Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair
Abstract
:1. Introduction
2. Different Vascular Adhesives
2.1. Natural Material-Derived Vascular Adhesive
2.1.1. Fibrin-Based Adhesives
2.1.2. Silk Fibroin-Based Adhesives
2.1.3. Gelatin-Based Adhesives
2.1.4. Polysaccharides-Based Adhesives
2.2. Synthetic-Based Vascular Adhesive
2.2.1. Polyurethane-Based Adhesive
2.2.2. Polyacrylic Acid-Based Adhesive
2.2.3. Polyethylene Glycol (PEG)-Based Adhesive
2.3. Recombinant-Protein Based Hydrogel
3. Applications and Outlook of Vascular Adhesive Hydrogels
3.1. Applications of Adhesive Hydrogels in Vascular Surgery and Repair
3.1.1. Hemostasis
3.1.2. Vascular Anastomosis
3.1.3. Wound Healing
3.1.4. Tissue Regeneration
3.2. Current Challenges and Future Directions
3.2.1. Need for Self-Healing Hydrogels
3.2.2. Stimuli-Responsive Hydrogels for Targeted Delivery
3.2.3. Minimizing Immune Response
3.2.4. Newer Methods of Fabrication
4. Conclusions
Funding
Conflicts of Interest
References
- Pfeifer, R.; Tarkin, I.S.; Rocos, B.; Pape, H.-C. Patterns of Mortality and Causes of Death in Polytrauma Patients—Has Anything Changed? Injury 2009, 40, 907–911. [Google Scholar] [CrossRef] [PubMed]
- El Sayad, M.; Noureddine, H. Recent Advances of Hemorrhage Management in Severe Trauma. Emerg. Med. Int. 2014, 2014, 638956. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, D.S.; Lefering, R.; Wade, C.E. Impact of Hemorrhage on Trauma Outcome: An Overview of Epidemiology, Clinical Presentations, and Therapeutic Considerations. J. Trauma Inj. Infect. Crit. Care 2006, 60, S3–S11. [Google Scholar] [CrossRef]
- Kristensen, K.L.; Rauer, L.J.; Mortensen, P.E.; Kjeldsen, B.J. Reoperation for Bleeding in Cardiac Surgery. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 709–713. [Google Scholar] [CrossRef]
- Grines, C.L.; Box, L.C.; Mamas, M.A.; Abbott, J.D.; Blankenship, J.C.; Carr, J.G.; Curzen, N.; Kent, W.D.T.; Khatib, Y.; Matteau, A.; et al. SCAI Expert Consensus Statement on Percutaneous Coronary Intervention Without On-Site Surgical Backup. JACC Cardiovasc. Interv. 2023, 16, 847–860. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Carmona, M.J.C.; Junior, J.O.C.A. Bleeding and Damage Control Surgery. Curr. Opin. Anaesthesiol. 2016, 29, 229–233. [Google Scholar] [CrossRef]
- Naimer, S.A.; Tanami, M.; Malichi, A.; Moryosef, D. Control of Traumatic Wound Bleeding by Compression with a Compact Elastic Adhesive Dressing. Mil. Med. 2006, 171, 644–647. [Google Scholar] [CrossRef]
- Lopera, J. Embolization in Trauma: Principles and Techniques. Semin. Interv. Radiol. 2010, 27, 014–028. [Google Scholar] [CrossRef]
- Toriumi, D.M.; Raslan, W.F.; Friedman, M.; Tardy, M.E. Variable Histotoxicity of Histoacryl When Used in a Subcutaneous Site: An Experimental Study. Laryngoscope 1991, 101, 339–343. [Google Scholar] [CrossRef]
- Kim, J.C.; Bassage, S.D.; Kempski, M.H.; Del Cerro, M.; Park, S.B.; Aquavella, J.V. Evaluation of Tissue Adhesives in Closure of Scleral Tunnel Incisions. J. Cataract. Refract. Surg. 1995, 21, 320–325. [Google Scholar] [CrossRef]
