosan/polypyrrole film for Active Food Packaging. Prog. Org. Coat. 2020, 149, 105907. [Google Scholar] [CrossRef]
- Dey, D.; Dharini, V.; Periyar Selvam, S.; Rotimi Sadiku, E.; Mahesh Kumar, M.; Jayaramudu, J.; Nath Gupta, U. Physical, antifungal, and biodegradable properties of cellulose nanocrystals and chitosan nanoparticles for food packaging application. Mater. Today Proc. 2021, 38, 860–869. [Google Scholar] [CrossRef]
- Riahi, Z.; Rhim, J.-W.; Bagheri, R.; Pircheraghi, G.; Lotfali, E. Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots for active food packaging applications. Prog. Org. Coat. 2022, 166, 106794. [Google Scholar] [CrossRef]
- Xu, K.; Li, Q.; Xie, L.; Shi, Z.; Su, G.; Harper, D.; Tang, Z.; Zhou, J.; Du, G.; Wang, S. Novel flexible, strong, thermal-stable, and high-barrier switchgrass-based lignin-containing cellulose nanofibrils/chitosan biocomposites for food packaging. Ind. Crops Prod. 2022, 179, 114661. [Google Scholar] [CrossRef]
- Yi, C.; Yuan, T.; Xiao, H.; Ren, H.; Zhai, H. Hydrophobic-modified cellulose nanofibrils (CNFs)/chitosan/zein coating for enhancing multi-barrier properties of heat-sealable food packaging materials. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131245. [Google Scholar] [CrossRef]
- Nazari, M.; Majdi, H.; Gholizadeh, P.; Kafil, H.S.; Hamishehkar, H.; Zarchi, A.A.K.; Khoddami, A. An eco-friendly chitosan/cellulose acetate hybrid nanostructure containing Ziziphora clinopodioides essential oils for active food packaging applications. Int. J. Biol. Macromol. 2023, 235, 123885. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, X.; Zhang, G.-L.; Hao, H.; Hou, H.-M.; Bi, J. Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications. Carbohydr. Polym. 2022, 285, 119234. [Google Scholar] [CrossRef]
- Beji, E.; Keshk, S.M.A.S.; Douiri, S.; Charradi, K.; Ben Hassen, R.; Gtari, M.; Attia, H.; Ghorbel, D. Bioactive film based on chitosan incorporated with cellulose and aluminum chloride for food packaging application: Fabrication and characterization. Food Biosci. 2023, 53, 102678. [Google Scholar] [CrossRef]
- Liao, W.; Liu, X.; Zhao, Q.; Lu, Z.; Feng, A.; Sun, X. Physicochemical, antibacterial and food preservation properties of active packaging films based on chitosan/ε-polylysine-grafted bacterial cellulose. Int. J. Biol. Macromol. 2023, 253, 127231. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Wu, L.; Li, Y.; Li, H. Preparation and characterization of chitosan/dialdehyde carboxymethyl cellulose composite film loaded with cinnamaldehyde@zein nanoparticles for active food packaging. Int. J. Biol. Macromol. 2024, 261, 129586. [Google Scholar] [CrossRef]
- Latif, S.; Ahmed, M.; Ahmed, M.; Ahmad, M.; Al-Ahmary, K.M.; Ali, I. Development of Plumeria alba extract supplemented biodegradable films containing chitosan and cellulose derived from bagasse and corn cob waste for antimicrobial food packaging. Int. J. Biol. Macromol. 2024, 266, 131262. [Google Scholar] [CrossRef]
- Hasannezhad, H.; Bakhshi, A.; Mozafari, M.R.; Naghib, S.M. A review of chitosan role in milk bioactive-based drug delivery, smart packaging and biosensors: Recent advances and developments. Int. J. Biol. Macromol. 2024, 294, 139248. [Google Scholar] [CrossRef]
- Qian, M.; Liu, D.; Zhang, X.; Yin, Z.; Ismail, B.B.; Ye, X.; Guo, M. A review of active packaging in bakery products: Applications and future trends. Trends Food Sci. Technol. 2021, 114, 459–471. [Google Scholar] [CrossRef]
