Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair
Abstract
:1. Introduction
2. Application Forms of Hydrogel Delivery Systems in IBD
2.1. Injectable Hydrogel
2.2. Microhydrogels
2.3. Hydrogel Compound Drug Delivery System
3. Delivery Methods of Hydrogels in IBD
3.1. Oral Route
3.1.1. Oral Administration
3.1.2. Intragastric Administration
3.2. Rectal Administration
3.3. Injection Administration
3.3.1. Subcutaneous Injection
3.3.2. Parenteral Injection
4. Various Substances Delivered by Hydrogel
4.1. Medication
4.2. Mesenchymal Stem Cells (MSCs)
4.3. Nanoenzymes
4.4. Growth Factors
4.5. Probiotics
4.6. Liposome Complexes
4.7. Plant Compounds
4.8. Proteins and Peptides
4.9. Nanoparticles (NPs)
5. Current Problems and Next Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stemmer, E.; Zahavi, T.; Kellerman, M.; Sinberger, L.A.; Shrem, G.; Salmon-Divon, M. Exploring potential biomarkers and therapeutic targets in inflammatory bowel disease: Insights from a mega-analysis approach. Front. Immunol. 2024, 15, 1353402. [Google Scholar] [CrossRef] [PubMed]
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s disease. Nat. Rev. Dis. Primers 2020, 6, 22. [Google Scholar] [CrossRef]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef]
- Cao, F.; Jin, L.; Gao, Y.; Ding, Y.; Wen, H.; Qian, Z.; Zhang, C.; Hong, L.; Yang, H.; Zhang, J. Artificial-enzymes-armed bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 2023, 18, 617–627. [Google Scholar] [CrossRef]
- Gao, M.; Yang, C.; Wu, C.; Chen, Y.; Zhuang, H.; Wang, J.; Cao, Z. Hydrogel-metal-organic-framework hybrids mediated efficient oral delivery of sirna for the treatment of ulcerative colitis. J. Nanobiotechnology 2022, 20, 404. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Mudassir; Minhas, M.U.; Khan, S.; Hussain, Z.; De Matas, M.; Shah, S.A.; Khan, S.; Kousar, M.; Ullah, K. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: A review of recent developments and future prospects. Drug Deliv. Transl. Res. 2019, 9, 595–614. [Google Scholar] [CrossRef]
- Xiao, C.; Li, G.; Li, X.; Wang, D.; Wu, Y.; Sun, M.; Huang, J.; Si, L. A topical thermosensitive hydrogel system with cyclosporine A PEG-PCL micelles alleviates ulcerative colitis induced by TNBS in mice. Drug Deliv. Transl. Res. 2023, 13, 2447–2462. [Google Scholar] [CrossRef]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Pal, A.; Vernon, B.L.; Nikkhah, M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact. Mater. 2018, 3, 389–400. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Guo, S.; Liu, Z.; Zhao, L.; Qiao, R.; Li, C. Rutin-loaded stimuli-responsive hydrogel for anti-inflammation. ACS Appl. Mater. Interfaces 2022, 14, 26327–26337. [Google Scholar] [CrossRef]
- Hong, L.; Chen, G.; Cai, Z.; Liu, H.; Zhang, C.; Wang, F.; Xiao, Z.; Zhong, J.; Wang, L.; Wang, Z. Balancing microthrombosis and inflammation via injectable protein hydrogel for inflammatory bowel disease. Adv. Sci. 2022, 9, 2200281. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, Z.; Li, L.; Wang, X.; Wei, X.; Gou, S.; Ding, Z.; Cai, Z.; Ling, Q.; Hoffmann, P.R. Mannose coated selenium nanoparticles normalize intestinal homeostasis in mice and mitigate colitis by inhibiting NF-κB activation and enhancing glutathione peroxidase expression. J. Nanobiotechnol. 2024, 22, 613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, Y.; Guo, Z.; Fan, X.; Pan, Q.; Gao, W.; Luo, K.; Pu, Y.; He, B. An olsalazine nanoneedle-embedded inulin hydrogel reshapes intestinal homeostasis in inflammatory bowel disease. Bioact. Mater. 2024, 33, 71–84. [Google Scholar] [CrossRef]
