Computer-Guided Development of Hyperbranched Modified Starch-Based Adhesives
Abstract
1. Introduction
2. Results and Discussion
2.1. Electrostatic Potential Diagram and Charge Distribution of DGEMA and Citric Acid
2.2. Discussion on the Frontier Molecular Orbitals of DGEMA and Citric Acid
2.3. Simulation of Molecular Density and Solubility Parameters of Starch-Based Adhesives
2.4. Interaction Energy Analysis
2.5. Water Contact Angle of Starch-Based Adhesives
2.6. Simulation of Mechanical Properties of Starch-Based Adhesives
3. Conclusions
4. Computational Studies
4.1. Calculation of Electrostatic Potential Between DGEBA and Citric Acid
4.2. Construction of Hyperbranched Starch-Based Adhesive Model
4.3. Calculation of Molecular Density and Solubility Parameters
4.4. Calculation of Interaction Energy
4.5. Calculation of Water Contact Angle
4.6. Mechanical Property Calculation
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abed, J.; Rayburg, S.; Rodwell, J.; Neave, M. A Review of the Performance and Benefits of Mass Timber as an Alternative to Concrete and Steel for Improving the Sustainability of Structures. Sustainability 2022, 14, 5570. [Google Scholar] [CrossRef]
- Chen, B.; Leiste, U.H.; Fourney, W.L.; Liu, Y.; Chen, Q.; Li, T. Hardened Wood as a Renewable Alternative to Steel and Plastic. Matter 2021, 4, 3941–3952. [Google Scholar] [CrossRef]
- Yue, H.; Mai, L.; Xu, C.; Yang, C.; Shuttleworth, P.S.; Cui, Y. Recent Advancement in Bio-Based Adhesives Derived from Plant Proteins for Plywood Application: A Review. Sustain. Chem. Pharm. 2023, 33, 101143. [Google Scholar] [CrossRef]
- Gonçalves, D.; Bordado, J.M.; Marques, A.C.; Galhano Dos Santos, R. Non-Formaldehyde, Bio-Based Adhesives for Use in Wood-Based Panel Manufacturing Industry—A Review. Polymers 2021, 13, 4086. [Google Scholar] [CrossRef]
- Li, Z.; Chen, F.; Liu, B.; Du, M.; Wu, L.; Zhang, T. Properties of Wheat Gluten Based Wood Adhesives Enhanced by Transglutaminase and Epichlorohydrin. Int. J. Adhes. Adhes. 2024, 130, 103607. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Wang, J.; He, Q.; Shi, Y.; Zhao, J.; Wan, D. Preparation and Properties of a Novel Wood Adhesive Derived from Antibiotic Bacterial Residues. J. Adhes. Sci. Technol. 2021, 35, 2466–2482. [Google Scholar] [CrossRef]
- Shao, W.; Wang, P.; Liu, J.; Xu, H.; Cai, X.; Wu, Q.; Xia, N.; Kong, F. An Environmentally Friendly and High Wet-Bond Strength Adhesive Based on Starch, Itaconic Acid and Silicone. Ind. Crops Prod. 2022, 181, 114809. [Google Scholar] [CrossRef]
- Li, W.; Yang, C.; Ren, X.; Li, Z.; Yang, H.; Zhang, X.; Huang, T.; Ran, X.; Gao, W.; Ni, K.; et al. Developing Sugar-Based Wood Adhesives Using Schiff Base Chemistry Derived from Carbohydrates. Colloids Surf. A Physicochem. Eng. Asp. 2024, 687, 133485. [Google Scholar] [CrossRef]