- Inanli, A.G.; Tümerkan, E.T.A.; Abed, N.E.; Regenstein, J.M.; Özogul, F. The impact of chitosan on seafood quality and human health: A review. Trends Food Sci. Technol. 2020, 97, 404–416. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J.; Yang, W.; Wan, J.-B. Biopolymer Food Packaging Films Incorporated with Essential Oils. J. Agric. Food Chem. 2023, 71, 1325–1347. [Google Scholar] [CrossRef]
- Shen, Y.; Seidi, F.; Ahmad, M.; Liu, Y.; Saeb, M.R.; Akbari, A.; Xiao, H. Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging. J. Agric. Food Chem. 2023, 71, 16469–16487. [Google Scholar] [CrossRef] [PubMed]
- Nasaj, M.; Chehelgerdi, M.; Asghari, B.; Ahmadieh-Yazdi, A.; Asgari, M.; Kabiri-Samani, S.; Sharifi, E.; Arabestani, M. Factors influencing the antimicrobial mechanism of chitosan action and its derivatives: A review. Int. J. Biol. Macromol. 2024, 277, 134321. [Google Scholar] [CrossRef]
- Minh, N.C.; Van Hoa, N.; Trung, T.S. Chapter 15—Preparation, properties, and application of low-molecular-weight chitosan. In Handbook of Chitin and Chitosan; Gopi, S., Thomas, S., Pius, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 453–471. [Google Scholar]
- Park, Y.; Kim, M.-H.; Park, S.-C.; Cheong, H.; Jang, M.-K.; Nah, J.-W.; Hahm, K.-S. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J. Microbiol. Biotechnol. 2008, 18, 1729–1734. [Google Scholar]
- Seyfarth, F.; Schliemann, S.; Elsner, P.; Hipler, U.C. Antifungal effect of high- and low-molecular-weight chitosan hydrochloride, carboxymethyl chitosan, chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans, Candida krusei and Candida glabrata. Int. J. Pharm. 2008, 353, 139–148. [Google Scholar] [CrossRef]
- Mumtaz, S.; Ali, S.; Mumtaz, S.; Mughal, T.A.; Tahir, H.M.; Shakir, H.A. Chitosan conjugated silver nanoparticles: The versatile antibacterial agents. Polym. Bull. 2023, 80, 4719–4736. [Google Scholar] [CrossRef]
- Goel, S.; Bano, Y. Chapter 13—Chitosan-based nanofibrous membranes for antibacterial filter applications. In Antimicrobial Materials and Coatings; Singh, A.K., Dhayal, M., Hussain, C.M., Eds.; Woodhead Publishing: Sawston, UK, 2025; pp. 425–447. [Google Scholar]
- Bhowmik, S.; Agyei, D.; Ali, A. Enhancement of mechanical, barrier, and functional properties of chitosan film reinforced with glycerol, COS, and gallic acid for active food packaging. Sustain. Mater. Technol. 2024, 41, e01092. [Google Scholar] [CrossRef]
- Kuai, L.; Liu, F.; Chiou, B.-S.; Avena-Bustillos, R.J.; McHugh, T.H.; Zhong, F. Controlled release of antioxidants from active food packaging: A review. Food Hydrocoll. 2021, 120, 106992. [Google Scholar] [CrossRef]
- Averill-Bates, D. Reactive oxygen species and cell signaling. Review. Biochim. Biophys. Acta Mol. Cell Res. 2024, 1871, 119573. [Google Scholar] [CrossRef]
- Zaric, B.L.; Macvanin, M.T.; Isenovic, E.R. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int. J. Biochem. Cell Biol. 2023, 154, 106346. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, S.; Ma, D.; Liu, Z.; Qi, P.; Wang, Z.; Di, S.; Wang, X. Review of fruits flavor deterioration in postharvest storage: Odorants, formation mechanism and quality control. Food Res. Int. 2024, 182, 114077. [Google Scholar] [CrossRef]
- Harugade, A.; Sherje, A.P.; Pethe, A. Chitosan: A review on properties, biological activities and recent progress in biomedical applications. React. Funct. Polym. 2023, 191, 105634. [Google Scholar] [CrossRef]
- Anraku, M.; Gebicki, J.M.; Iohara, D.; Tomida, H.; Uekama, K.; Maruyama, T.; Hirayama, F.; Otagiri, M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym. 2018, 199, 141–149. [Google Scholar] [CrossRef]
- Negm, N.A.; Kana, M.T.H.A.; Abubshait, S.A.; Betiha, M.A. Effectuality of chitosan biopolymer and its derivatives during antioxidant applications. Int. J. Biol. Macromol. 2020, 164, 1342–1369. [Google Scholar] [CrossRef]
