Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Co-Doped Seaweed Sludge Porous Carbon (Co/SSPC)
2.3. Characterizations
2.4. Measurements of Electromagnetic Parameters
3. Results and Discussion
Materials | RLmin (dB) | Thickness (mm) | EABmax (GHz) | Thickness (mm) | Ref. |
---|---|---|---|---|---|
BC/CoFe | −54.4 | 2.2 | 2.6 | 2.4 | [46] |
Hierarchically porous PNC | −56.3 | 1.4 | 3.44 | 1.4 | [47] |
Fe3C/Fe@NBPC | −52.25 | 2.71 | 3.06 | 2.71 | [48] |
Biomass derived PANI/BPC | −40.89 | 2.6 | 4.24 | 2.1 | [49] |
MoS2/CCFs | −39.1 | 1.7 | 4.4 | 1.7 | [50] |
C/CoNi | −54.59 | - | 3.96 | - | [51] |
Co/SSPC | −66.91 | 4.79 | 5.09 | 1.6 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, H.; Lou, Z.; Xu, L.; Lv, H. Pore-regulation in 2D biochar-based flakes towards wideband microwave absorption. Chem. Eng. J. 2023, 464, 142568. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Cheng, T.; Xie, Y.; Zhao, L.; Jiang, L.; Zhao, W.; Yuan, L.; Meng, A.; Zhang, J.; et al. Enhancing electromagnetic wave absorption in carbon fiber using FeS2 nanoparticles. Nano Res. 2023, 16, 9591–9601. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, T.; Zhang, M.; Zhang, H.; Yang, X.; Cheng, J.; Shu, J.; Li, L.; Cao, M. Confinedly growing and tailoring of Co3O4 clusters-WS2 nanosheets for highly efficient microwave absorption. Nanotechnology 2020, 31, 325703. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Zhang, M.; Jiang, Z.; Xie, Z.; Zheng, L. Advances in microwave absorbing materials with broad-bandwidth response. Nano. Res. 2023, 16, 11054–11083. [Google Scholar] [CrossRef]
- Zhang, R.; Li, B.; Yang, Y.; Wu, N.; Sui, Z.; Ban, Q.; Wu, L.; Liu, W.; Liu, J.; Zeng, Z. Ultralight aerogel sphere composed of nanocellulose-derived carbon nanofiber and graphene for excellent electromagnetic wave absorption. Nano. Res. 2023, 16, 7931–7940. [Google Scholar] [CrossRef]
- Yang, S.; Cheng, Y.; Xiao, X.; Pang, H. Development and application of carbon fiber in batteries. Chem. Eng. J. 2020, 384, 123294. [Google Scholar] [CrossRef]
- Shoji, M.; Masuzaki, S.; Kawamura, G.; Romazanov, J.; Kirschner, A.; Brezinsek, S. Simulation Analysis of the Carbon Deposition Profile on Directional Material Probes in the Large Helical Device Using the ERO2.0 Code. Plasma Fusion Res. 2022, 17, 2403010. [Google Scholar] [CrossRef]
- Ichigi, K.; Kohno, H. Filler material transport in and through a carbon nanotetrahedron/ribbon structure. Jpn. J. Appl. Phys. 2020, 59, 108001. [Google Scholar] [CrossRef]
- Yue, J.; Yu, J.; Jiang, S.; Chen, Y. Biomass carbon materials with porous array structures derived from soybean dregs for effective electromagnetic wave absorption. Diam. Relat. Mater. 2022, 126, 109054. [Google Scholar] [CrossRef]
- Yang, W.; Jiang, B.; Che, S.; Yan, L.; Li, Z.-X.; Li, Y.-F. Research progress on carbon-based materials for electromagnetic wave absorption and the related mechanisms. New Carbon Mater. 2021, 36, 1016–1033. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Fu, Y.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, X.; Dou, Y.; Yan, X.; Yu, L. Design of carbon aerogels with variable surface morphology for electromagnetic wave absorption. Carbon 2022, 200, 271–280. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.K.; Kim, Y.-K.; Lee, H.-J.; Tripathi, K.M. Upgrading of seafood waste as a carbon source: Nano-world outlook. J. Environ. Chem. Eng. 2021, 9, 106656. [Google Scholar] [CrossRef]
- Kannan, S.; Gariepy, Y.; Raghavan, G.S.V. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag. 2017, 65, 159–168. [Google Scholar] [CrossRef]
- Zhao, X.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Shi, Z. Seaweed-derived multifunctional nitrogen/cobalt-codoped carbonaceous beads for relatively high-efficient peroxymonosulfate activation for organic pollutants degradation. Chem. Eng. J. 2018, 353, 746–759. [Google Scholar] [CrossRef]