- Tsupphayakorn-aek, P.; Suwan, A.; Chaisit, T.; Tulyapitak, T.; Phinyocheep, P.; Pilard, J.; Saetung, N.; Saetung, A. A New UV -curable Biodegradable Waterborne Polyurethane-acrylate Based on Natural Rubber Blended with Cassava Starch. J. Appl. Polym. Sci. 2023, 140, e53787. [Google Scholar] [CrossRef]
- Jin, H.; Li, C.; Sun, Y.; Zhao, B.; Li, Y. Preparation and Application of High Internal Phase Pickering Emulsion Gels Stabilized by Starch Nanocrystal/Tannic Acid Complex Particles. Gels 2024, 10, 335. [Google Scholar] [CrossRef]
- Liu, M.; Yao, W.; Zheng, H.; Zhao, H.; Shao, R.; Tan, H.; Zhang, Y. Preparation of a High-Strength, Hydrophobic Performance Starch-Based Adhesive with Oxidative Cross-Linking via Fenton’s Reagent. Int. J. Biol. Macromol. 2023, 253, 126995. [Google Scholar] [CrossRef] [PubMed]
- Tratnik, N.; Kuo, P.-Y.; Tanguy, N.R.; Gnanasekar, P.; Yan, N. Biobased Epoxidized Starch Wood Adhesives: Effect of Amylopectin and Amylose Content on Adhesion Properties. ACS Sustain. Chem. Eng. 2020, 8, 17997–18005. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Wang, X.; Lei, H.; Huo, J. Chemical Modification of Starch with Epoxy Resin to Enhance the Interfacial Adhesion of Epoxy-Based Glass Fiber Composites. RSC Adv. 2016, 6, 84187–84193. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Zhou, Y.; Essawy, H.; Chen, Q.; Zhou, X.; Du, G. Preparation of a Starch-Based Adhesive Cross-Linked with Furfural, Furfuryl Alcohol and Epoxy Resin. Int. J. Adhes. Adhes. 2021, 110, 102958. [Google Scholar] [CrossRef]
- Tai, N.L.; Ghasemlou, M.; Adhikari, R.; Adhikari, B. Starch-Based Isocyanate- and Non-Isocyanate Polyurethane Hybrids: A Review on Synthesis, Performance and Biodegradation. Carbohydr. Polym. 2021, 265, 118029. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, F.; Shen, J.; Zhang, Y. Improvement of Water Resistance of Wheat Flour-based Adhesives by Thermal–Chemical Treatment and Chemical Crosslinking. J. Appl. Polym. Sci. 2021, 138, 50458. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.; Hong, M. Tailoring of Oxidized Starch’s Adhesion Using Crosslinker and Adhesion Promotor for the Recycling of Fiberboards. J. Appl. Polym. Sci. 2019, 136, 47966. [Google Scholar] [CrossRef]
- Jin, J.; Cheng, L.; Chen, C.; Li, Z.; Hong, Y.; Li, C.; Ban, X.; Gu, Z. Synthesis, Characterization, and Application of Starch-Based Adhesives Modified with Itaconic Acid and N-Hydroxyethyl Acrylamide. Ind. Crops Prod. 2023, 196, 116524. [Google Scholar] [CrossRef]
- Din, Z.-; Xiong, H.; Wang, Z.; Chen, L.; Ullah, I.; Fei, P.; Ahmad, N. Effects of Different Emulsifiers on the Bonding Performance, Freeze-Thaw Stability and Retrogradation Behavior of the Resulting High Amylose Starch-Based Wood Adhesive. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 192–201. [Google Scholar] [CrossRef]