- Pandey, M.; Choudhury, H.; D/O Segar Singh, S.K.; Chetty Annan, N.; Bhattamisra, S.K.; Gorain, B.; Mohd Amin, M.C.I. Budesonide-loaded pectin/polyacrylamide hydrogel for sustained delivery: Fabrication, characterization and in vitro release kinetics. Molecules 2021, 26, 2704. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, L.; Luo, F.; Xu, Y.; Wu, D.; Li, Y.; Zhao, R.; Hua, Z.; Hu, J. Efficient oral delivery of resveratrol-loaded cyclodextrin-metal organic framework for alleviation of ulcerative colitis. Int. J. Pharm. 2023, 646, 123496. [Google Scholar] [CrossRef]
- Kim, D.-W.; Jeong, H.-S.; Kim, E.; Lee, H.; Choi, C.-H.; Lee, S.-J. Oral delivery of stem-cell-loaded hydrogel microcapsules restores gut inflammation and microbiota. J. Control. Release 2022, 347, 508–520. [Google Scholar] [CrossRef]
- Huang, L.; Mao, X.; Li, Y.; Liu, D.; Fan, K.; Liu, R.; Wu, T.; Wang, H.; Zhang, Y.; Yang, B. Multiomics analyses reveal a critical role of selenium in controlling t cell differentiation in Crohn’s disease. Immunity 2021, 54, 1728–1744.e7. [Google Scholar] [CrossRef]
- Torretta, S.; Scagliola, A.; Ricci, L.; Mainini, F.; Di Marco, S.; Cuccovillo, I.; Kajaste-Rudnitski, A.; Sumpton, D.; Ryan, K.M.; Cardaci, S. D-mannose suppresses macrophage IL-1Β production. Nat. Commun. 2020, 11, 6343. [Google Scholar] [CrossRef]
- Zhang, S.; Kang, L.; Hu, S.; Hu, J.; Fu, Y.; Hu, Y.; Yang, X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int. J. Biol. Macromol. 2021, 167, 1598–1612. [Google Scholar] [CrossRef]
- Xu, S.; Hu, B.; Dong, T.; Chen, B.; Xiong, X.; Du, L.; Li, Y.; Chen, Y.; Tian, G.; Bai, X. Alleviate periodontitis and its comorbidity hypertension using a nanoparticle-embedded functional hydrogel system. Adv. Healthc. Mater. 2023, 12, e2203337. [Google Scholar] [CrossRef]
- Han, K.; Nam, J.; Xu, J.; Sun, X.; Huang, X.; Animasahun, O.; Achreja, A.; Jeon, J.H.; Pursley, B.; Kamada, N. Generation of systemic antitumour immunity via the in situ modulation of the gut microbiome by an orally administered inulin gel. Nat. Biomed. Eng. 2021, 5, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Gao, R.; Liu, Y.; Fu, L.; Zhou, J.; Li, L. Stimulus-responsive hydrogels as drug delivery systems for inflammation targeted therapy. Adv. Sci. 2024, 11, e2306152. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Zeng, F.; Yu, X.; Deng, Y.; Zhang, Z.; Xu, M.; Ding, N.; Tian, J.; Li, C. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J. Nanobiotechnol. 2023, 21, 275. [Google Scholar] [CrossRef]
- Zhong, D.; Jin, K.; Wang, R.; Chen, B.; Zhang, J.; Ren, C.; Chen, X.; Lu, J.; Zhou, M. Microalgae-based hydrogel for inflammatory bowel disease and its associated anxiety and depression. Adv. Mater. 2024, 36, e2312275. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, P.; Wu, C.; Yao, Q.; Cha, R.; Gao, Y. Reductase-labile peptidic supramolecular hydrogels aided in oral delivery of probiotics. ACS Appl. Mater. Interface 2023, 15, 31214–31223. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Tao, S.; Wang, W.; Wu, S.; Hong, Y.; Wang, X.; Ma, Y.; Qian, H.; Zha, Z. Ternary inulin hydrogel with long-term intestinal retention for simultaneously reversing IBD and its fibrotic complication. Nat. Commun. 2024, 15, 8428. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Qiu, M.; Hou, Y.; Li, X.; Zhong, G.; Gou, K.; Li, J.; Zhang, C.; Qu, Y. Mucoadhesive and thermosensitive bletilla striata polysaccharide/chitosan hydrogel loaded nanoparticles for rectal drug delivery in ulcerative colitis. Int. J. Biol. Macromol. 2024, 254, 127761. [Google Scholar] [CrossRef]
