Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Microstructure Characterization
2.3. FTIR Test
2.4. Temperature Sweep Test
2.5. Multiple Stress Creep and Recovery Test
2.6. Linear Amplitude Sweep Test
3. Results and Discussion
3.1. Effect of Different Environments on Rubber-Modified Asphalt
3.2. FTIR Analysis
3.3. The Rutting Resistance
3.4. The Creep Resistance
3.5. The Fatigue Resistance
4. Conclusions
- (1)
- Clean water freeze–thaw cycles promote the precipitation of oil components within asphalt, increasing the density of bee structures microstructures and enhancing asphalt stability. When asphalt undergoes de-icing salt freeze–thaw cycles, the de-icing salt recrystallizes on the asphalt surface and leads to pinning effect with the asphalt. This phenomenon induces and strengthens ion–dipole interactions between salt ions and asphalt molecules. As a result, by inhibiting molecular mobility, the structural stability of asphalt is enhanced.
- (2)
- Fourier transform infrared spectroscopy shows intensified absorption peaks of methyl (CH3) and carbonyl (C=O) groups in rubber-modified asphalt after freeze–thaw cycles under water and de-icing salt conditions. Rubber-modified asphalt exhibits stronger peaks under de-icing salt environments than under clean water conditions. These changes increase the content of heavy components in asphalt and enhance its deformation resistance.
- (3)
- Dynamic shear rheological analysis reveals that crumb-rubber modification significantly improves the viscoelastic behavior of asphalt binders. Rubber-modified asphalt under de-icing salt freeze–thaw cycles demonstrates superior mechanical performance. Creep recovery analysis reveals that Asphalt-10% RP and Asphalt-20% RP exhibit recovery rates 50.53% and 28.94% higher, respectively, under de-icing salt freeze–thaw conditions compared to those under clean water freeze–thaw conditions.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bardal, K.G.; Jørgensen, F. Valuing the risk and social costs of road traffic accidents—Seasonal variation and the significance of delay costs. Transp. Policy 2017, 57, 10–19. [Google Scholar] [CrossRef]
- Shan, L.; Li, Z.; Tian, D.; Tan, Y. Effect of anti-icing additives on the stability of emulsified asphalt binders. Constr. Build. Mater. 2021, 275, 121951. [Google Scholar] [CrossRef]
- Xu, B.; Dan, H.-C.; Li, L. Temperature prediction model of asphalt pavement in cold regions based on an improved BP neural network. Appl. Therm. Eng. 2017, 120, 568–580. [Google Scholar] [CrossRef]
- Xie, W.; Li, N.; Li, C.; Wu, J.-D.; Hu, A.; Hao, X. Quantifying cascading effects triggered by disrupted transportation due to the Great 2008 Chinese Ice Storm: Implications for disaster risk management. Nat. Hazards 2014, 70, 337–352. [Google Scholar] [CrossRef]
- Li, S.; Haojie, C.; Tamim, A.; Marzouki, R. Stability/instability analysis of advanced nanocomposite-reinforced bridge asphalt mixtures at low temperatures: Verification of the results via AI-driven approach. Mech. Adv. Mater. Struct. 2024, 31, 1–19. [Google Scholar] [CrossRef]
- Kim, H.S.; Ban, H.; Park, W.J. Deicing Concrete Pavements and Roads with Carbon Nanotubes (CNTs) as Heating Elements. Materials 2020, 13, 2504. [Google Scholar] [CrossRef]
- Zhao, W.K.; Li, L.; Wang, W.; Zhang, Y.; Su, W.; Chen, X.; Li, B. Thermal performances of porous snow by a hydronic heating system at different weather conditions. J. Therm. Anal. Calorim. 2020, 141, 1519–1528. [Google Scholar] [CrossRef]
- Zhou, P.L.; Wang, W.S.; Zhu, L.L.; Wang, H.Y.; Ai, Y.M. Study on Performance Damage and Mechanism Analysis of Asphalt under Action of Chloride Salt Erosion. Materials 2021, 14, 3089. [Google Scholar] [CrossRef]
- Wåhlin, J.; Leisinger, S.; Klein-Paste, A. The effect of sodium chloride solution on the hardness of compacted snow. Cold Reg. Sci. Technol. 2014, 102, 1–7. [Google Scholar] [CrossRef]