- Wang, K.; Ye, Z.; Li, X.; Yang, J. Nanoporous resorcinol-formaldehyde based carbon aerogel for lightweight and tunable microwave absorption. Mater. Chem. Phys. 2022, 278, 125718. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, Y.; Dang, Z.; Hu, R.; Liu, C.; Chen, M.; Gao, L.; Lin, Y.; Wang, T.; Chen, G.J.C. The efficient absorption of electromagnetic waves by tunable N-doped multi-cavity mesoporous carbon microspheres. Carbon. 2023, 201, 1115–1125. [Google Scholar] [CrossRef]
- Wei, K.; Shi, Y.; Tan, X.; Shalash, M.; Ren, J.; Faheim, A.A.; Jia, C.; Huang, R.; Sheng, Y.; Guo, Z. Recent development of metal-organic frameworks and their composites in electromagnetic wave absorption and shielding applications. Text. Res. J. 2024, 332, 103271. [Google Scholar]
- Zhang, Z.; Zhao, H.; Gu, W.; Yang, L.; Zhang, B. A biomass derived porous carbon for broadband and lightweight microwave absorption. Sci. Rep. 2019, 9, 18617. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, Q.; Kara, U.I.; Mamtani, R.S.; Zhou, X.; Bian, H.; Yang, Z.; Li, Y.; Lv, H.; Adera, S.; et al. Biomass-Derived Carbon Heterostructures Enable Environmentally Adaptive Wideband Electromagnetic Wave Absorbers. Nano-Micro Lett. 2021, 14, 11. [Google Scholar] [CrossRef]
- Zhou, Y.; He, J.; Hong, J.; Xie, H.; Lin, X. Facile Recycling of Waste Biomass for Preparation of Hierarchical Porous Carbon with High-Performance Electromagnetic Wave Absorption. Molecules 2024, 29, 2455. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Peng, M.; Xu, J.; Liang, C.; Xiang, W.; Li, T. Resource utilization of kelp residue and application in chlorella culture. Oceanol. Limnol. Sin. 2022, 53, 96–105. [Google Scholar]
- Sun, Z.; Zhang, Y.; Guo, S.; Shi, J.; Shi, C.; Qu, K.; Qi, H.; Huang, Z.; Murugadoss, V.; Huang, M.; et al. Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. Adv. Compos. Hybrid Mater. 2022, 5, 1566–1581. [Google Scholar] [CrossRef]
- Dong, H.; Dong, S.; Erik Hansen, P.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18, 411. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, H.; Zhao, K.; Nie, A.; Alharthi, S.; Amin, M.A.; El-Bahy, Z.M.; Li, H.; Chen, L.; Xu, B.B.; et al. Research progress on electromagnetic wave absorption based on magnetic metal oxides and their composites. Adv. Compos. Hybrid Mater. 2023, 6, 20. [Google Scholar] [CrossRef]
- Ai, J.; Yang, S.; Sun, Y.; Liu, M.; Zhang, L.; Zhao, D.; Wang, J.; Yang, C.; Wang, X.; Cao, B. Corncob cellulose-derived hierarchical porous carbon for high performance supercapacitors. J. Power Sources 2021, 484, 229221. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef]
- Nanomaterials, I.M.S.J. Experimental Investigation of Rheological Properties and Thermal Conductivity of SiO2–TiO2 Composite Nanofluids Prepared by Atomic Layer Deposition. Nanomaterials 2022, 12, 3014. [Google Scholar]
- Cheng, R.; Wang, Y.; Di, X.; Lu, Z.; Wang, P.; Wu, X. Heterostructure design of MOFs derived Co9S8/FeCoS2/C composite with efficient microwave absorption and waterproof functions. J. Mater. Sci. Technol. 2022, 129, 15–26. [Google Scholar] [CrossRef]
- Tian, K.; Huang, Y.; Zhang, C.; Shu, R.; Zhu, J.; Liu, Y.; Chen, Z.; Li, C.; Liu, X. In-situ synthesis of graphite carbon nitride nanotubes/Cobalt@Carbon with castor-fruit-like structure as high-efficiency electromagnetic wave absorbers. J. Colloid Interface Sci. 2022, 620, 454–464. [Google Scholar] [CrossRef]
- Bateer, B.; Xie, Y.; Tian, C.; Ping, W. Cobalt nanoparticles decorated on nitrogen-doped graphene as excellent electromagnetic wave absorbent in Ku-band. Mater. Sci.-Mater. Electron. 2020, 31, 12044–12055. [Google Scholar] [CrossRef]