- Zhao, L.; Dou, D.; Zhang, D.; Deng, X.; Ding, N.; Ma, Y.; Ji, X.; Zhang, S.; Li, C. ROS/pH dual-responsive quercetin-loaded guanosine borate supramolecular hydrogel enema in dextran sulfate sodium-induced colitis in mice. J. Mater. Chem. B 2024, 12, 10861–10876. [Google Scholar] [CrossRef]
- Ge, X.; Wen, H.; Fei, Y.; Xue, R.; Cheng, Z.; Li, Y.; Cai, K.; Li, L.; Li, M.; Luo, Z. Structurally dynamic self-healable hydrogel cooperatively inhibits intestinal inflammation and promotes mucosal repair for enhanced ulcerative colitis treatment. Biomaterials 2023, 299, 122184. [Google Scholar] [CrossRef]
- Guo, Z.; Bai, Y.; Zhang, Z.; Mei, H.; Li, J.; Pu, Y.; Zhao, N.; Gao, W.; Wu, F.; He, B. Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment. J. Mater. Chem. B 2021, 9, 3874–3884. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, Q.; Xie, Y.; Bai, G.; Liu, H.; Chen, Q.; Duan, H.; Wang, L.; Xu, H.; Sun, Y. Telmisartan loading thermosensitive hydrogel repairs gut epithelial barrier for alleviating inflammatory bowel disease. Colloids Surf. B Biointerfaces 2024, 236, 113799. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Shen, R.; Wei, L.; Xu, S.; Xia, W.; Hou, Y.; Cui, J.; Qu, R.; Luo, J.; Cao, J. Designing a microbial fermentation-functionalized alginate microsphere for targeted release of 5-ASA using nano dietary fiber carrier for inflammatory bowel disease treatment. J. Nanobiotechnol. 2023, 21, 344. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, D.; Wang, Y.; Li, H.; Zhang, Y.; Chen, H.; Li, X.; Huo, M. Nanozymes-recent development and biomedical applications. J. Nanobiotechnology 2022, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, T.H.; Allin, K.H.; Keefer, L.; Ananthakrishnan, A.N.; Jess, T. Depression and anxiety in inflammatory bowel disease: Epidemiology, mechanisms and treatment. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 717–726. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Heelan, W.J.; Chen, Y.; Li, Z.; Hu, Q. Mucoadhesive probiotic backpacks with ros nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. Sci. Adv. 2022, 8, eabp8798. [Google Scholar] [CrossRef]
- Koh, E.; Hwang, I.Y.; Lee, H.L.; De Sotto, R.; Lee, J.W.J.; Lee, Y.S.; March, J.C.; Chang, M.W. Engineering probiotics to inhibit clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 2022, 13, 3834. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Xiong, Z.; Xie, W.; Shao, M.; Liu, Z. Broad-spectrum ROS/RNS scavenging catalase-loaded microreactors for effective oral treatment of inflammatory bowel diseases. Small 2025, 22, e2501341. [Google Scholar] [CrossRef]
- Wan, J.; Yu, X.; Liu, J.; Li, J.; Ai, T.; Yin, C.; Liu, H.; Qin, R. A special polysaccharide hydrogel coated on Brasenia schreberi: Preventive effects against ulcerative colitis via modulation of gut microbiota. Food. Funct. 2023, 14, 3564–3575. [Google Scholar] [CrossRef]
- Wang, J.; Hu, D.; Chen, Q.; Liu, T.; Zhou, X.; Xu, Y.; Zhou, H.; Gu, D.; Gao, C. Intracellular hydrogelation of macrophage conjugated probiotics for hitchhiking delivery and combined treatment of colitis. Mater. Today Bio. 2023, 20, 100679. [Google Scholar] [CrossRef]