- Moratti, S.C.; Cabral, J.D. 2—Antibacterial properties of chitosan. In Chitosan Based Biomaterials; Jennings, J.A., Bumgardner, J.D., Eds.; Woodhead Publishing: Sawston, UK, 2017; Volume 1, pp. 31–44. [Google Scholar]
- Yu, Y.; Su, Z.; Peng, Y.; Zhong, Y.; Wang, L.; Xin, M.; Li, M. Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review. Int. J. Biol. Macromol. 2025, 289, 138772. [Google Scholar] [CrossRef]
- Thomas, D.; Thomas, S. Chemical Modification of Chitosan and Its Biomedical Application. In Biopolymer Nanocomposites; Springer: Cham, Switzerland, 2013; pp. 33–51. [Google Scholar]
- Wang, J.; Zhuang, S. Chitosan-based materials: Preparation, modification and application. J. Clean. Prod. 2022, 355, 131825. [Google Scholar] [CrossRef]
- Barik, M.; BhagyaRaj, G.V.S.; Dash, K.K.; Shams, R. A thorough evaluation of chitosan-based packaging film and coating for food product shelf-life extension. J. Agric. Food Res. 2024, 16, 101164. [Google Scholar] [CrossRef]
- Geng, Y.; Xue, H.; Zhang, Z.; Panayi, A.C.; Knoedler, S.; Zhou, W.; Mi, B.; Liu, G. Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr. Polym. 2023, 305, 120555. [Google Scholar] [CrossRef]
- Niu, X.; Zhu, L.; Xi, L.; Guo, L.; Wang, H. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control 2020, 108, 106829. [Google Scholar] [CrossRef]
- Caetano, D.; Junior, L.A.; Carneiro, J.; Ducatti, D.R.B.; Gonçalves, A.G.; Noseda, M.D.; Duarte, M.E.R. Semisynthesis of new sulfated heterorhamnan derivatives obtained from green seaweed Gayralia brasiliensis and evaluation of their anticoagulant activity. Int. J. Biol. Macromol. 2024, 267, 131506. [Google Scholar] [CrossRef]
- Moustafa, A.M.Y.; Fawzy, M.M.; Kelany, M.S.; Hassan, Y.A.; Elsharaawy, R.F.; Mustafa, F.H. Synthesis of new quaternized chitosan Schiff bases and their N-alkyl derivatives as antimicrobial and anti-biofilm retardants in membrane technology. Int. J. Biol. Macromol. 2024, 267, 131635. [Google Scholar] [CrossRef]
- Kumar, D.; Gihar, S.; Shrivash, M.K.; Kumar, P.; Kundu, P.P. A review on the synthesis of graft copolymers of chitosan and their potential applications. Int. J. Biol. Macromol. 2020, 163, 2097–2112. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.F.; de Barros-Alexandrino, T.T.; Assis, O.B.G.; Junior, A.C.; Quiles, A.; Hernando, I.; Nicoletti, V.R. Chitosan and crosslinked chitosan nanoparticles: Synthesis, characterization and their role as Pickering emulsifiers. Carbohydr. Polym. 2020, 250, 116878. [Google Scholar] [CrossRef]
- Normakhamatov, N.; Mischnick, P.; Muhitdinov, B.; Mukhamedov, I.; Turaev, A. Sodium cellulose sulfate and its antimicrobial activity. React. Funct. Polym. 2023, 191, 105672. [Google Scholar] [CrossRef]
- Liu, X.; Qin, Z.; Ma, Y.; Liu, H.; Wang, X. Cellulose-Based Films for Food Packaging Applications: Review of Preparation, Properties, and Prospects. J. Renew. Mater. 2023, 11, 3203–3225. [Google Scholar] [CrossRef]
- Tang, Z.; Lin, X.; Yu, M.; Mondal, A.K.; Wu, H. Recent advances in TEMPO-oxidized cellulose nanofibers: Oxidation mechanism, characterization, properties and applications. Int. J. Biol. Macromol. 2024, 259, 129081. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, F. Periodate oxidation-mediated nanocelluloses: Preparation, functionalization, structural design, and applications. Carbohydr. Polym. 2024, 341, 122305. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Santos, J.; Valls, C.; Cusola, O.; Roncero, M.B. Periodate oxidation of nanofibrillated cellulose films for active packaging applications. Int. J. Biol. Macromol. 2024, 267, 131553. [Google Scholar] [CrossRef]