- Yao, Z.; Liu, F.; Xu, S.; Zhang, X.; Rong, C.; Xiong, Z.; Yuan, J.; Yu, Y.; Zhu, X.; Yu, H. Facile Synthesis of La2O3/Co@N-Doped Carbon Nanotubes Via Prussian Blue Analogues Toward Strong Microwave Absorption. Carbon 2022, 196, 763–773. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, X.; Gu, Z.; Wu, G. MOF-derived Ni-Co bimetal/porous carbon composites as electromagnetic wave absorber. Adv. Compos. Hybrid Mater 2022, 6, 28. [Google Scholar] [CrossRef]
- Han, Y.; He, M.; Hu, J.; Liu, P.; Liu, Z.; Ma, Z.; Ju, W.; Gu, J. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano. Res. 2023, 16, 1773–1778. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, K.; Gu, J. Flexible Sandwich-Structured Electromagnetic Interference Shielding Nanocomposite Films with Excellent Thermal Conductivities. Small 2021, 17, 2101951. [Google Scholar] [CrossRef]
- Xiong, J.; Xiang, Z.; Zhao, J.; Yu, L.; Cui, E.; Deng, B.; Liu, Z.; Liu, R.; Lu, W. Layered NiCo alloy nanoparticles/nanoporous carbon composites derived from bimetallic MOFs with enhanced electromagnetic wave absorption performance. Carbon 2019, 154, 391–401. [Google Scholar] [CrossRef]
- Chen, J.; Wang, L.; Shen, B.; Zheng, W. Biomass-based Co/C@Carbon composites derived from MOF-modified cotton fibers for enhanced electromagnetic attenuation. Carbon 2023, 210, 118035. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Wang, F.; Gong, X.; Cai, B.; Fang, S.; Liu, L.; Wang, J.; Zhang, Y.; Cai, Z.; et al. Enhanced construction of 3D carbon skeleton through molten salt coupling activation effect for high efficiency capacitive deionization of lead (II) ions removal in wastewater. Chem. Eng. J. 2024, 499, 156534. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef]
- Rao, Y.; Qi, X.; Peng, Q.; Chen, Y.; Gong, X.; Xie, R.; Zhong, W. Mixed-dimensional conductive network heterostructures: An effective interfacial strategy to aggrandize dielectric loss for designing microwave absorbers. J. Alloys Compd. 2022, 910, 164974. [Google Scholar] [CrossRef]
- Wu, W.; Yang, Z.; Guo, T. Preparation and Lithium Storage Properties of Carbon Nanofiber Materials with in Situ Grown Cobalt-Based MOF. Chin. J. Vac. Sci. Technol. 2023, 43, 563–568. [Google Scholar]
- Liu, H.; Li, X.; Zhao, X.; Zhang, M.; Liu, X.; Yang, S.; Wu, H.; Ma, Z. Large Annular Dipoles Bounded between Single-Atom Co and Co Cluster for Clarifying Electromagnetic Wave Absorbing Mechanism. Adv. Funct. Matter. 2023, 33, 230442. [Google Scholar] [CrossRef]
- Zhu, B.; Cui, Y.; Lv, D.-f.; Xu, K.-z.; Chen, Y.-j.; Wei, Y.-N.; Wei, H.-Y.; Bu, J.-L. Synthesis of setaria viridis-like TiN fibers for efficient broadband electromagnetic wave absorption in the whole X and Ku bands. Appl. Phys. Lett. 2020, 533, 147439. [Google Scholar] [CrossRef]
- Dai, X.; Du, Y.; Yang, J.; Wang, D.; Gu, J.; Li, Y.; Wang, S.; Xu, B.B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, F.; Wei, K.; Zhai, B.; Wang, X. Porous carbon microspheres with controlled porosity and graphitization degree for high-performance supercapacitor. J. Electroanal. Chem. 2022, 918, 116449. [Google Scholar] [CrossRef]
- Ji, C.; Liu, Y.; Xu, J.; Li, Y.; Shang, Y.; Su, X. Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloys Compd. 2022, 890, 161834. [Google Scholar] [CrossRef]
- Zhang, R.; Qiao, J.; Zhang, X.; Yang, Y.; Zheng, S.; Li, B.; Liu, W.; Liu, J.; Zeng, Z. Biomass-derived porous carbon for microwave absorption. Mater. Chem. Phys. 2022, 289, 126437. [Google Scholar] [CrossRef]
- Du, H.; Jiang, J.; Ren, L.; He, Q.; Wang, Y. Fe3C/Fe@N-doped porous carbon composites with excellent microwave absorption properties. Colloids Surf. A Physicochem. Eng. Asp. 2023, 670, 131564. [Google Scholar] [CrossRef]
- Xu, C.; Ma, L.; Li, H.; Zhang, P.; Li, A.; Tan, W.; Zhang, Y.; Gong, C. Biomass derived PANI/BPC composite with enhanced polarization loss for efficient electromagnetic wave absorption. Mater. Res. Bull. 2024, 176, 112805. [Google Scholar] [CrossRef]