- Takeno, H.; Shikano, R.; Kikuchi, R. Mechanical Performance of Corn Starch/Poly(Vinyl Alcohol) Composite Hydrogels Reinforced by Inorganic Nanoparticles and Cellulose Nanofibers. Gels 2022, 8, 514. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Kumar, A. Analytical Model to Deduce the Conformational and Dynamical Behavior in Dendrimers: A Review. Polymers 2024, 16, 1918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, J.; Chen, M.; Luo, J.; Shi, S.Q.; Gao, Q.; Li, J. A Tough, Water-Resistant, High Bond Strength Adhesive Derived from Soybean Meal and Flexible Hyper-Branched Aminated Starch. Polymers 2019, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Zeng, H.; Huang, Y.; Liu, L.; Yao, W.; Lei, H.; Shi, S.; Du, G.; Zhang, L. Bio-Hyperbranched Polyesters Synthesized from Citric Acid and Bio-Polyols and Applications on Wood Adhesives. Polym. Test. 2023, 120, 107974. [Google Scholar] [CrossRef]
- Jin, T.; Huang, Y.; Yang, Y.; Liu, L.; Guo, H.; Zeng, H.; Xu, K.; Lei, H.; Du, G.; Zhang, L. Development of Boiling Water Resistance Starch-Based Wood Adhesive via Schiff Base Crosslinking and Air Oxidation Strategy. Colloids Surf. A Physicochem. Eng. Asp. 2024, 698, 134592. [Google Scholar] [CrossRef]
- Singh, M.; Sethi, S.K.; Manik, G. Pressure-Sensitive Adhesives Based on Acrylated Epoxidized Linseed Oil: A Computational Approach. Int. J. Adhes. Adhes. 2022, 112, 103031. [Google Scholar] [CrossRef]
- Chen, L.; Xiong, Z.; Xiong, H.; Din, Z. Investigating the Structure and Self-Assembly Behavior of Starch-g-VAc in Starch-Based Adhesive by Combining NMR Analysis and Multi-Scale Simulation. Carbohydr. Polym. 2020, 246, 116655. [Google Scholar] [CrossRef]
- Akman, F.; Kazachenko, A.S.; Vasilyeva, N.Y.; Malyar, Y.N. Synthesis and Characterization of Starch Sulfates Obtained by the Sulfamic Acid-Urea Complex. J. Mol. Struct. 2020, 1208, 127899. [Google Scholar] [CrossRef]
- Mahmood, A.; Irfan, A.; Ahmad, F.; Ramzan Saeed Ashraf Janjua, M. Quantum Chemical Analysis and Molecular Dynamics Simulations to Study the Impact of Electron-Deficient Substituents on Electronic Behavior of Small Molecule Acceptors. Comput. Theor. Chem. 2021, 1204, 113387. [Google Scholar] [CrossRef]
- Kanagathara, N.; Thirunavukkarasu, M.; Selvaraj, S.; Ram Kumar, A.; Marchewka, M.K.; Janczak, J. Structural Elucidation, Solvent (Polar and Non-Polar) Effect on Electronic Characterization, Non-Covalent Charge Interaction Nature, Topology and Pharmacological Studies on NLO Active—Argininium Methanesufonate. J. Mol. Liq. 2023, 385, 122315. [Google Scholar] [CrossRef]
- Mumit, M.A.; Pal, T.K.; Alam, M.A.; Islam, M.A.-A.-A.-A.; Paul, S.; Sheikh, M.C. DFT Studies on Vibrational and Electronic Spectra, HOMO–LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2,4,5-Trimethoxyphenylmethylene)Hydrazinecarbodithioate. J. Mol. Struct. 2020, 1220, 128715. [Google Scholar] [CrossRef]
