Effect of Graphene Oxide Quantities on Microhardness of Cured-Surface Coating Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Graphene Oxide Synthesis
2.2. Graphene Oxide Modified in Adhesive
2.3. Microhardness Test
2.4. Statistical Analysis
2.5. Sample Size Calculations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Kerby, R.E.; Knobloch, L.A.; Sharples, S.; Peregrina, A. Mechanical properties of urethane and bis-acryl interim resin materials. J. Prosthet. Dent. 2013, 110, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Borzangy, S.; Labban, N.; Windsor, L.J. Effects of interim acrylic resins on the expression of cytokines from epithelial cells and on collagen degradation. J. Prosthet. Dent. 2013, 110, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.R.; Beck, D.A.; Nelson, S.K. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar] [CrossRef]
- Abdulmohsen, B.; Parker, S.; Braden, M.; Patel, M.P. A study to investigate and compare the physicomechanical properties of experimental and commercial temporary crown and bridge materials. Dent. Mater. 2016, 32, 200–210. [Google Scholar] [CrossRef]
- Sen, D.; Göller, G.; Işsever, H. The effect of two polishing pastes on the surface roughness of bis-acryl composite and methacrylate-based resins. J. Prosthet. Dent. 2002, 88, 527–532. [Google Scholar] [CrossRef]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Aykent, F.; Yondem, I.; Ozyesil, A.G.; Gunal, S.K.; Avunduk, M.C.; Ozkan, S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 2010, 103, 221–227. [Google Scholar] [CrossRef]
- Ayuso-Montero, R.; Martinez-Gomis, J.; Lujan-Climent, M.; Salsench, J.; Peraire, M. Influence of matrix type on surface roughness of three resins for provisional crowns and fixed partial dentures. J. Prosthodont. 2009, 18, 141–144. [Google Scholar] [CrossRef]
- Thompson, G.A.; Luo, Q. Contribution of postpolymerization conditioning and storage environments to the mechanical properties of three interim restorative materials. J. Prosthet. Dent. 2014, 112, 638–648. [Google Scholar] [CrossRef]
- Alammari, M.R. The influence of polishing techniques on pre-polymerized CAD\CAM acrylic resin denture bases. Electron. Physician 2017, 9, 5452–5458. [Google Scholar] [CrossRef]
- Emmanouil, J.K.; Kavouras, P.; Kehagias, T. The effect of photo-activated glazes on the microhardness of acrylic baseplate resins. J. Dent. 2002, 30, 7–10. [Google Scholar] [CrossRef]
- Dede, D.; Sahin, O.; Köroğlu, A.; Yilmaz, B. Effect of sealant agents on the color stability and surface roughness of nanohybrid composite resins. J. Prosthet. Dent. 2016, 116, 119–128. [Google Scholar] [CrossRef]
- Sahin, O.; Dede, D.; Köroğlu, A.; Yilmaz, B. Influence of surface sealant agents on the surface roughness and color stability of artificial teeth. J. Prosthet. Dent. 2015, 114, 130–137. [Google Scholar] [CrossRef]
- Sarac, D.; Sarac, Y.S.; Kulunk, S.; Ural, C.; Kulunk, T. The effect of polishing techniques on the surface roughness and color change of composite resins. J. Prosthet. Dent. 2006, 96, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, M.F.; Leforestier, E.; Muller, M.; Lupi-Pégurier, L.; Bolla, M. Effect of surface penetrating sealant on surface texture and microhardness of composite resins. J. Biomed. Mater. Res. 2000, 53, 658–663. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Morton, D.; Eckert, G.J.; Lin, W.S. The effect of surface treatments on the color stability of CAD-CAM interim fixed dental prostheses. J. Prosthet. Dent. 2021, 126, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Dadkan, S.; Salari, S.; Khakbiz, M.; Atai, M. Mechanical Properties of Dental Adhesives Containing Gold. In Proceedings of the 5th International Congress on Nanoscience & Nanotechnology, Paris, France, 21–22 May 2014. [Google Scholar]
