Effect of Diamine Monomers with Varied Backbone Structures on Dielectric and Other Comprehensive Properties of Fluorinated Polyimide Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Monomer Synthesis
2.4. Preparation of Polyimide Films
3. Results and Discussion
3.1. Monomer Syntheses
3.2. Characterization of Polyimides
3.3. Solubility and Water Absorption of FPIs
3.4. Dielectric Properties
3.5. Optical Properties
3.6. Thermal and Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ali Khan, M.U.; Raad, R.; Tubbal, F.; Theoharis, P.I.; Liu, S.; Foroughi, J. Bending Analysis of Polymer-Based Flexible Antennas for Wearable, General IoT Applications: A Review. Polymers 2021, 13, 357. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, G.; Zhou, Y.; Liu, G.; Wang, J.; Han, S. Progress in low dielectric polyimide film—A review. Prog. Org. Coat. 2022, 172, 107103. [Google Scholar] [CrossRef]
- Dong, X.; Wan, B.; Zha, J.W. Versatile Landscape of Low-k Polyimide: Theories, Synthesis, Synergistic Properties, and Industrial Integration. Chem. Rev. 2024, 124, 7674–7711. [Google Scholar] [CrossRef]
- Zhang, C.; He, X.; Lu, Q. Polyimide films with ultralow dielectric loss for 5G applications: Influence and mechanism of ester groups in molecular chains. Eur. Polym. J. 2023, 200, 112544. [Google Scholar] [CrossRef]
- Xiao, X.; Qi, H.; Tao, Y.; Kikkawa, T. Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model. Appl. Surf. Sci. 2016, 388, 448–454. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, X.; Ren, T.; Saeed, H.A.M.; Wang, Q.; Cui, X.; Huai, K.; Huang, S.; Xia, Y.; Fu, K.; et al. Research progress of low dielectric constant polymer materials. J. Polym. Eng. 2022, 42, 677–687. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Cheng, W.; Zou, J.; Zhao, D. Progress on Polymer Composites with Low Dielectric Constant and Low Dielectric Loss for High-Frequency Signal Transmission. Front. Mater. 2021, 8, 774843. [Google Scholar] [CrossRef]
- Xiao, P.; He, X.; Zheng, F.; Lu, Q. Soluble polyimides with ultralow dielectric constant and dielectric loss and high colorless transparency based on spirobisindane-bis (aryl ester) diamines. Eur. Polym. J. 2024, 221, 113580. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Min, Y. Reducing the Permittivity of Polyimides for Better Use in Communication Devices. Polymers 2023, 15, 1256. [Google Scholar] [CrossRef]
- Lian, M.; Zhao, F.; Liu, J.; Tong, F.; Meng, L.; Yang, Y.; Zheng, F. The Pivotal Role of Benzimidazole in Improving the Thermal and Dielectric Performance of Upilex-Type Polyimide. Polymers 2023, 15, 2343. [Google Scholar] [CrossRef]
- Xiao, P.; He, X.; Lu, Q. Exceptionally High-Temperature-Resistant Kapton-Type Polyimides with Tg > 520 °C: Synthesis via Incorporation of Spirobis(indene)-bis(benzoxazole)-Containing Diamines. Polymers 2025, 17, 832. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sawada, R.; Yanagimoto, S.; Yanagimoto, Y.; Ando, S. Frequency-dependent dielectric properties of aromatic polyimides in the 25–330 GHz range. Appl. Phys. Lett. 2024, 124, 232903. [Google Scholar] [CrossRef]