- Braga, L.S.; Leal, D.H.S.; Kuca, K.; Ramalho, T.C. Perspectives on the Role of the Frontier Effective-for-Reaction Molecular Orbital (FERMO) in the Study of Chemical Reactivity: An Updated Review. Curr. Org. Chem. 2020, 24, 314–331. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, Y.; Shen, H.; Du, B.; Teyssedre, G. Introducing Chlorine into Epoxy Resin to Modulate Charge Trap Depth in the Material. IEEE Trans. Dielect. Electr. Insul. 2022, 29, 1666–1674. [Google Scholar] [CrossRef]
- Bayse, C.A.; Jaffar, M. Bonding Analysis of the Effect of Strain on Trigger Bonds in Organic-Cage Energetic Materials. Theor. Chem. Acc. 2020, 139, 95. [Google Scholar] [CrossRef]
- Miranda-Quintana, R.A.; Heidar-Zadeh, F.; Fias, S.; Chapman, A.E.A.; Liu, S.; Morell, C.; Gómez, T.; Cárdenas, C.; Ayers, P.W. Molecular Interactions from the Density Functional Theory for Chemical Reactivity: Interaction Chemical Potential, Hardness, and Reactivity Principles. Front. Chem. 2022, 10, 929464. [Google Scholar] [CrossRef]
- Sanjiv Kasbe, P.; Kumar, N.; Manik, G. A Molecular Simulation Analysis of Influence of Lignosulphonate Addition on Properties of Modified 2-Ethyl Hexyl Acrylate/Methyl Methacrylate/Acrylic Acid Based Pressure Sensitive Adhesive. Int. J. Adhes. Adhes. 2017, 78, 45–54. [Google Scholar] [CrossRef]
- Pan, F.; Ye, S.; Wang, R.; She, W.; Liu, J.; Sun, Z.; Zhang, W. Hydrogel Networks as Underwater Contact Adhesives for Different Surfaces. Mater. Horiz. 2020, 7, 2063–2070. [Google Scholar] [CrossRef]
- Van Dam, J.P.B.; Abrahami, S.T.; Yilmaz, A.; Gonzalez-Garcia, Y.; Terryn, H.; Mol, J.M.C. Effect of Surface Roughness and Chemistry on the Adhesion and Durability of a Steel-Epoxy Adhesive Interface. Int. J. Adhes. Adhes. 2020, 96, 102450. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Mo, H.; Xie, E.; Fang, J.; Gan, W. Current Utilization of Waste Biomass as Filler for Wood Adhesives: A Review. J. Ind. Eng. Chem. 2022, 115, 48–61. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, X.; Wang, Y.; Su, Q.; Wang, H.; Li, Z.; Pang, S. Composite Modified Starch-Based Adhesive with High Adhesion and Zero Aldehyde. Ind. Crops Prod. 2023, 206, 117566. [Google Scholar] [CrossRef]
- Peng, J.; Liu, F.; Feng, F.; Feng, X.; Cui, J. Enhancing Environmentally Friendly Tannin Adhesive for Plywood through Hyperbranched Polyamide. ACS Sustain. Chem. Eng. 2023, 11, 13805–13811. [Google Scholar] [CrossRef]
- Salahshoori, I.; Jorabchi, M.N.; Asghari, M.; Ghasemi, S.; Wohlrab, S. Insights into the Morphology and Gas Separation Characteristics of Methylene Diisocyanate (MDI)-Functionalized nanoTiO2 Polyurethane: Quantum Mechanics and Molecular Simulations Studies. J. Mater. Res. Technol. 2023, 23, 1862–1886. [Google Scholar] [CrossRef]
- Choi, J.; Kang, H.; Lee, J.H.; Kwon, S.H.; Lee, S.G. Predicting the Properties of High-Performance Epoxy Resin by Machine Learning Using Molecular Dynamics Simulations. Nanomaterials 2022, 12, 2353. [Google Scholar] [CrossRef]
- Singh, M.; Manik, G. Computationally Developed Acrylated Epoxidized Methyl Ester Based Pressure-Sensitive Adhesives. Comput. Mater. Sci. 2023, 228, 112329. [Google Scholar] [CrossRef]