- Madani, M.; Borandeh, S.; Teotia, A.K.; Seppälä, J.V. Direct and Indirect Cationization of Cellulose Nanocrystals: Structure–Properties Relationship and Virus Capture Activity. Biomacromolecules 2023, 24, 4397–4407. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Ropponen, J. Evaluation of esterification routes for long chain cellulose esters. Heliyon 2019, 5, e02898. [Google Scholar] [CrossRef]
- Li, M.-L.; Hou, D.-F.; Li, P.-Y.; Feng, Z.-W.; Huang, Y.-H.; Wang, F.; Zhai, Y.-M.; Sun, X.-R.; Zhang, K.; Yin, B.; et al. One-Step Solvent-Free Strategy to Efficiently Synthesize High-Substitution Cellulose Esters. ACS Sustain. Chem. Eng. 2024, 12, 9669–9681. [Google Scholar] [CrossRef]
- Sanchez-Salvador, J.L.; Balea, A.; Monte, M.C.; Negro, C.; Blanco, A. Chitosan grafted/cross-linked with biodegradable polymers: A review. Int. J. Biol. Macromol. 2021, 178, 325–343. [Google Scholar] [CrossRef]
- Zhang, W.; Hadidi, M.; Karaca, A.C.; Hedayati, S.; Tarahi, M.; Assadpour, E.; Jafari, S.M. Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydr. Polym. 2023, 314, 120901. [Google Scholar] [CrossRef] [PubMed]
- Bisla, V.; Yoshitake, H. Control of mechanical and hydrophobic properties of silylated chitosan-starch films by cross-linking using carboxylic acids. Carbohydr. Polym. Technol. Appl. 2024, 7, 100462. [Google Scholar] [CrossRef]
- Liu, B.; Ye, H.-B.; Liang, Q.-Y.; Jiang, L.-L.; Chen, M.-M.; Yang, S.-B. Development and characterization of pectin and chitosan films incorporated with a new cross-linking agent. J. Sci. Food Agric. 2023, 103, 1964–1973. [Google Scholar] [CrossRef]
- Patiño-Ruiz, D.A.; De Ávila, G.; Alarcón-Suesca, C.; González-Delgado, Á.D.; Herrera, A. Ionic Cross-Linking Fabrication of Chitosan-Based Beads Modified with FeO and TiO2 Nanoparticles: Adsorption Mechanism toward Naphthalene Removal in Seawater from Cartagena Bay Area. ACS Omega 2020, 5, 26463–26475. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Cheng, X.; Marin, L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur. Polym. J. 2020, 139, 110016. [Google Scholar] [CrossRef]
- Andreica, B.-I.; Anisiei, A.; Rosca, I.; Sandu, A.-I.; Pasca, A.S.; Tartau, L.M.; Marin, L. Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine. Carbohydr. Polym. 2023, 302, 120431. [Google Scholar] [CrossRef] [PubMed]
- Morandi, P.; Berthalon, S.; David, G.; Lebrun, A.; Parra, K.; Negrell, C. Selective acylation of chitosan oligomers by several cyclic anhydrides as a 13C NMR quantification method. Carbohydr. Polym. Technol. Appl. 2024, 7, 100498. [Google Scholar] [CrossRef]
- Elnaggar, E.M.; Abusaif, M.S.; Abdel-Baky, Y.M.; Ragab, A.; Omer, A.M.; Ibrahim, I.; Ammar, Y.A. Insight into divergent chemical modifications of chitosan biopolymer: Review. Int. J. Biol. Macromol. 2024, 277, 134347. [Google Scholar] [CrossRef]
- Chen, W.-C.; Chien, H.-W. Enhancing the antibacterial property of chitosan through synergistic alkylation and chlorination. Int. J. Biol. Macromol. 2022, 217, 321–329. [Google Scholar] [CrossRef]
- Zhuxin, L.; Biao, Y.; Badamkhand, D.; Yifan, C.; Honghong, S.; Xiao, X.; Mingqian, T.; Zhixiang, W.; Chongjiang, C. Carboxylated chitosan improved the stability of phycocyanin under acidified conditions. Int. J. Biol. Macromol. 2023, 233, 123474. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Dong, Q.; Xu, C.; Deng, S.; Kang, Y.; Fan, M.; Li, L. Application of functionalized chitosan in food: A review. Int. J. Biol. Macromol. 2023, 235, 123716. [Google Scholar] [CrossRef]