- Watanabe, K.; Kaneko, M.; Zhong, X.; Takada, K.; Kaneko, T.; Kawai, M.; Mitsumata, T. Effect of Water Absorption on Electric Properties of Temperature-Resistant Polymers. Polymers 2024, 16, 521. [Google Scholar] [CrossRef]
- Sawada, R.; Ando, S. Polarization Analysis and Humidity Dependence of Dielectric Properties of Aromatic and Semialicyclic Polyimides Measured at 10 GHz. J. Phys. Chem. C 2024, 128, 6979–6990. [Google Scholar] [CrossRef]
- Hatton, B.D.; Landskron, K.; Hunks, W.J.; Bennett, M.R.; Shukaris, D.; Perovic, D.D.; Ozin, G.A. Materials chemistry for low-k materials. Mater. Today 2006, 9, 22–31. [Google Scholar] [CrossRef]
- Volksen, W.; Miller, R.D.; Dubois, G. Low Dielectric Constant Materials. Chem. Rev. 2010, 110, 56–110. [Google Scholar] [CrossRef]
- Deng, B.; Chen, K.; Bei, R.; Tian, W.; Liang, L.; Liu, Q.; Li, C.; Huang, H.; Kang, X.; Liu, Q.; et al. Fluorine-Free Thermoplastic High-Frequency Low Dielectric Poly(ether imide)s for Flexible Copper Clad Laminates. ACS Appl. Polym. Mater. 2025, 7, 4239–4250. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fukuda, T.; Ishii, J. Poly(ester imide)s with Low Linear Coefficients of Thermal Expansion and Low Water Uptake (VII): A Strategy to Achieve Ultra-Low Dissipation Factors at 10 GHz. Polymers 2024, 16, 653. [Google Scholar] [CrossRef]
- Xiao, P.; He, X.; Zheng, F.; Lu, Q. Super-heat resistant, transparent and low dielectric polyimides based on spirocyclic bisbenzoxazole diamines with Tg > 450 °C. Polym. Chem. 2022, 13, 3660–3669. [Google Scholar] [CrossRef]
- Dhara, M.G.; Banerjee, S. Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Prog. Polym. Sci. 2010, 35, 1022–1077. [Google Scholar] [CrossRef]
- Wu, X.; Cai, J.; Cheng, Y. Synthesis and characterization of high fluorine-containing polyimides with low-dielectric constant. J. Appl. Polym. Sci. 2022, 139, 51972. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Zhou, Y.; Zheng, F.; Lu, Q. The “fluorine impact” on dielectric constant of polyimides: A molecular simulation study. Polymer 2022, 254, 125073. [Google Scholar] [CrossRef]
- Nagella, S.R.; Ha, C.-S. Structural Designs of Transparent Polyimide Films with Low Dielectric Properties and Low Water Absorption: A Review. Nanomaterials 2023, 13, 2090. [Google Scholar] [CrossRef]
- Watanabe, Y.; Shibasaki, Y.; Ando, S.; Ueda, M. Synthesis and Characterization of Novel Low-k Polyimides from Aromatic Dianhydrides and Aromatic Diamine Containing Phenylene Ether and Perfluorobiphenyl Units. Polym. J. 2006, 38, 79–84. [Google Scholar] [CrossRef]
- Simone, C.D.; Vaccaro, E.; Scola, D.A. The Synthesis and Characterization of Highly Fluorinated Aromatic Polyimides. J. Fluorine Chem. 2019, 224, 100–112. [Google Scholar] [CrossRef]
- Peng, W.; Lei, H.; Qiu, L.; Bao, F.; Huang, M. Perfluorocyclobutyl-containing transparent polyimides with low dielectric constant and low dielectric loss. Polym. Chem. 2022, 13, 3949–3955. [Google Scholar] [CrossRef]