- Sadat-Shojai, M.; Atai, M.; Nodehi, A.; Khanlar, L.N. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent. Mater. 2010, 26, 471–482. [Google Scholar] [CrossRef]
- Belli, R.; Kreppel, S.; Petschelt, A.; Hornberger, H.; Boccaccini, A.R.; Lohbauer, U. Strengthening of dental adhesives via particle reinforcement. J. Mech. Behav. Biomed. Mater. 2014, 37, 100–108. [Google Scholar] [CrossRef]
- Lohbauer, U.; Wagner, A.; Belli, R.; Stoetzel, C.; Hilpert, A.; Kurland, H.-D.; Grabow, J.; Müller, F.A. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010, 6, 4539–4546. [Google Scholar] [CrossRef]
- Curtis, A.; Palin, W.; Fleming, G.; Shortall, A.; Marquis, P. The mechanical properties of nanofilled resin-based composites: Characterizing discrete filler particles and agglomerates using a micromanipulation technique. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2009, 25, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.; Zeidan, E.-S.; Alshennawy, A.; El-Masry, A.; Wasel, W. Friction and Wear of Polymer Composites Filled by Nano-Particles: A Review. World J. Nano Sci. Eng. 2012, 2, 32–39. [Google Scholar] [CrossRef]
- Ashour, M.; Ebrahim, M. Effect of Zirconium Oxide Nano-Fillers Addition on the Flexural Strength, Fracture Toughness, and Hardness of Heat-Polymerized Acrylic Resin. World J. Nano Sci. Eng. 2014, 04, 50–57. [Google Scholar]
- Sabzi, M.; Mirabedini, S.M.; Zohuriaan-Mehr, J.; Atai, M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress. Org. Coat. 2009, 65, 222–228. [Google Scholar] [CrossRef]
- Azmy, E.; Al-Kholy, M.R.Z.; Fattouh, M.; Kenawi, L.M.M.; Helal, M.A. Impact of Nanoparticles Additions on the Strength of Dental Composite Resin. Int. J. Biomater. 2022, 2022, 1165431. [Google Scholar] [CrossRef] [PubMed]
- Helal, M.; Yang, B.; Saad, E.; Abas, M.; Al-kholy, M.; Imam, A.; Gad, M. Effect of SiO2 and Al2O3 nanoparticles on wear resistance of PMMA acrylic denture teeth. Braz. Dent. Sci. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Shin, S.W.; Song, I.H.; Um, S.H. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials 2015, 5, 1351–1365. [Google Scholar] [CrossRef]
- Yamamoto, I.; Higashihara, T.; Kobayashi, T. Effect of Silica-Particle Characteristics on Impact/Usual Fatigue Properties and Evaluation of Mechanical Characteristics of Silica-Particle Epoxy Resins. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 2003, 46, 145–153. [Google Scholar] [CrossRef]
- Young, R.J.; Beaumont, P.W.R. Failure of brittle polymers by slow crack growth. J. Mater. Sci. 1975, 10, 1343–1350. [Google Scholar] [CrossRef]
- Wang, G.; Dai, Z.; Liu, L.; Hu, H.; Zhang, Z. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 22554–22562. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Hancock, Y. The 2010 Nobel Prize in physics—Ground-breaking experiments on graphene. J. Phys. D Appl. Phys. 2011, 44, 473001. [Google Scholar] [CrossRef]
- Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.-M. Synthesis of High-Quality Graphene with a Pre-Determined Number of Layers. Carbon. 2009, 47, 493–499. [Google Scholar]