- Su, J.; Zhang, W.; Moradi, Z.; Rouhi, M.; Parandi, E.; Garavand, F. Recent functionality developments of carboxymethyl chitosan as an active food packaging film material. Food Chem. 2025, 463, 141356. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lu, W.; Sun, C.; Khalesi, H.; Mata, A.; Andaleeb, R.; Fang, Y. Cellulose and cellulose derivatives: Different colloidal states and food-related applications. Carbohydr. Polym. 2021, 255, 117334. [Google Scholar] [CrossRef]
- Thivya, P.; Akalya, S.; Sinija, V.R. A comprehensive review on cellulose-based hydrogel and its potential application in the food industry. Appl. Food Res. 2022, 2, 100161. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Z.; Chen, J.; Yang, G.; He, M. Facile sulfation of cellulose via recyclable ternary deep eutectic solvents for low-cost cellulose nanofibril preparation. Nanoscale Adv. 2023, 5, 356–360. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Toivakka, M.; Xu, C. Current progress in functionalization of cellulose nanofibers (CNFs) for active food packaging. Int. J. Biol. Macromol. 2024, 267, 131490. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Cao, J.; Wu, X.; Qin, B.; Wang, Z.; Wang, Y.; Zhang, Y.; Wang, T.; Fu, Y. Molecularly imprinted polymer on silylated cellulose matrix via dummy template for detoxification of ginkgolic acids. Ind. Crops Prod. 2022, 188, 115644. [Google Scholar] [CrossRef]
- Chetia, P.; Bharadwaj, C.; Purbey, R.; Bora, D.; Yadav, A.; Lal, M.; Rajulu, A.V.; Sadiku, E.R.; Selvam, S.P.; Jarugala, J. Influence of silylated nano cellulose reinforcement on the mechanical, water resistance, thermal, morphological and antibacterial properties of soy protein isolate (SPI)-based composite films. Int. J. Biol. Macromol. 2023, 242, 124861. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, J.; Jiang, L.; Zhu, Z.; He, S.; He, S.; Shao, W. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packag. Shelf Life 2021, 29, 100709. [Google Scholar] [CrossRef]
- Rahmadiawan, D.; Abral, H.; Azka, M.A.; Sapuan, S.M.; Admi, R.I.; Shi, S.-C.; Zainul, R.; Azril; Zikri, A.; Mahardika, M. Enhanced properties of TEMPO-oxidized bacterial cellulose films via eco-friendly non-pressurized hot water vapor treatment for sustainable and smart food packaging. RSC Adv. 2024, 14, 29624–29635. [Google Scholar] [CrossRef]
- Hassan, S.H.; Velayutham, T.S.; Chen, Y.W.; Lee, H.V. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. Int. J. Biol. Macromol. 2021, 180, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, J.F.S.; Rasteiro, M.G.; Neto, C.P.; Ferreira, P.J.T. Effect of cationization pretreatment on the properties of cationic Eucalyptus micro/nanofibrillated cellulose. Int. J. Biol. Macromol. 2022, 201, 468–479. [Google Scholar] [CrossRef]
- Rana, V.; Malik, S.; Joshi, G.; Rajput, N.K.; Gupta, P.K. Preparation of alpha cellulose from sugarcane bagasse and its cationization: Synthesis, characterization, validation and application as wet-end additive. Int. J. Biol. Macromol. 2021, 170, 793–809. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, Y.-T.; Zeng, K.; Heinze, T.; Groth, T.; Zhang, K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. Adv. Mater. 2021, 33, 2000717. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Hernandez-Hernandez, O.; Martinez, M.M.; Gutiérrez, T.J. Organocatalytic esterification of polysaccharides for food applications: A review. Trends Food Sci. Technol. 2022, 119, 45–56. [Google Scholar] [CrossRef]