- Dai, H.; Zhang, Y.; Yang, Y.; Chen, J.; Li, C.; Liu, H.; Liu, W.; Li, X.; Zhang, T.; Xue, R.; et al. The influence of diamine structure on low dielectric constant and comprehensive properties of fluorinated polyimide films. Eur. Polym. J. 2025, 222, 113614. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Z.; Qu, L.; Zou, B.; Chen, Z.; Zhang, Y.; Liu, S.; Chi, Z.; Chen, X.; Xu, J. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: Intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Mater. Chem. Front. 2017, 1, 326–337. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Lin, Y.-C.; Chen, Y.-C.; Wu, P.-H.; Ando, S.; Ueda, M.; Chen, W.-C. Correlating the Molecular Structure of Polyimides with the Dielectric Constant and Dissipation Factor at a High Frequency of 10 GHz. ACS Appl. Polym. Mater. 2021, 3, 362–371. [Google Scholar] [CrossRef]
- Yin, Q.; Qin, Y.; Lv, J.; Wang, X.; Luo, L.; Liu, X. Reducing Intermolecular Friction Work: Preparation of Polyimide Films with Ultralow Dielectric Loss from MHz to THz Frequency. Ind. Eng. Chem. Res. 2022, 61, 17894–17903. [Google Scholar] [CrossRef]
- Zhang, C.; He, X.; Lu, Q. The structure design of poly(ester imide)s with low dielectric loss and high mechanical properties. J. Mater. Chem. C 2025, 13, 1388–1394. [Google Scholar] [CrossRef]
- Zhang, C.; He, X.; Lu, Q. High-frequency low-dielectric-loss in linear-backbone-structured polyimides with ester groups and ether bonds. Commun. Mater. 2024, 5, 55. [Google Scholar] [CrossRef]
- He, X.; Zhang, S.; Zhang, C.; Xiao, P.; Zheng, F.; Lu, Q. Decoding high-frequency dielectric loss of Poly(ester imide)s: Molecular simulation and experiment validation. Polymer 2024, 308, 127337. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Z.; Pan, Q.; Liu, S.; Zhao, J. Effect of Fluorinated Substituents on Solubility and Dielectric Properties of the Liquid Crystalline Poly(ester imides). ACS Appl. Polym. Mater. 2023, 5, 141–151. [Google Scholar] [CrossRef]
- Zhu, T.; Yu, Q.; Zheng, W.; Bei, R.; Wang, W.; Wu, M.; Liu, S.; Chi, Z.; Zhang, Y.; Xu, J. Intrinsic high-k–low-loss dielectric polyimides containing ortho-position aromatic nitrile moieties: Reconsideration on Clausius–Mossotti equation. Polym. Chem. 2021, 12, 2481–2489. [Google Scholar] [CrossRef]
- Bei, R.; Chen, K.; Liu, Q.; He, Y.; Li, C.; Huang, H.; Guo, Q.; Chi, Z.; Xu, J.; Chen, Z.; et al. Relationship among the Water Adsorption, Polymer Structure, and High-Frequency Dissipation Factor: Precise Analysis of Water Adsorption of Low-Dielectric Constant Polyimide Films. Macromolecules 2024, 57, 2142–2153. [Google Scholar] [CrossRef]
- Bei, R.; Chen, K.; He, Y.; Li, C.; Chi, Z.; Liu, S.; Xu, J.; Zhang, Y. A systematic study of the relationship between the high-frequency dielectric dissipation factor and water adsorption of polyimide films. J. Mater. Chem. C 2023, 11, 10274–10281. [Google Scholar] [CrossRef]
