Design and Synthesis Optimization of Fluorescent Acrylate-Based and Silicate-Based Materials for Carbonyl Adsorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials Synthesis
- Acrylate-based materials
- Silicate-based materials
2.3. Materials Characterization
- Fourier Transform Infrared Spectroscopy (FTIR)
- Scanning electron microscopy (SEM)
- Laser diffraction
- Material toxicity assessment
2.4. Adsorption Capacity of the Materials
2.5. Fluorescence of the Materials
3. Results and Discussion
3.1. Design of the Materials
3.2. Synthesis Optimisation
- Acrylate-based materials
- -
- Initiation of polymerization: UV-light or heat (60 °C)
- -
- Nature of the functional monomer: 4-vinylaniline, 3-vinylaniline, 2-vinylaniline
- -
- Functional monomer/initiator molar ratio: 4/0.5 or 4/1
- -
- Functional monomer/solvent molar ratio: 4/100 or 4/50.
- b.
- Silicate-based materials
3.3. Adsorption Capacity of the Materials
3.4. Fluorescence Properties of the Materials
3.5. Special Case of Materials with a Higher Ratio of Functional Monomer
3.6. Global Overall Comparison of the Acrylate-Based and Silicate-Based Materials
3.7. Characterisation of the Materials
- Difference between 4-VA UV and 4-VA thermal materials
- Difference between 4-VA UV and 4-VA × 5 UV
- Difference between 4-VA UV freshly synthesized and 4-VA UV after 3 months of aging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, H.; Liu, G.; Yin, R.; Sun, Z.; Chen, H.; Yu, L.; Su, P.; Sun, M.; Alamry, K.A.; Marwani, H.M.; et al. An aldimine condensation reaction based fluorescence enhancement probe for detection of gaseous formaldehyde. Microchem. J. 2020, 156, 104793. [Google Scholar] [CrossRef]
- Ross, C.F.; Smith, D.M. Use of volatiles as indicators of lipid oxidation in muscle foods. Compr. Rev. Food Sci. Food Saf. 2006, 5, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Schumer, E.M.; Trivedi, J.R.; van Berkel, V.; Black, M.C.; Li, M.; Fu, X.-A.; Bousamra, M. High sensitivity for lung cancer detection using analysis of exhaled carbonyl compounds. J. Thorac. Cardiovasc. Surg. 2015, 150, 1517–1524. [Google Scholar] [CrossRef] [PubMed]
- Hogard, M.L.; Lunte, C.E.; Lunte, S.M. Detection of reactive aldehyde biomarkers in biological samples using solid-phase extraction pre-concentration and liquid chromatography with fluorescence detection. Anal. Methods 2017, 9, 1848–1854. [Google Scholar] [CrossRef]
- Liao, C.; Shi, J.; Zhang, M.; Dalapati, R.; Tian, Q.; Chen, S.; Wang, C.; Zang, L. Optical chemosensors for the gas phase detection of aldehydes: Mechanism, material design, and application. Mater. Adv. 2021, 2, 6213–6245. [Google Scholar] [CrossRef]
- Włoch, M.; Datta, J. Synthesis and polymerisation techniques of molecularly imprinted polymers. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 86, pp. 17–40. [Google Scholar]
- Rico-Yuste, A.; González-Vallejo, V.; Benito-Peña, E.; de las Casas Engel, T.; Orellana, G.; Moreno-Bondi, M.C. Furfural determination with disposable polymer films and smartphone-based colorimetry for beer freshness assessment. Anal. Chem. 2016, 88, 3959–3966. [Google Scholar] [CrossRef] [PubMed]
- Mujahid, A.; Lieberzeit, P.A.; Dickert, F.L. Chemical sensors based on molecularly imprinted sol-gel materials. Materials 2010, 3, 2196–2217. [Google Scholar] [CrossRef]
- Lionti, K.; Séverin, I.; Dahbi, L.; Toury, B.; Chagnon, M.-C. In vitro genotoxicity assessment of MTES, GPTES and TEOS, three precursors intended for use in food contact coatings. Food Chem. Toxicol. 2014, 65, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Alarcos, N.; Cohen, B.; Ziółek, M.; Douhal, A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem. Rev. 2017, 117, 13639–13720. [Google Scholar] [CrossRef] [PubMed]
- Seok, W.C.; Lee, M.J.; Yoo, E.J.; Lee, S.H.; Chae, B.; Oh, B.-K.; Lee, S.W. Hybrid nanomaterials for the detection of amine derivatives based on a fluorescent probe. Sci. Adv. Mater. 2014, 6, 2554–2557. [Google Scholar] [CrossRef]
- Malvern Panalytical. MS3000 Refractive Index and Sample Dispersion Guide; Malvern Panalytical: Worcestershire, UK, 2021. [Google Scholar]