- LakshmiBalasubramaniam, S.; Patel, A.S.; Nayak, B.; Howell, C.; Skonberg, D. Antioxidant and antimicrobial modified cellulose nanofibers for food applications. Food Biosci. 2021, 44, 101421. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Abdalkarim, S.Y.H.; Chen, X.; Yu, H.-Y. Efficient cellulose dissolution and derivatization enabled by oxalic/sulfuric acid for high-performance cellulose films as food packaging. Int. J. Biol. Macromol. 2024, 276, 133799. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Gawad, F.A.E.; Ali, E.A.E.; Karunanithi, S.; Yugiani, P.; Srivastav, P.P. Nanotechnology: Current applications and future scope in food packaging systems. Meas. Food 2024, 13, 100131. [Google Scholar] [CrossRef]
- Abutalib, M.M.; Rajeh, A. Enhanced structural, electrical, mechanical properties and antibacterial activity of Cs/PEO doped mixed nanoparticles (Ag/TiO2) for food packaging applications. Polym. Test. 2021, 93, 107013. [Google Scholar] [CrossRef]
- Althawab, S.A.; Alzahrani, A.; Alohali, B.M.; Alsulami, T. Flexible N-doped MXene quantum dot–biopolymer films with antibacterial and antioxidant functions for active food packaging. Colloids Surf. A Physicochem. Eng. Asp. 2025, 722, 137291. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Xiao, X.; Duan, Q.; Bai, H.; Cao, Y.; Zhang, Y.; Alee, M.; Yu, L. Improved hydrophobicity, antibacterial and mechanical properties of polyvinyl alcohol/quaternary chitosan composite films for antibacterial packaging. Carbohydr. Polym. 2023, 312, 120755. [Google Scholar] [CrossRef]
- Huang, H.; Mao, L.; Wang, W.; Li, Z.; Qin, C. A facile strategy to fabricate antibacterial hydrophobic, high-barrier, cellulose papersheets for food packaging. Int. J. Biol. Macromol. 2023, 236, 123630. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, Y.; Xiao, H.; Jayan, H.; Majeed, U.; Ashiagbor, K.; Jiang, S.; Zou, X. Multi-sensor fusion and deep learning for batch monitoring and real-time warning of apple spoilage. Food Control 2025, 172, 111174. [Google Scholar] [CrossRef]
- Gomes, V.; Bermudez, R.; Mateus, N.; Guedes, A.; Lorenzo, J.M.; de Freitas, V.; Cruz, L. FoodSmarTag: An innovative dynamic labeling system based on pyranoflavylium-based colorimetric films for real-time monitoring of food freshness. Food Hydrocoll. 2023, 143, 108914. [Google Scholar] [CrossRef]
- El kalaaoui, K.; Bili, O.; Boukhriss, A.; Gmouh, S. 27—Electrospinning process: Fiber composition and applications. In Synthetic and Mineral Fibers, Their Composites and Applications; Rangappa, S.M., Ayyappan, V., Manik, G., Siengchin, S., Eds.; Woodhead Publishing: Sawston, UK, 2024; pp. 719–744. [Google Scholar]
- Nachal, N.; Moses, J.A.; Karthik, P.; Anandharamakrishnan, C. Applications of 3D Printing in Food Processing. Food Eng. Rev. 2019, 11, 123–141. [Google Scholar] [CrossRef]
- Li, H.; Qi, G. Product packaging design for hybrid manufacturing process based on 3D printing and thermal environment sensors. Int. J. Adv. Manuf. Technol. 2024. [Google Scholar] [CrossRef]
Evaluation Criteria | |||
---|---|---|---|
Materials Components | Preparation Approaches | Applications | References |
1. Alkylation of chitosan | Chitosan undergoes N-alkylation through the formation of Schiff bases | Antibacterial, food, and pharmaceutical | [36] |
2. Cellulose alkylation | Alkylation of micro-fibrillated cellulose | Food preservation | [37] |
3. Chitosan acylation | Chitosan acylation, biocatalytic enzyme activity | Food preservation | [38] |
4. Acetylated cellulose | Reacetylation method; banana pseudostem cellulose was extracted and acetylated to prepare | Beef preservation; antimicrobial against Staphylococcus aureus and Escherichia coli | [34,35] |
5. Hydroxychitosan | Hydroxyl substitution of flavonols on chitosan | The preservation of fatty and water-based meats | [39] |