- Zhu, C.F.; Luo, H.; Tian, W.; Teng, B.; Qian, Y.; Ai, H.; Xiao, B. Investigation on Fatigue Performance of Diatomite/Basalt Fiber Composite Modified Asphalt Mixture. Polymers 2022, 14, 414. [Google Scholar] [CrossRef]
- Zhu, C.F.; Yang, Y.Y.; Zhang, K.; Yu, D. Study on the Road Performance and Compaction Characteristics of Fiber-Reinforced High-RAP Plant-Mixed Hot Recycled Asphalt Mixtures. Polymers 2024, 16, 2016. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, M.A.; Dernayka, S.D.; Chowdhury, S.R. Physical properties of crumb rubber modified asphalt binders and environmental impact consideration. Mech. Adv. Mater. Struct. 2023, 31, 7678–7692. [Google Scholar] [CrossRef]
- Kryeziu, D.; Selmani, F.; Mujaj, A.; Kondi, I. Recycled Concrete Aggregates: A Promising and Sustainable Option for the Construction Industry. J. Hum. Earth Future 2023, 4, 166–180. [Google Scholar] [CrossRef]
- Al-Khazaleh, M.; Dua’a, O.; Al-Khodari, M.H.; Diya’Ay, H.; Ala’a, A.Y.; Atta, M.N.B. Utilization Potential of Glass Fiber and Crumbled Rubber as Subgrade Reinforcement for Expansive Soil. J. Hum. Earth Future 2023, 4, 332–344. [Google Scholar] [CrossRef]
- Shu, X.; Huang, B.S. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Li, T.G.; Li, J.Z.; Li, W. Micro-mechanism Study and Road Engineering Application of Asphalt Rubber. In Proceedings of the 3rd International Conference on Civil Engineering, Architecture and Building Materials (CEABM 2013), Jinan, China, 25–26 May 2013; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2013; pp. 1817–1824. [Google Scholar]
- Wang, Y.H.; Polaczyk, P.; He, J.; Lu, H.; Xiao, R.; Huang, B. Dispersion, compatibility, and rheological properties of graphene-modified asphalt binders. Constr. Build. Mater. 2022, 350, 128886. [Google Scholar] [CrossRef]
- Feng, B.; Wang, H.; Li, S.; Ji, K.; Li, L.; Xiong, R. The durability of asphalt mixture with the action of salt erosion: A review. Constr. Build. Mater. 2022, 315, 125749. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, M.; Zhao, Y.; Wu, S.; Fan, Y.; Gan, Z.; Zhang, Y. Comprehensive assessment of the durability deterioration of asphalt pavement in salt environment: A literature review. Case Stud. Constr. Mater. 2022, 17, e01706. [Google Scholar] [CrossRef]
- Goh, S.W.; Akin, M.; You, Z.; Shi, X. Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture. Constr. Build. Mater. 2011, 25, 195–200. [Google Scholar] [CrossRef]
- Xiong, R.; Chu, C.; Qiao, N.; Wang, L.; Yang, F.; Sheng, Y.; Guan, B.; Niu, D.; Geng, J.; Chen, H. Performance evaluation of asphalt mixture exposed to dynamic water and chlorine salt erosion. Constr. Build. Mater. 2019, 201, 121–126. [Google Scholar] [CrossRef]
- Meng, Y.; Xu, R.; Guo, H.; Ling, L.; Xi, C.; Qin, Y.; Liu, Z.; Rong, H. Influences of sodium salt erosion on the self-healing ability and fatigue life of bitumen. Constr. Build. Mater. 2021, 286, 122884. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Z. Quantitative Analysis of Structural Changes of Asphalt Mastic with Curve-fitted of FTIR Spectrum in Salty High Temperature and High Humidity. Mater. Rep. 2020, 34, 8083–8089. [Google Scholar]
- Pang, L.; Zhang, X.; Wu, S.; Ye, Y.; Li, Y. Influence of Water Solute Exposure on the Chemical Evolution and Rheological Properties of Asphalt. Materials 2018, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Luo, Y.; Xie, W.; Wu, J. Evaluation of road performance and adhesive characteristic of asphalt binder in salt erosion environment. Mater. Today Commun. 2020, 25, 101593. [Google Scholar] [CrossRef]
- AASHTO T 315-22; Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2022.
- AASHTO TP 70-13; Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials: Washington, DC, USA, 2013.
- AASHTO TP 101-12(2018); Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2018.