- Tchangai, T.; Segui, Y.; Doukkali, K. Water sorption in polyamide–imide films and its effect on dielectric loss. J. Appl. Polym. Sci. 1989, 38, 305–312. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, Z.; Zhang, X.; Pan, Q.; Liu, S.; Cao, B.; Zhao, J. Soluble Liquid Crystalline Poly(ester imide)s with High Glass Transition Temperatures and Improved Dielectric Properties. ACS Appl. Polym. Mater. 2022, 4, 4234–4243. [Google Scholar] [CrossRef]
- Sapich, B.; Stumpe, J.; Kricheldorf, H.R.; Fritz, A.; Schönhals, A. Synthesis, Dielectric, and Photochemical Study of Liquid Crystalline Main Chain Poly(ester imide)s Containing Cinnamoyl Moieties. Macromolecules 2001, 34, 5694–5701. [Google Scholar] [CrossRef]
- Zhu, L. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics. J. Phys. Chem. Lett. 2014, 5, 3677–3687. [Google Scholar] [CrossRef] [PubMed]
- Prateek; Thakur, V.K.; Gupta, R.K. Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. Chem. Rev. 2016, 116, 4260–4317. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, Y.; Li, J.; Fu, M.; Zou, G.; Ando, S.; Zhuang, Y. Tröger’s Base (TB)-Based Polyimides as Promising Heat-Insulating and Low-K Dielectric Materials. Macromolecules 2023, 56, 2164–2174. [Google Scholar] [CrossRef]
- Eftekhari, A.; Amin, J.S.; Zendehboudi, S. A molecular dynamics approach to investigate effect of pressure on asphaltene self-aggregation. J. Mol. Liq. 2023, 376, 121347. [Google Scholar] [CrossRef]
- Chen, F.; Liu, F.; Du, X. Molecular dynamics simulation of crosslinking process and mechanical properties of epoxy under the accelerator. J. Appl. Polym. Sci. 2023, 140, e53302. [Google Scholar] [CrossRef]
- Hamciuc, C.; Ronova, I.A.; Hamciuc, E.; Bruma, M. The effect of the rotation hindrance on physical properties of some heterocyclic polyamides containing pendent imide groups. Die Angew. Makromol. Chem. 1998, 254, 67–74. [Google Scholar] [CrossRef]
- Salahshoori, I.; Mohseni, A.; Namayandeh Jorabchi, M.; Ghasemi, S.; Afshar, M.; Wohlrab, S. Study of modified PVDF membranes with high-capacity adsorption features using Quantum mechanics, Monte Carlo, and Molecular Dynamics Simulations. J. Mol. Liq. 2023, 375, 121286. [Google Scholar] [CrossRef]
- Wakita, J.; Sekino, H.; Sakai, K.; Urano, Y.; Ando, S. Molecular Design, Synthesis, and Properties of Highly Fluorescent Polyimides. J. Phys. Chem. B 2009, 113, 15212–15224. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView, Version 6; Semichem Inc.: Shawnee, KS, USA, 2016.
Polymer | Mn (×104) a | Mw (×104) a | PDI | A (%) | CA (°) |
---|---|---|---|---|---|
DABA-6FDA | 8.0 | 15.2 | 1.9 | 2.27 | 89.5 ± 1.8 |
PABA-6FDA | 5.3 | 10.5 | 2.0 | 2.65 | 88.4 ± 0.9 |
APAB-6FDA | 5.9 | 11.2 | 1.9 | 0.98 | 93.1 ± 1.7 |
ABHQ-6FDA | 4.8 | 9.2 | 1.9 | 0.79 | 96.1 ± 1.3 |
ODA-6FDA | 4.7 | 9.8 | 2.1 | 1.62 | 89.7 ± 1.5 |
TPE-6FDA | 5.6 | 13.4 | 2.4 | 1.94 | 89.9 ± 1.3 |
Polymers | Dk (Dielectric Constant) | Df (Dielectric Loss) | ||||
---|---|---|---|---|---|---|
10 GHz | 40 GHz | 60 GHz | 10 GHz | 40 GHz | 60 GHz | |
DABA-6FDA | 3.201 | 3.192 | 3.190 | 0.0096 | 0.0095 | 0.0092 |
PABA-6FDA | 3.741 | 3.721 | 3.699 | 0.0122 | 0.0120 | 0.0120 |