- Bialik, M.; Kuras, M.; Sobczak, M.; Oledzka, E. Achievements in thermosensitive gelling systems for rectal administration. Int. J. Mol. Sci. 2021, 22, 5500. [Google Scholar] [CrossRef]
- Xu, J.; Tam, M.; Samaei, S.; Lerouge, S.; Barralet, J.; Stevenson, M.M.; Cerruti, M. Mucoadhesive chitosan hydrogels as rectal drug delivery vessels to treat ulcerative colitis. Acta. Biomater. 2017, 48, 247–257. [Google Scholar] [CrossRef]
- Biamonte, P.; D’Amico, F.; Fasulo, E.; Barà, R.; Bernardi, F.; Allocca, M.; Zilli, A.; Danese, S.; Furfaro, F. New technologies in digestive endoscopy for ulcerative colitis patients. Biomedicines 2023, 11, 2139. [Google Scholar] [CrossRef]
- Kou, Y.; Li, J.; Zhu, Y.; Liu, J.; Ren, R.; Jiang, Y.; Wang, Y.; Qiu, C.; Zhou, J.; Yang, Z. Human amniotic epithelial stem cells promote colonic recovery in experimental colitis via exosomal MiR-23a-TNFR1-NF-κB signaling. Adv. Sci. 2024, 11, e2401429. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Ideguchi, H.; Kajikawa, T.; Li, X.; Chavakis, T.; Cheng, J.; Messersmith, P.B.; Heber-Katz, E.; Hajishengallis, G. An injectable hydrogel-formulated inhibitor of prolyl-4-hydroxylase promotes t regulatory cell recruitment and enhances alveolar bone regeneration during resolution of experimental periodontitis. FASEB J. 2020, 34, 13726–13740. [Google Scholar] [CrossRef] [PubMed]
- DeFrates, K.G.; Tong, E.; Cheng, J.; Heber-Katz, E.; Messersmith, P.B. A pro-regenerative supramolecular prodrug protects against and repairs colon damage in experimental colitis. Adv. Sci. 2024, 11, e2304716. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pujana, A.; Beloqui, A.; Javier Aguirre, J.; Igartua, M.; Santos-Vizcaino, E.; Maria Hernandez, R. Mesenchymal stromal cells encapsulated in licensing hydrogels exert delocalized systemic protection against ulcerative colitis via subcutaneous xenotransplantation. Eur. J. Pharm. Biopharm. 2022, 172, 31–40. [Google Scholar] [CrossRef]
- Cao, X.; Duan, L.; Hou, H.; Liu, Y.; Chen, S.; Zhang, S.; Liu, Y.; Wang, C.; Qi, X.; Liu, N. IGF-1C hydrogel improves the therapeutic effects of MSCs on colitis in mice through PGE2-mediated M2 macrophage polarization. Theranostics 2020, 10, 7697–7709. [Google Scholar] [CrossRef]
- Mehta, R.S.; Mayers, J.R.; Zhang, Y.; Bhosle, A.; Glasser, N.R.; Nguyen, L.H.; Ma, W.; Bae, S.; Branck, T.; Song, K. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease. Nat. Med. 2023, 29, 700–709. [Google Scholar] [CrossRef]
- Fu, Z.; Zou, J.; Zhong, J.; Zhan, J.; Zhang, L.; Xie, X.; Zhang, L.; Li, W.; He, R. Curcumin-loaded nanocomposite hydrogel dressings for promoting infected wound healing and tissue regeneration. Int. J. Nanomed. 2024, 19, 10479–10496. [Google Scholar] [CrossRef]
- Zeng, Y.-X.; Wang, S.; Wei, L.; Cui, Y.-Y.; Chen, Y.-H. Proanthocyanidins: Components, pharmacokinetics and biomedical properties. Am. J. Chin. Med. 2020, 48, 813–869. [Google Scholar] [CrossRef]
- Kuo, S.-N.; Wu, P.-X.; Huang, S.-L.; Hsu, Y.-C.; Huang, J.-H. Thermo-responsive methylcellulose/hyaluronic acid-mesalamine hydrogel in targeted drug delivery for ulcerative colitis. RSC Adv. 2025, 15, 14126–14135. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Luo, M.; Wei, X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol. 2021, 14, 195. [Google Scholar] [CrossRef] [PubMed]
- Riazifar, M.; Mohammadi, M.R.; Pone, E.J.; Yeri, A.; Lässer, C.; Segaliny, A.I.; McIntyre, L.L.; Shelke, G.V.; Hutchins, E.; Hamamoto, A. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders. ACS Nano 2019, 13, 6670–6688. [Google Scholar] [CrossRef]