- Zhao, J.; Pei, S.; Ren, W.; Gao, L.; Cheng, H.M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245–5252. [Google Scholar] [CrossRef]
- Park, C.; Park, S.; Lee, D.; Choi, K.S.; Lim, H.P.; Kim, J. Graphene as an Enabling Strategy for Dental Implant and Tissue Regeneration. Tissue Eng. Regen. Med. 2017, 14, 481–493. [Google Scholar] [CrossRef]
- Kim, J.-W.; Shin, Y.C.; Lee, J.-J.; Bae, E.-B.; Jeon, Y.-C.; Jeong, C.-M.; Yun, M.-J.; Lee, S.-H.; Han, D.-W.; Huh, J.-B. The Effect of Reduced Graphene Oxide-Coated Biphasic Calcium Phosphate Bone Graft Material on Osteogenesis. Int. J. Mol. Sci. 2017, 18, 1725. [Google Scholar] [CrossRef] [PubMed]
- Bacali, C.; Baldea, I.; Moldovan, M.; Carpa, R.; Olteanu, D.E.; Filip, G.A.; Nastase, V.; Lascu, L.; Badea, M.; Constantiniuc, M.; et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin. Oral. Investig. 2020, 24, 2713–2725. [Google Scholar] [CrossRef]
- Sahm, B.D.; Teixeira, A.B.V.; dos Reis, A.C. Graphene loaded into dental polymers as reinforcement of mechanical properties: A systematic review. Jpn. Dent. Sci. Rev. 2023, 59, 160–166. [Google Scholar] [CrossRef]
- Azevedo, L.; Antonaya-Martin, J.L.; Molinero-Mourelle, P.; Del Río-Highsmith, J. Improving PMMA resin using graphene oxide for a definitive prosthodontic rehabilitation—A clinical report. J. Clin. Exp. Dent. 2019, 11, e670–e674. [Google Scholar] [CrossRef]
- Chintalapudi, K.; Rao Pannem, R.M. Strength properties of graphene oxide cement composites. Mater. Today Proc. 2021, 45, 3971–3975. [Google Scholar] [CrossRef]
- Hu, X.; Su, E.; Zhu, B.; Jia, J.; Yao, P.; Bai, Y. Preparation of silanized graphene/poly (methyl methacrylate) nanocomposites in situ copolymerization and its mechanical properties. Compos. Sci. Technol. 2014, 97, 6–11. [Google Scholar] [CrossRef]
- Tripathi, S.; Saini, P.; Gupta, D.; Choudhary, V. Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J. Mater. Sci. 2013, 48, 6223–6232. [Google Scholar] [CrossRef]
- Lin, F.; Yang, R.; Zeng, Q.; Xiang, Y. Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis. Comput. Mater. Sci. 2018, 150, 107–120. [Google Scholar] [CrossRef]
- Khan, A.; Mirza, E.; Mohamed, B.; Alharthi, N.; Abdo, H.; Javed, R.; Alhur, R.; Vallittu, P. Physical, mechanical, chemical and thermal properties of nanoscale graphene oxide-poly methylmethacrylate composites. J. Compos. Mater. 2018, 52, 002199831875464. [Google Scholar] [CrossRef]
- Zhao, L.; Guo, X.; Song, L.; Song, Y.; Dai, G.; Liu, J. An intensive review on the role of graphene oxide in cement-based materials. Constr. Build. Mater. 2020, 241, 117939. [Google Scholar] [CrossRef]
- ISO 4545-1:2023; Metallic Materials—Knoop Hardness Test—Part 1: Test Method. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: http://www.iso.org/iso/store.htm (accessed on 9 September 2024).
- Hou, N.; Zhang, Y.; Wang, M.; Huang, S.; Kong, X. Discrete characteristic and edge effect during subsurface microhardness measurement of Ti-6Al-4V alloy. Mater. Res. Express 2022, 9, 116503. [Google Scholar] [CrossRef]
- Delgado, A.H.; Young, A.M. Modelling ATR-FTIR Spectra of Dental Bonding Systems to Investigate Composition and Polymerisation Kinetics. Materials 2021, 14, 760. [Google Scholar] [CrossRef]
- Myalski, J.; Godzierz, M.; Olesik, P. Effect of Carbon Fillers on the Wear Resistance of PA6 Thermoplastic Composites. Polymers 2020, 12, 2264. [Google Scholar] [CrossRef]