APAB-6FDA | 3.050 | 3.032 | 3.026 | 0.0036 | 0.0034 | 0.0031 |
ABHQ-6FDA | 3.073 | 3.053 | 3.014 | 0.0026 | 0.0025 | 0.0023 |
ODA-6FDA | 2.872 | 2.871 | 2.868 | 0.0068 | 0.0065 | 0.0063 |
TPE-6FDA | 3.367 | 3.342 | 3.339 | 0.0021 | 0.0022 | 0.0020 |
FPI | Rg (Å) a | Afr (Å) b | Dipole Moment (D) | α/V (a.u.× mol/cm3) c | CED (J/cm3) d | FFV (%) e | Density (g/cm3) |
---|---|---|---|---|---|---|---|
DABA-6FDA | 39.85 | 2.71 | 4.323 | 0.863 | 413.8 | 24.79 | 1.341 |
PABA-6FDA | 49.04 | 2.84 | 4.610 | 0.925 | 460.4 | 23.30 | 1.330 |
APAB-6FDA | 33.89 | 1.47 | 2.410 | 0.859 | 396.9 | 23.13 | 1.372 |
ABHQ-6FDA | 39.10 | 1.86 | 3.404 | 0.884 | 406.5 | 22.51 | 1.353 |
ODA-6FDA | 29.07 | 1.19 | 2.701 | 0.855 | 370.9 | 22.99 | 1.370 |
TPE-6FDA | 30.14 | 1.37 | 2.773 | 0.867 | 358.6 | 23.62 | 1.328 |
Polymers | d (μm) a | λcut-off (nm) b | T450 (%) c | T550 (%) d | YI e | ∆E f |
---|---|---|---|---|---|---|
DABA-6FDA | 33 | 372 | 59 | 84 | 8.71 | 3.180 |
PABA-6FDA | 34 | 387 | 68 | 83 | 9.46 | 2.737 |
APAB-6FDA | 46 | 357 | 75 | 85 | 7.45 | 3.543 |
ABHQ-6FDA | 40 | 339 | 80 | 86 | 4.74 | 3.749 |
ODA-6FDA | 38 | 387 | 68 | 86 | 9.27 | 3.327 |
TPE-6FDA | 29 | 372 | 64 | 82 | 9.56 | 3.243 |
Polymers | Tg (°C) a | Td5% (°C) b | Td10% (°C) c | Rw (%) d | CTE (ppm/K) e | σ (MPa) f | E (GPa) g | ε (%) h |
---|---|---|---|---|---|---|---|---|
DABA-6FDA | 382 | 471 | 514 | 52.7 | 14.7 | 219.4 ± 9.8 | 3.1 ± 0.3 | 16.7 ± 3.7 |
PABA-6FDA | 388 | 469 | 503 | 54.2 | 11.2 | 248.1 ± 11.2 | 3.4 ± 0.3 | 18.6 ± 4.5 |
APAB-6FDA | 337 | 475 | 514 | 51.8 | 37.5 | 149.8 ± 9.5 | 2.6 ± 0.4 | 11.3 ± 1.8 |
ABHQ-6FDA | 344 | 467 | 495 | 50.4 | 32.3 | 167.2 ± 7.4 | 2.5 ± 0.3 | 9.5 ± 1.6 |
ODA-6FDA | 320 | 516 | 539 | 51.5 | 49.5 | 152.5 ± 6.8 | 2.1 ± 0.1 | 12.5 ± 1.8 |
TPE-6FDA | 296 | 489 | 521 | 50.2 | 52.5 | 161.6 ± 8.6 | 2.3 ± 0.4 | 14.3 ± 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; He, X.; Zhou, Y.; Jiang, L.; Yang, W.; Lu, Q.; Xiao, P. Effect of Diamine Monomers with Varied Backbone Structures on Dielectric and Other Comprehensive Properties of Fluorinated Polyimide Films. Polymers 2025, 17, 1505. https://doi.org/10.3390/polym17111505
Xu W, He X, Zhou Y, Jiang L, Yang W, Lu Q, Xiao P. Effect of Diamine Monomers with Varied Backbone Structures on Dielectric and Other Comprehensive Properties of Fluorinated Polyimide Films. Polymers. 2025; 17(11):1505. https://doi.org/10.3390/polym17111505
Chicago/Turabian StyleXu, Wenhao, Xiaojie He, Yu Zhou, Lan Jiang, Weiyou Yang, Qinghua Lu, and Peng Xiao. 2025. "Effect of Diamine Monomers with Varied Backbone Structures on Dielectric and Other Comprehensive Properties of Fluorinated Polyimide Films" Polymers 17, no. 11: 1505. https://doi.org/10.3390/polym17111505
APA StyleXu, W., He, X., Zhou, Y., Jiang, L., Yang, W., Lu, Q., & Xiao, P. (2025). Effect of Diamine Monomers with Varied Backbone Structures on Dielectric and Other Comprehensive Properties of Fluorinated Polyimide Films. Polymers, 17(11), 1505. https://doi.org/10.3390/polym17111505