- Wang, Y.; Zhang, H.T. Influence of asphalt microstructure to its high and low temperature performance based on atomic force microscope (AFM). Constr. Build. Mater. 2021, 267, 13–21. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Y.J.; Jin, K.; Zhou, Z.H. Properties and mechanism of SBS/crumb rubber composite high viscosity modified asphalt. J. Clean Prod. 2022, 378, 134534. [Google Scholar] [CrossRef]
- Han, Y.F.; Duan, P.; Yu, F.; Yang, A.; Zeng, S.; Chen, P.; Xu, Y.; Nie, W.; Min, Z.; Zhou, Y. Tuning high- and low-temperature rheological properties of warm-mixing asphalt composites by functionalized waxes. Mater. Today Commun. 2024, 39, 109094. [Google Scholar] [CrossRef]
- Tang, Y.J.; Fu, Z.; Ma, F.; Hou, Y.J.; Zhao, P. Molecular dynamics simulation on asphalt-limestone interfaces considering unconstraint surfaces and individual colloid components. Constr. Build. Mater. 2024, 424, 135923. [Google Scholar] [CrossRef]
- Haselbach, L.; Almeida, N.; Ross, M. Performance of Pervious Concrete Exposed to Magnesium Chloride Deicers. J. Mater. Civ. Eng. 2020, 32, 7. [Google Scholar] [CrossRef]
Item | Actual Measurement | Standard Requirement |
---|---|---|
Penetration (100 g, 5 s, 0.1 mm) | 85 | 80~100 |
Softening point (°C) | 46.3 | ≥42 |
Ductility (cm) | >100 | ≥100 |
Viscosity (cp) | 340 | —— |
Category | Displacement Temperature | WLF Equation Fitting | |||||
---|---|---|---|---|---|---|---|
40 °C | 50 °C | 60 °C | 70 °C | C1 | C2 | R2 | |
Matrix asphalt (CW) | 0 | −0.95813 | −1.68179 | −2.26223 | 7.13398 | 64.66532 | 0.99997 |
Matrix asphalt (SA) | 0 | −0.79517 | −1.48537 | −2.32969 | 5.91873 | 54.82843 | 0.99966 |
Asphalt-10% RP (CW) | 0 | −0.81727 | −1.51019 | −1.98848 | 6.52214 | 67.87463 | 0.99921 |
Asphalt-10% RP (SA) | 0 | −0.93942 | −1.62965 | −2.13241 | 5.78238 | 51.24426 | 0.99996 |
Asphalt-20% RP (CW) | 0 | −0.9584 | −1.75027 | −2.31344 | 7.48393 | 66.65235 | 0.99954 |
Asphalt-20% RP (SA) | 0 | −1.03747 | −1.80387 | −2.36627 | 6.51555 | 52.50572 | 0.99996 |
Asphalt-30% RP (CW) | 0 | −0.8497 | −1.66682 | −2.30102 | 12.96199 | 138.21525 | 0.99923 |
Asphalt-30% RP (SA) | 0 | −0.98886 | −1.83932 | −2.50083 | 10.05768 | 90.34118 | 0.99979 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhu, C.; Wang, Z.; Yang, L.; Liu, F.; Chen, J.; Nuriddinov, K.; Giyasov, S.; Morozova, N.B.; Shi, W.; et al. Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment. Polymers 2025, 17, 1753. https://doi.org/10.3390/polym17131753
Wu X, Zhu C, Wang Z, Yang L, Liu F, Chen J, Nuriddinov K, Giyasov S, Morozova NB, Shi W, et al. Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment. Polymers. 2025; 17(13):1753. https://doi.org/10.3390/polym17131753
Chicago/Turabian StyleWu, Xia, Chunfeng Zhu, Zhenyu Wang, Lei Yang, Fang Liu, Jianxin Chen, Khusniddin Nuriddinov, Shukhrat Giyasov, Natalia Borisovna Morozova, Wenqing Shi, and et al. 2025. "Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment" Polymers 17, no. 13: 1753. https://doi.org/10.3390/polym17131753
APA StyleWu, X., Zhu, C., Wang, Z., Yang, L., Liu, F., Chen, J., Nuriddinov, K., Giyasov, S., Morozova, N. B., Shi, W., Lu, C., Papageorgiou, A., & Tie, D. (2025). Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment. Polymers, 17(13), 1753. https://doi.org/10.3390/polym17131753