- Lu, C.; Yu, Z.; Zhao, F.; Zhao, J.; Wang, R.; An, Z.; Tu, G. Enhancement of polarization loss through surface modification strategies with MoS2 nanosheets for achieving high-efficiency electromagnetic wave absorption in biomass-derived carbon fibers. Toxicology 2025, 515, 136853. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Li, X. Scalable fabrication of C/CoNi composites for high-efficiency microwave absorption. Diam. Relat. Mater. 2025, 155, 112355. [Google Scholar] [CrossRef]
- Liang, X.; Man, Z.; Quan, B.; Zheng, J.; Gu, W.; Zhang, Z.; Ji, G. Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Lett. 2020, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Boensel, F.; Mueller, A.; Psiuk, R. A Model for Multiple Metal Spheres in Oscillating Magnetic Fields Using Displaced Dipoles. IEEE Trans. Magn. 2022, 58, 7001710. [Google Scholar] [CrossRef]
- Gu, J.; Ruan, K. Breaking Through Bottlenecks for Thermally Conductive Polymer Composites: A Perspective for Intrinsic Thermal Conductivity, Interfacial Thermal Resistance and Theoretics. Nano-Micro Lett. 2021, 13, 168. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Liu, Z.; Pang, Y.; Chen, J.; Kong, J. Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption. Nano-Micro Lett. 2022, 14, 122. [Google Scholar] [CrossRef]
- Feng, X.; Yin, P.; Zhang, L.; Sun, X.; Wang, J.; Zhao, L.; Lu, C.; Gao, Z.; Zhan, Y. Innovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic wave absorption. Int. J. Miner. Metall. Mater. 2023, 30, 559–569. [Google Scholar] [CrossRef]
- Xu, S.; Wang, X.; Li, Q. Research on the electromagnetic wave absorbing properties of carbon nanotube-fiber reinforced cementitious composite. Compos. Struct. 2021, 274, 114377. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, X.; Hao, S.; Qiao, J.; Wang, Z.; Wu, L.; Liu, J.; Wang, F. Nitrogen-Doped Magnetic-Dielectric-Carbon Aerogel for High-Efficiency Electromagnetic Wave Absorption. Nano-Micro Lett. 2023, 16, 16. [Google Scholar] [CrossRef]
- Gao, Y.-N.; Wang, Y.; Yue, T.-N.; Zhao, B.; Che, R.; Wang, M. Superstructure silver micro-tube composites for ultrahigh electromagnetic wave shielding. Chem. Eng. J. 2022, 430, 132949. [Google Scholar] [CrossRef]
- Liu, X.; Ma, W.; Yang, T.; Qiu, Z.; Wang, J.; Li, Y.; Wang, Y.; Huang, Y. Multilevel Heterogeneous Interfaces Enhanced Polarization Loss of 3D-Printed Graphene/NiCoO2/Selenides Aerogels for Boosting Electromagnetic Energy Dissipation. ACS Nano 2024, 18, 10184–10195. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, Y.; Guan, Y.; Gu, C.; Shao, G.; Shi, B.; Su, Z.; Xu, B.; Yu, Z.; Liu, A. Polymer-derived Co2Si@SiC/C/SiOC/SiO2/Co3O4 nanoparticles: Microstructural evolution and enhanced EM absorbing properties. J. Am. Ceram. Soc. 2020, 103, 6764–6779. [Google Scholar] [CrossRef]
- Zhang, J.; Bastogne, L.; He, X.; Tang, G.; Zhang, Y.; Ghosez, P.; Wang, J. Structural phase transitions and dielectric properties of BaTiO3 from a second-principles method. Phys. Rev. B 2023, 108, 134117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Ai, Y.; Cui, M.; Huang, R.; Su, R. Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption. Polymers 2025, 17, 1572. https://doi.org/10.3390/polym17111572
Liu K, Ai Y, Cui M, Huang R, Su R. Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption. Polymers. 2025; 17(11):1572. https://doi.org/10.3390/polym17111572
Chicago/Turabian StyleLiu, Kai, Yusen Ai, Mei Cui, Renliang Huang, and Rongxin Su. 2025. "Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption" Polymers 17, no. 11: 1572. https://doi.org/10.3390/polym17111572
APA StyleLiu, K., Ai, Y., Cui, M., Huang, R., & Su, R. (2025). Graphitization Optimization of Cobalt-Doped Porous Carbon Derived from Seaweed Sludge for Enhanced Microwave Absorption. Polymers, 17(11), 1572. https://doi.org/10.3390/polym17111572