- Maron, D.M.; Ames, B.N. Revised methods for the salmonella mutagenicity test. Mutat. Res. Mutagen. Relat. Subj. 1983, 113, 173–215. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guideline No. 471 for the Testing of Chemicals Bacterial Reverse Mutation Test; OECD: Paris, France, 1997. [Google Scholar]
- Bitar, M.; Maalouly, J.; Chebib, H.; Lerbret, A.; Cayot, P.; Bou-Maroun, E. Experimental design approach in the synthesis of molecularly imprinted polymers specific for iprodione fungicide. React. Funct. Polym. 2015, 94, 17–24. [Google Scholar] [CrossRef]
- Piletska, E.V.; Guerreiro, A.R.; Whitcombe, M.J.; Piletsky, S.A. Influence of the polymerization conditions on the performance of molecularly imprinted polymers. Macromolecules 2009, 42, 4921–4928. [Google Scholar] [CrossRef]
- Lafarge, C.; Bitar, M.; El Hosry, L.; Cayot, P.; Bou-Maroun, E. Comparison of molecularly imprinted polymers (MIP) and sol–gel molecularly imprinted silica (MIS) for fungicide in a hydro alcoholic solution. Mater. Today Commun. 2020, 24, 101157. [Google Scholar] [CrossRef]
- Lu, H.; Wang, K.; Liu, B.; Wang, M.; Huang, M.; Zhang, Y.; Yang, J. Systematic oligoaniline-based derivatives: ACQ–AIE conversion with a tunable insertion effect and quantitative fluorescence “turn-on” detection of BSA. Mater. Chem. Front. 2018, 3, 331–338. [Google Scholar] [CrossRef]
- Conejo-Dávila, A.S.; Moya-Quevedo, M.A.; Chávez-Flores, D.; Vega-Rios, A.; Zaragoza-Contreras, E.A. Role of the Anilinium Ion on the Selective Polymerization of Anilinium 2-Acrylamide-2-methyl-1-propanesulfonate. Polymers 2021, 13, 2349. [Google Scholar] [CrossRef] [PubMed]
- Niu, M.; Pham-Huy, C.; He, H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta 2016, 183, 2677–2695. [Google Scholar] [CrossRef]
- Carballido, L.; Bou-Maroun, E.; Weber, G.; Bezverkhyy, I.; Karbowiak, T. A new sol-gel fluorescent sensor to track carbonyl compounds. Talanta 2024, 279, 126569. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.L.; Spivak, D.A. Performance analysis of molecularly imprinted polymers for carboxylate and aminophosphate templates using commercially available basic functional monomers. J. Chromatogr. B 2004, 804, 203–209. [Google Scholar] [CrossRef] [PubMed]
Name of the Material | Polymerization Type | Initiation of the Polymerization | Nature of Functional Monomer | Functional Monomer/Cross-Linker Ratio |
---|---|---|---|---|
4-VA UV | Radical polymerization | UV radiation | 4-VA | 4/20 |
3-VA UV | Radical polymerization | UV radiation | 3-VA | 4/20 |
2-VA UV | Radical polymerization | UV radiation | 2-VA | 4/20 |
4-VA thermal | Radical polymerization | Heat | 4-VA | 4/20 |
3-VA thermal | Radical polymerization | Heat | 3-VA | 4/20 |
2-VA thermal | Radical polymerization | Heat | 2-VA | 4/20 |
4-TMSA sol-gel | Sol-gel polymerization | n.a. | 4-TMSA | 1/5 |
4-VA × 5 UV | Radical polymerization | UV radiation | 4-VA | 20/20 |
4-TMSA × 5 sol-gel | Sol-gel polymerization | n.a. | 4-TMSA | 5/5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carballido, L.; Karbowiak, T.; Bou-Maroun, E. Design and Synthesis Optimization of Fluorescent Acrylate-Based and Silicate-Based Materials for Carbonyl Adsorption. Polymers 2025, 17, 1843. https://doi.org/10.3390/polym17131843
Carballido L, Karbowiak T, Bou-Maroun E. Design and Synthesis Optimization of Fluorescent Acrylate-Based and Silicate-Based Materials for Carbonyl Adsorption. Polymers. 2025; 17(13):1843. https://doi.org/10.3390/polym17131843
Chicago/Turabian StyleCarballido, Laura, Thomas Karbowiak, and Elias Bou-Maroun. 2025. "Design and Synthesis Optimization of Fluorescent Acrylate-Based and Silicate-Based Materials for Carbonyl Adsorption" Polymers 17, no. 13: 1843. https://doi.org/10.3390/polym17131843
APA StyleCarballido, L., Karbowiak, T., & Bou-Maroun, E. (2025). Design and Synthesis Optimization of Fluorescent Acrylate-Based and Silicate-Based Materials for Carbonyl Adsorption. Polymers, 17(13), 1843. https://doi.org/10.3390/polym17131843