- Xiao, K.; He, W.; Guan, W.; Hou, F.; Yan, P.; Xu, J.; Zhou, T.; Liu, Y.; Xie, L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis. 2020, 11, 863. [Google Scholar] [CrossRef]
- Khayambashi, P.; Iyer, J.; Pillai, S.; Upadhyay, A.; Zhang, Y.; Tran, S. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int. J. Mol. Sci. 2021, 22, 684. [Google Scholar] [CrossRef]
- Nie, M.; Huang, D.; Chen, G.; Zhao, Y.; Sun, L. Bioadhesive microcarriers encapsulated with IL-27 high expressive msc extracellular vesicles for inflammatory bowel disease treatment. Adv. Sci. 2023, 10, e2303349. [Google Scholar] [CrossRef] [PubMed]
- De Vos, W.M.; Tilg, H.; Van Hul, M.; Cani, P.D. Gut microbiome and health: Mechanistic insights. Gut 2022, 71, 1020–1032. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, S.; Gu, D.; Zhu, B.; Liu, H.; Wu, W.; Wu, J.; Wei, H.; Miao, L. Cerium oxide nanozyme attenuates periodontal bone destruction by inhibiting the ROS-NFκB pathway. Nanoscale 2022, 14, 2628–2637. [Google Scholar] [CrossRef]
- Cheng, C.; Cheng, Y.; Zhao, S.; Wang, Q.; Li, S.; Chen, X.; Yang, X.; Wei, H. Multifunctional nanozyme hydrogel with mucosal healing activity for single-dose ulcerative colitis therapy. Bioconjug. Chem. 2022, 33, 248–259. [Google Scholar] [CrossRef]
- Cao, Y.; Cheng, K.; Yang, M.; Deng, Z.; Ma, Y.; Yan, X.; Zhang, Y.; Jia, Z.; Wang, J.; Tu, K. Orally administration of cerium oxide nanozyme for computed tomography imaging and anti-inflammatory/anti-fibrotic therapy of inflammatory bowel disease. J. Nanobiotechnology 2023, 21, 21. [Google Scholar] [CrossRef]
- Xue, P.; Wang, L.; Xu, J.; Liu, J.; Pan, X.; Zhao, Y.; Xu, H. Temperature-sensitive hydrogel for rectal perfusion improved the therapeutic effect of kangfuxin liquid on DSS-induced ulcerative colitis mice: The inflammation alleviation and the colonic mucosal barriers repair. Int. J. Pharm. 2020, 589, 119846. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Huang, S.; Li, T.; Li, N.; Han, D.; Zhang, B.; Xu, Z.Z.; Zhang, S.; Pang, J.; Wang, S. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 2021, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Yongvongsoontorn, N.; Chung, J.E.; Gao, S.J.; Bae, K.H.; Yamashita, A.; Tan, M.-H.; Ying, J.Y.; Kurisawa, M. Carrier-enhanced anticancer efficacy of sunitinib-loaded green tea-based micellar nanocomplex beyond tumor-targeted delivery. ACS Nano 2019, 13, 7591–7602. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Yang, J.; Liu, J.; Shangguan, J.; Pan, H.; Zhang, Y.; Ran, K.; Li, D.; Yu, F.; Xu, H. In situ polyphenol-adhesive hydrogel enhanced the noncarcinogenic repairing of KGF on the gut epithelial barrier on TNBS-induced colitis rats. Int. J. Biol. Macromol. 2023, 231, 123323. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Xue, P.; Liu, J.; Luo, L.; Zhuge, D.; Yao, Q.; Li, X.; Zhao, Y.; Xu, H. Thermo-sensitive hydrogel with mussel-inspired adhesion enhanced the non-fibrotic repair effect of EGF on colonic mucosa barrier of TNBS-induced ulcerative colitis rats through macrophage polarizing. Chem. Eng. J. 2021, 416, 129221. [Google Scholar] [CrossRef]
- Li, D.; Shangguan, J.; Yu, F.; Lin, G.; Pan, H.; Zhang, M.; Lin, H.; Chen, B.; Xu, H.; Hu, S. Growth factors-loaded temperature-sensitive hydrogel as biomimetic mucus attenuated murine ulcerative colitis via repairing the mucosal barriers. ACS Appl. Mater. Interfaces 2024, 16, 7686–7699. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Tsolis, R.M.; Bäumler, A.J. The microbiome and gut homeostasis. Science. 2022, 377, eabp9960. [Google Scholar] [CrossRef]