6. Imine-based chitosan/quaternized chitosan-based nanofibers | Ammoniated chitosan, vanillin, and polyethylene oxide electrospun into fiber materials | Antibacterial activity of Escherichia coli, Staphylococcus aureus, and Candida albicans | [40] |
7. Shellac quaternized chitosan nanoparticles | Quercetin-loaded shellac quaternized chitosan nanoparticles | Cosmetics, pharmaceuticals, and food preservation | [41] |
8. Quaternary ammonium chitosan, cellulose | Deacetylated quaternized chitosan and its use as cellulose nanofiber-based film | Extend the raw salmon’s shelf life | [42] |
9. Amphiphilic quaternized chitosan derivatives | Amphiphilic quaternized chitosan derivatives | Antibacterial experiment of Streptococcus mutans, the pathogen of dental caries | [43] |
10. Polyvinyl alcohol/quaternized cellulose | Blending of quaternized cellulose with polyvinyl alcohol matrix | Antibacterial experiments on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria | [44] |
11. derivatives of cellulose, chitin and chitosan | Introduced multifunctional groups | Fruits, antibacterial field, fuel cell, drug delivery, immunotherapy, etc. | [45] |
12. Cellulose nanofibers, chitosan/modified cellulose | Physical mixing | Beefcake food preservation | [46] |
13. Cellulose, gelatin, starch chitosan nanocomposite film | Single-layered films through film casting technique | Meat preservation | [47] |
14. Microfibrillated cellulose, chitosan and polypyrrole | Coasting method | Cherry tomato preservation | [48] |
15. Cellulose nanocrystals, polyvinyl alcohol, chitosan nanoparticle | The solvent casting method | The packaging of fresh fruits | [49] |
16. Carboxymethyl cellulose, chitosan-based carbon quantum dots | Carboxymethyl cellulose-based functional film integrated with chitosan-based carbon quantum dots. | Lemon fruit preservation | [50] |
17. Chitosan, lignin-containing cellulose nanofibrils bio-composite | Combining hydrothermal pretreatment, mechanical fibrosis, and casting. | Green food packaging | [51] |
18. Hydrophobic-modified cellulose nanofibrils, chitosan, zein coating | Multi-coating method | Meat packaging | [52] |
19. chitosan/cellulose acetate hybrid nanostructure, Ziziphora clinopodioides essential oils. | Ion gel, electric spray, and electrospinning process | Fresh beef preservation | [53] |
20. Cellulose and chitosan and volatile antibacterial benzyl isothiocyanate. | The layer-by-layer self-assembly approach | Chicken preservation | [54] |
21. Aluminum chloride, chitosan, cellulose | Ternary composite approach | Gram microbiota experiment | [55] |
22. Chitosan, bacterial cellulose, ε—polylysine | Casting method | Tilapia preservation | [56] |
23. Corn alcohol soluble protein, cinnamaldehyde, chitosan, dialdehyde carboxymethyl cellulose | Loading and doping method | Strawberry preservation | [57] |
24. Composed of cellulose, bentonite, and chitosan, Aspergillus Niger extract | Ternary composite approach | Sherbet berry preservation | [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, T.; Wang, X.; Zhang, F. Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation. Polymers 2025, 17, 1850. https://doi.org/10.3390/polym17131850
Qu T, Wang X, Zhang F. Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation. Polymers. 2025; 17(13):1850. https://doi.org/10.3390/polym17131850
Chicago/Turabian StyleQu, Tengfei, Xiaowen Wang, and Fengchun Zhang. 2025. "Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation" Polymers 17, no. 13: 1850. https://doi.org/10.3390/polym17131850
APA StyleQu, T., Wang, X., & Zhang, F. (2025). Antibacterial Food Packaging with Chitosan and Cellulose Blends for Food Preservation. Polymers, 17(13), 1850. https://doi.org/10.3390/polym17131850