- Ramanathan, T.; Abdala, A.A.; Stankovich, S.; Dikin, D.A.; Herrera-Alonso, M.; Piner, R.D.; Adamson, D.H.; Schniepp, H.C.; Chen, X.; Ruoff, R.S.; et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331. [Google Scholar] [CrossRef]
- Xu, D.; Liang, G.; Qi, Y.; Gong, R.; Zhang, X.; Zhang, Y.; Liu, B.; Kong, L.; Dong, X.; Li, Y. Enhancing the Mechanical Properties of Waterborne Polyurethane Paint by Graphene Oxide for Wood Products. Polymers 2022, 14, 5456. [Google Scholar] [CrossRef]
- Liang, G.; Yao, F.; Qi, Y.; Gong, R.; Li, R.; Liu, B.; Zhao, Y.; Lian, C.; Li, L.; Dong, X.; et al. Improvement of Mechanical Properties and Solvent Resistance of Polyurethane Coating by Chemical Grafting of Graphene Oxide. Polymers 2023, 15, 882. [Google Scholar] [CrossRef]
- Teimoorian, M.; Mirzaie, M.; Tashakkorian, H.; Gholinia, H.; Alaghemand, H.; Pournajaf, A.; Ghorbanipour, R. Effects of adding functionalized graphene oxide nanosheets on physical, mechanical, and anti-biofilm properties of acrylic resin: In vitro- experimental study. Dent. Res. J. 2023, 20, 37. [Google Scholar] [CrossRef]
- Punset, M.; Brizuela, A.; Pérez-Pevida, E.; Herrero-Climent, M.; Manero, J.M.; Gil, J. Mechanical Characterization of Dental Prostheses Manufactured with PMMA-Graphene Composites. Materials 2022, 15, 5391. [Google Scholar] [CrossRef]
- Lee, J.H.; Jo, J.K.; Kim, D.A.; Patel, K.; Kim, H.W.; Lee, H.H. Nano-graphene oxide incorporated into PMMA resin to prevent microbial adhesion. Dent. Mater. 2018, 34, e63–e72. [Google Scholar] [CrossRef]
- Wang, J.; Hu, H.; Wang, X.; Xu, C.; Zhang, M.; Shang, X. Preparation and Mechanical and Electrical Properties of Graphene Nanosheets-Poly(methyl methacrylate) Nanocomposites via In Situ Suspension Polymerization. J. Appl. Polym. Sci. 2011, 122, 1866–1871. [Google Scholar] [CrossRef]
- Alvaredo-Atienza, A.; Fernández-Blázquez, J.P.; Castell, P.; Guzmán de Villoria, R. Graphene filled polyetheretherketone (peek) composites. In Proceedings of the 18th European Conference on Composite Materials, Athens, Greece, 24–28 June 2018; pp. 1–6. [Google Scholar]
- Lakshmanan, R.; Maulik, N. Graphene-based drug delivery systems in tissue engineering and nanomedicine. Can. J. Physiol. Pharmacol. 2018, 96, 869–878. [Google Scholar] [CrossRef]
- Paz, E.; Ballesteros, Y.; Forriol, F.; Dunne, N.J.; Del Real, J.C. Graphene and graphene oxide functionalisation with silanes for advanced dispersion and reinforcement of PMMA-based bone cements. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 104, 109946. [Google Scholar] [CrossRef]
- Paredes, J.I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J.M. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560–10564. [Google Scholar] [CrossRef]
- He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Song, S.; Fang, H.; Fan, C. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater. 2010, 20, 453–459. [Google Scholar] [CrossRef]
- Wang, H.; Gu, W.; Xiao, N.; Ye, L.; Xu, Q. Chlorotoxin-conjugated graphene oxide for targeted delivery of an anticancer drug. Int. J. Nanomedicine 2014, 9, 1433–1442. [Google Scholar]
- Ding, X.; Liu, H.; Fan, Y. Graphene-Based Materials in Regenerative Medicine. Adv. Healthc. Mater. 2015, 4, 1451–1468. [Google Scholar] [CrossRef] [PubMed]
Materials | Compositions |
---|---|
Graphene oxide | Carbon atom (synthesis using Modified Hummers’ method) |