- Xiao, Y.; Lu, C.; Liu, Y.; Kong, L.; Bai, H.; Mu, H.; Li, Z.; Geng, H.; Duan, J. Encapsulation of Lactobacillus rhamnosus in hyaluronic acid-based hydrogel for pathogen-targeted delivery to ameliorate enteritis. ACS Appl. Mater. Interfaces 2020, 12, 36967–36977. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Kong, L.; Wang, X.; Li, Q.; Zhang, L.; Shi, J.; Duan, J.; Mu, H. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. Int. J. Biol. Macromol. 2022, 222, 1476–1486. [Google Scholar] [CrossRef]
- Mahapatro, M.; Erkert, L.; Becker, C. Cytokine-mediated crosstalk between immune cells and epithelial cells in the gut. Cells 2021, 10, 111. [Google Scholar] [CrossRef]
- Stallmach, A.; Atreya, R.; Grunert, P.C.; Stallhofer, J.; De Laffolie, J.; Schmidt, C. Treatment Strategies in Inflammatory Bowel Diseases. Dtsch. Arztebl. Int. 2023, 120, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Zhao, X.; Wan, F.; Gu, D.; Xie, W.; Gao, C. Intracellularly gelated macrophages loaded with probiotics for therapy of colitis. Nano Lett. 2024, 24, 13504–13512. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019, 164, 640–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhao, Y.; Teng, L.; He, J.; Zhao, J.; Gao, X.; Ma, G. Budesonide-liposomes inclusion complex in thermosensitive gel alleviates DSS-induced ulcerative colitis in mice. Drug Dev. Ind. Pharm. 2023, 49, 341–347. [Google Scholar] [CrossRef]
- Yuba, E. Development of functional liposomes by modification of stimuli-responsive materials and their biomedical applications. J. Mater. Chem. B 2020, 8, 1093–1107. [Google Scholar] [CrossRef]
- Wu, M.; Ping, H.; Wang, K.; Ding, H.; Zhang, M.; Yang, Z.; Du, Q. Oral delivery of pectin-chitosan hydrogels entrapping macrophage-targeted curcumin-loaded liposomes for the treatment of ulcerative colitis. Int. J. Pharm. 2023, 647, 123510. [Google Scholar] [CrossRef]
- Silvestri, C.; Pagano, E.; Lacroix, S.; Venneri, T.; Cristiano, C.; Calignano, A.; Parisi, O.A.; Izzo, A.A.; Di Marzo, V.; Borrelli, F. Fish oil, cannabidiol and the gut microbiota: An investigation in a murine model of colitis. Front. Pharmacol. 2020, 11, 585096. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ji, X.; Wang, X.; Sun, M.; Li, C.; Wu, D. The injectable hydrogel loading cannabidiol to regulate macrophage polarization in vitro for the treatment of chronic enteritis. J. Appl. Biomater. Funct. Mater. 2024, 22, 22808000241289022. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, D.; Wang, H.; Qiao, R.; Li, C. Guanosine-based multidrug strategy delivery for synergistic anti-inflammation. ACS Macro. Lett. 2024, 13, 260–265. [Google Scholar] [CrossRef]
- Ma, Y.; Tong, X.; Huang, Y.; Zhou, X.; Yang, C.; Chen, J.; Dai, F.; Xiao, B. Oral administration of hydrogel-embedding silk sericin alleviates ulcerative colitis through wound healing, anti-inflammation, and anti-oxidation. ACS Biomater. Sci. Eng. 2019, 5, 6231–6242. [Google Scholar] [CrossRef]