- Deng, M.; Cao, X.; Tang, B.; Yuan, Y. Revealing Self-Aggregation Mechanism of Asphaltenes during Oxidative Aging Using Quantum Mechanical Calculations. J. Mol. Liq. 2023, 371, 121063. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, W.K.; Qu, Z.G.; Ren, G.F.; Wang, H.C. Surface Roughness Dominated Wettability of Carbon Fiber in Gas Diffusion Layer Materials Revealed by Molecular Dynamics Simulations. Int. J. Hydrog. Energy 2021, 46, 26489–26498. [Google Scholar] [CrossRef]
Properties of Chemical Reactivity | Symbol | DGEBA | Citric Acid |
---|---|---|---|
Energy of HOMO (eV) | −0.186773 | −0.247157 | |
Energy of LUMO (eV) | −0.0438 | −0.077901 | |
Energy gap | ΔEGAP = (ELUMO − EHOMO) | 0.142973 | 0.169256 |
Ionization energy (I) | −ELUMO | 0.186773 | 0.247157 |
Electron affinity (A) | −EHOMO | 0.0438 | 0.077901 |
Hardness (η) | (I − A)/2 | 0.0714865 | 0.084628 |
Softness (σ) | 1/η | 13.9887 | 11.81642 |
Chemical potential (μ) | −(I + A)/2 | −0.115287 | −0.162529 |
Electronegativity (χ) | −μ | 0.1152865 | 0.162529 |
SBAs systems | DGEBA | Citric Acid | Starch |
---|---|---|---|
St-DGEBA1-CA9 | 1 | 9 | 10 |
St-DGEBA2-CA8 | 2 | 8 | 10 |
St-DGEBA3-CA7 | 3 | 7 | 10 |
St-DGEBA4-CA6 | 4 | 6 | 10 |
St-DGEBA5-CA5 | 5 | 5 | 10 |
SBAs Systems | DGEBA | Citric Acid | Starch | ρ (g/cm3) | δ (J/cm3)1/2 |
---|---|---|---|---|---|
St-DGEBA1-CA9 | 1 | 9 | 10 | 1.22 | 20.64 |
St-DGEBA2-CA8 | 2 | 8 | 10 | 1.23 | 16.13 |
St-DGEBA3-CA7 | 3 | 7 | 10 | 1.25 | 19.05 |
St-DGEBA4-CA6 | 4 | 6 | 10 | 1.09 | 14.53 |
St-DGEBA5-CA5 | 5 | 5 | 10 | 1.11 | 16.04 |
System | ETotal | EAdhesives | EBase material | EInteraction energy |
---|---|---|---|---|
St-DGEBA1-CA9/Base material | 11,658.02 | 5295.53 | 6566.13 | −203.64 |
St-DGEBA2-CA8/Base material | 12,387.63 | 6149.69 | 6566.23 | −328.29 |
St-DGEBA3-CA7/Base material | 13,902.80 | 7745.18 | 6565.63 | −408.01 |
St-DGEBA4-CA6/Base material | 14,508.44 | 8234.75 | 6566.32 | −292.63 |
St-DGEBA5-CA5/Base material | 14,815.37 | 8448.20 | 6566.71 | −199.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Chang, J.; Chi, W.; Gao, S.; Liu, J.; Tang, Y. Computer-Guided Development of Hyperbranched Modified Starch-Based Adhesives. Polymers 2025, 17, 1812. https://doi.org/10.3390/polym17131812
Yu H, Chang J, Chi W, Gao S, Liu J, Tang Y. Computer-Guided Development of Hyperbranched Modified Starch-Based Adhesives. Polymers. 2025; 17(13):1812. https://doi.org/10.3390/polym17131812
Chicago/Turabian StyleYu, Hongjian, Jiang Chang, Wenrui Chi, Shuzhen Gao, Jie Liu, and Yin Tang. 2025. "Computer-Guided Development of Hyperbranched Modified Starch-Based Adhesives" Polymers 17, no. 13: 1812. https://doi.org/10.3390/polym17131812
APA StyleYu, H., Chang, J., Chi, W., Gao, S., Liu, J., & Tang, Y. (2025). Computer-Guided Development of Hyperbranched Modified Starch-Based Adhesives. Polymers, 17(13), 1812. https://doi.org/10.3390/polym17131812