Resin Glaze (Shofu Inc., Kyoto, Japan) Lot: 082246 | Multi-functional monomers, methacrylate monomers, Others |
Coat-It (Shofu Inc., Kyoto, Japan) Lot: 042206 | Multi-functional monomers, MMA, phosphonic acid monomers, polymerization initiators, and others |
AdperTM ScotchbondTM Multi-purpose Adhesive (3M EPSE, Seefeld, Germany) Lot: NF40227 | Adhesive: Bis-GMA, HEMA, tertiary amine, photoinitiator |
OptiBondTM FL Adhesive (Kerr Corporation, Orange, CA, USA) Lot: A158978 | Adhesive: TEGDMA, UDMA, GPDM, HEMA, Bis-GMA, barium glass, ethanol, water, camphorquinone, tertiary amine |
Surface Coating Agents (SCAs) and Dental Adhesives (DAHs) | Concentration of GO (wt %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | 0.05 | 0.1 | 0.3 | 0.5 | 0.7 | 1.0 | 2 | 5 | 10 | |
Resin Glaze (ReG) | 26.15 ± 0.51 (a,1) | 26.92 ± 0.34 (a,1) | 27.61 ± 0.60 (a,1) | 33.02 ± 0.55 (b,1) | 34.06 ± 0.47 (b,1) | 32.34 ± 0.49 (b,1) | 27.04 ± 0.40 (a,1) | 27.22 ± 0.13 (a,1) | 24.94 ± 0.20 (c,1) | 23.17 ± 0.75 (c,1) |
Coat-It (CoI) | 26.79 ± 0.83 (a,1) | 27.73 ± 0.86 (a,1) | 28.08 ± 0.50 (a,1) | 32.25 ± 0.92 (b,1) | 33.73 ± 0.74 (b,1) | 31.11 ± 0.49 (b,1) | 27.28 ± 0.65 (a,1) | 26.62 ± 0.81 (a,1) | 24.99 ± 0.57 (c,1) | 23.26 ± 0.59 (c,1) |
AdperTM ScotchbondTM Multi-purpose Adhesive (AdA) | 17.89 ± 0.33 (a,2) | 18.29 ± 0.48 (a,2) | 19.05 ± 0.16 (a,2) | 23.04 ± 0.68 (b,2) | 24.58 ± 0.36 (b,2) | 23.67 ± 0.73 (b,2) | 19.41 ± 0.58 (a,2) | 18.67 ± 0.59 (a,2) | 16.08 ± 0.35 (c,2) | 13.95 ± 0.48 (d,2) |
OptiBondTM FL Adhesive (OpA) | 29.81 ± 1.19 (a,3) | 33.12 ± 0.73 (b,1) | 33.87 ± 1.11 (b,3) | 32.97 ± 0.63 (b,1) | 30.01 ± 0.36 (a,3) | 29.95 ± 0.23 (a,3) | 28.71 ± 0.47 (a,1) | 26.97 ± 0.29 (c,1) | 25.01 ± 0.54 (d,1) | 24.23 ± 0.71 (d,1) |
Surface Coating Agents (SCAs) and Dental Adhesives (DAHs) | Concentration of GO (wt %) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.05 | 0.1 | 0.3 | 0.5 | 0.7 | 1.0 | 2 | 5 | 10 | |
Resin Glaze (ReG) | +2.94 | +5.60 | +26.27 | +30.25 | +23.67 | +3.40 | +4.09 | −4.63 | −11.4 |
Coat-It (CoI) | +3.51 | +4.82 | +20.38 | +26.00 | +16.12 | +1.83 | −0.63 | −6.72 | −13.18 |
AdperTM ScotchbondTM Multi-purpose Adhesive (AdA) | +2.24 | +6.5 | +28.78 | +37.4 | +32.31 | +8.5 | +4.36 | −10.12 | −22.02 |
OptiBondTM FL Adhesive (OpA) | +11.10 | +13.62 | +10.60 | +0.67 | +0.47 | −3.70 | −9.53 | −16.10 | −18.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebkrut, K.; Klaisiri, A.; Swasdison, S.; Thamrongananskul, N.; Thompho, S.; Sriamporn, T. Effect of Graphene Oxide Quantities on Microhardness of Cured-Surface Coating Agents. Polymers 2025, 17, 1472. https://doi.org/10.3390/polym17111472
Lebkrut K, Klaisiri A, Swasdison S, Thamrongananskul N, Thompho S, Sriamporn T. Effect of Graphene Oxide Quantities on Microhardness of Cured-Surface Coating Agents. Polymers. 2025; 17(11):1472. https://doi.org/10.3390/polym17111472
Chicago/Turabian StyleLebkrut, Khanaphan, Awiruth Klaisiri, Somporn Swasdison, Niyom Thamrongananskul, Somphob Thompho, and Tool Sriamporn. 2025. "Effect of Graphene Oxide Quantities on Microhardness of Cured-Surface Coating Agents" Polymers 17, no. 11: 1472. https://doi.org/10.3390/polym17111472
APA StyleLebkrut, K., Klaisiri, A., Swasdison, S., Thamrongananskul, N., Thompho, S., & Sriamporn, T. (2025). Effect of Graphene Oxide Quantities on Microhardness of Cured-Surface Coating Agents. Polymers, 17(11), 1472. https://doi.org/10.3390/polym17111472