- Sun, J.; Xue, P.; Liu, J.; Huang, L.; Lin, G.; Ran, K.; Yang, J.; Lu, C.; Zhao, Y.-Z.; Xu, H.-L. Self-cross-linked hydrogel of cysteamine-grafted γ-polyglutamic acid stabilized tripeptide KPV for alleviating TNBS-induced ulcerative colitis in rats. ACS Biomater. Sci. Eng. 2021, 7, 4859–48692. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, P.; Lin, G.; Tong, M.; Yang, J.; Zhang, Y.; Ran, K.; Zhuge, D.; Yao, Q.; Xu, H. A KPV-binding double-network hydrogel restores gut mucosal barrier in an inflamed colon. Acta Biomater. 2022, 143, 233–252. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.-J.; Lee, S.; Kim, T.Y.; Yu, S.E.; Kim, H.-S.; Chung, Y.S.; Chung, S.; Park, S.; Shin, Y.C.; Wang, E.K. Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioact. Mater. 2022, 18, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Brusini, R.; Varna, M.; Couvreur, P. Advanced nanomedicines for the treatment of inflammatory diseases. Adv. Drug Deliv. Rev. 2020, 157, 161–178. [Google Scholar] [CrossRef]
- Laroui, H.; Viennois, E.; Xiao, B.; Canup, B.S.B.; Geem, D.; Denning, T.L.; Merlin, D. Fab’-bearing siRNA TNFα-loaded nanoparticles targeted to colonic macrophages offer an effective therapy for experimental colitis. J. Control. Release 2014, 186, 41–53. [Google Scholar] [CrossRef]
- Wang, X.; Peng, J.; Cai, P.; Xia, Y.; Yi, C.; Shang, A.; Akanyibah, F.A.; Mao, F. The emerging role of the gut microbiota and its application in inflammatory bowel disease. Biomed. Pharmacother. 2024, 179, 117302. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zhang, M.; Yu, Z.; Zhang, M. Oral administration of platinum nanoparticles with SOD/CAT cascade catalytic activity to alleviate ulcerative colitis. J. Funct. Biomater. 2023, 14, 548. [Google Scholar] [CrossRef]
- Zhuo, Z.; Guo, K.; Luo, Y.; Yang, Q.; Wu, H.; Zeng, R.; Jiang, R.; Li, J.; Wei, R.; Lian, Q. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles. Theranostics 2024, 14, 528–546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Xu, C.; Liu, D.; Han, M.K.; Wang, L.; Merlin, D. Oral delivery of nanoparticles loaded with ginger active compound, 6-shogaol, attenuates ulcerative colitis and promotes wound healing in a murine model of ulcerative colitis. J. Crohns Colitis 2018, 12, 217–229. [Google Scholar] [CrossRef]
- Liu, H.; Cai, Z.; Wang, F.; Hong, L.; Deng, L.; Zhong, J.; Wang, Z.; Cui, W. Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv. Sci. 2021, 8, e2101619. [Google Scholar] [CrossRef]
- Araki, T.; Mitsuyama, K.; Yamasaki, H.; Morita, M.; Tsuruta, K.; Mori, A.; Yoshimura, T.; Fukunaga, S.; Kuwaki, K.; Yoshioka, S.; et al. Therapeutic potential of a self-assembling peptide hydrogel to treat colonic injuries associated with inflammatory bowel disease. J. Crohns Colitis 2021, 15, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
Hydrogel Name | Response Mode | Delivery Method | Delivery of Substances | Application Forms of Hydrogel | Sustained-Release Effect | References |
---|---|---|---|---|---|---|
GBR hydrogel | ROS/pH dual-responsive hydrogel | Rectal injection administration | Rutin | Injectable hydrogel | pH = 7.4, 37 °C, 24 h, the release rate is less than 35%, and 20% at 25 °C; pH = 6.8, 37 °C, 12 h, the release rate is approximately 70% and 85% after 24 h; pH = 6.8 + 10 μM H2O2, 37 °C, 8 h, the release rate exceeds 90%, and nearly complete release occurs after 12 h, with a faster release rate. | [10] |
HEP-Ag-BSA | Versatile protein hydrogel | Rectal enema administration | HEP | Injectable hydrogel | 1 d, the heparin release rate was 40.4 ± 4.51%; 8 d, the release rate increased to 93.3 ± 4.16%; 1 d, Ag+ release rate was 44.7 ± 4.46%; 8 d, the release rate increased to 94.7 ± 3.06%. | [11] |
C/S-MSe | pH-sensitive hydrogel | Oral administration | M-SeNPs | Hydrogel bead | pH = 1.2, 24 h, the cumulative release of M-SeNPs from C/S-MSe hydrogel microbeads is 19.8%; pH = 6.8, 24 h, the cumulative release of M-SeNPs from C/S-MSe hydrogel microbeads is 46.1%. | [12] |
Cu2(Olsa)/Gel | pH-sensitive hydrogel | Oral administration | Cu2(Olsa) nanoneedle | bioMOF/hydrogel platform | In SIF, 4 h, the release of Olsalazine sodium is 71.7%; pH = 5–6, the Olsa release rate is 20.3%. | [13] |
PC/PAM hydrogel | pH-sensitive enzyme-triggered hydrogel | Rectal administration | Bud | Hydrogel-based composite drug delivery system | PC/PAM hydrogel under the F3 optimized formulation: pH = 1.5, 2 h, the cumulative release rate is 7%; pH = 7.4, 3 h, the cumulative release rate is 36%. | [14] |
Hydrogel Name | Response Mode | Delivery Method | Delivery of Substances | Sustained-Release Effect | References |
---|---|---|---|---|---|
CUR/EMO NE@SA | pH-sensitive hydrogel | Oral administration | CUR and EMO | pH = 1.2, 2 h, little drug release; pH = 6.8, 4 h, the cumulative drug release was about 20%; pH = 7.8, the cumulative drug release was about 70%. | [23] |
SP@Rh-Gel | pH-sensitive hydrogel | Oral administration | Rh | pH = 1.8, the Rh release rate is minimal; pH = 7.4, 72 h, the Rh release rate reaches 100%. | [24] |
EcN@Gel | NTR-labile peptidic hydrogel | Oral administration | EcN | pH = 2.5, NTR is absent, 2 h, EcN releases almost none; pH = 7.8, NTR is present, 6 h, EcN exhibits the fastest and largest release; PBS (pH = 6.8) + NTR releases more NTR than PBS (pH = 7.8). | [25] |
PPy/PFD@lnulin gel | pH-sensitive hydrogel | Oral administration | PPy and PFD | Prolonged and complete release within 24 h. | [26] |
Pur@HA-SH-zein NPs in hydrogel | Thermosensitive hydrogel | Rectal injection administration | Puerarin | 48 h, the cumulative release rate was 77.61%. | [27] |
GBQ hydrogel | ROS/pH dual-responsive hydrogel | Rectal enema administration | Que | pH = 6.8, 8 h, the release rate was 82.7%; 24 h, it reached 92%; Add H2O2, 8 h, the release rate increased to 95.2%; 24 h, it reached 99%. pH = 7.4, 8 h, the release rate was 65.4%; 24 h, it was 78%. | [28] |
HCD-bFGF-ALG Hydrogel | Multifunctional mechanically- resilient self-healing hydrogel | Rectal enema administration | DEX, bFGF, ALG | The amount of residual hydrogel is 15% at pH 5.5 and 28% at pH 7.4. | [29] |
Mesa/Gel | Injectable thermosensitive hydrogel | Rectal injection administration | Me | In PBS at 37 °C, the cumulative release rates of Mesa in Mesa/P2 and Mesa/P4 are 79.3% and 76.1%, respectively. | [30] |
Gel-Tel | Thermosensitive hydrogel | Rectal injection administration | Tel | In simulated colonic fluid, after 12 h, Gel-Tel achieved only approximately a 50% release rate. | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wu, J.; Zan, J.; Li, Z.; Liu, L.; Ding, G. Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair. Polymers 2025, 17, 1430. https://doi.org/10.3390/polym17111430
Sun Y, Wu J, Zan J, Li Z, Liu L, Ding G. Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair. Polymers. 2025; 17(11):1430. https://doi.org/10.3390/polym17111430
Chicago/Turabian StyleSun, Yuhui, Juefei Wu, Jiaqi Zan, Zekun Li, Luyun Liu, and Gang Ding. 2025. "Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair" Polymers 17, no. 11: 1430. https://doi.org/10.3390/polym17111430
APA StyleSun, Y., Wu, J., Zan, J., Li, Z., Liu, L., & Ding, G. (2025). Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair. Polymers, 17(11), 1430. https://doi.org/10.3390/polym17111430