- Camasão, D.B.; Mantovani, D. The Mechanical Characterization of Blood Vessels and Their Substitutes in the Continuous Quest for Physiological-Relevant Performances. A Critical Review. Mater. Today Bio 2021, 10, 100106. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic Strategies for Enhancing Angiogenesis in Wound Healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, X.; Zhang, Y.; Ye, D.; Yu, K.; Cao, W.; Zhang, L.; Zheng, H.; Sun, Z.; Guo, C.; et al. White-Light Crosslinkable Milk Protein Bioadhesive with Ultrafast Gelation for First-Aid Wound Treatment. Biomater. Res. 2023, 27, 6. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Yu, X.; Fan, D. Nanocomposite Hydrogel for Real-Time Wound Status Monitoring and Comprehensive Treatment. Adv. Sci. 2024, 11, 2405924. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Wang, Y.; Liu, Q.; Liu, M.; Yang, F.; Wang, C.; Pan, P.; Wang, L.; Chen, L.; Chen, J. Real-Time Monitoring Flexible Hydrogels Based on Dual Physically Cross-Linked Network for Promoting Wound Healing. Chin. Chem. Lett. 2023, 34, 108262. [Google Scholar] [CrossRef]
- DeAnda, A.; Elefteriades, J.A.; Hasaniya, N.W.; Lattouf, O.M.; Lazzara, R.R. Improving Outcomes through the Use of Surgical Sealants for Anastomotic Sealing during Cardiovascular Surgery. J. Card. Surg. 2009, 24, 325–333. [Google Scholar] [CrossRef]
- Perrin, B.R.M.; Braccini, M.; Bidan, C.M.; Derail, C.; Papon, E.; Leterrier, Y.; Barrandon, Y. Adhesion of Surgical Sealants Used in Cardiothoracic and Vascular Surgery. Int. J. Adhes. Adhes. 2016, 70, 81–89. [Google Scholar] [CrossRef]
- Bhat, Y.M.; Banerjee, S.; Barth, B.A.; Chauhan, S.S.; Gottlieb, K.T.; Konda, V.; Maple, J.T.; Murad, F.M.; Pfau, P.R.; Pleskow, D.K.; et al. Tissue Adhesives: Cyanoacrylate Glue and Fibrin Sealant. Gastrointest. Endosc. 2013, 78, 209–215. [Google Scholar] [CrossRef]
- MacGillivray, T.E. Fibrin Sealants and Glues. J. Card. Surg. 2003, 18, 480–485. [Google Scholar] [CrossRef]
- Park, C.H.; Woo, K.M. Fibrin-Based Biomaterial Applications in Tissue Engineering and Regenerative Medicine. In Biomimetic Medical Materials; Noh, I., Ed.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1064, pp. 253–261. [Google Scholar] [CrossRef]
- Sultan, M.T.; Hong, H.; Lee, O.J.; Ajiteru, O.; Lee, Y.J.; Lee, J.S.; Lee, H.; Kim, S.H.; Park, C.H. Silk Fibroin-Based Biomaterials for Hemostatic Applications. Biomolecules 2022, 12, 660. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, X.; Cai, P.; Huang, X.; Huang, Y.; Liu, R.; Zhang, M.; Song, J.; Chen, X.; Yang, H. A Silk-Based Sealant with Tough Adhesion for Instant Hemostasis of Bleeding Tissues. Nanoscale Horiz. 2019, 4, 1333–1341. [Google Scholar] [CrossRef]
- Zhou, F.; Hong, Y.; Liang, R.; Zhang, X.; Liao, Y.; Jiang, D.; Zhang, J.; Sheng, Z.; Xie, C.; Peng, Z.; et al. Rapid Printing of Bio-Inspired 3D Tissue Constructs for Skin Regeneration. Biomaterials 2020, 258, 120287. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Zeng, Y.; Zaldivar-Silva, D.; Agüero, L.; Wang, S. Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules 2023, 28, 1473. [Google Scholar] [CrossRef]
- Xu, X.; Jha, A.K.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. Hyaluronic Acid-Based Hydrogels: From a Natural Polysaccharide to Complex Networks. Soft Matter 2012, 8, 3280–3294. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.S.; Lee, C.; Park, H.; Yang, K.; Jin, Y.; Ryu, J.H.; Hong, K.S.; Moon, S.; Chung, H.; et al. Tissue Adhesive Catechol-Modified Hyaluronic Acid Hydrogel for Effective, Minimally Invasive Cell Therapy. Adv. Funct. Mater. 2015, 25, 3814–3824. [Google Scholar] [CrossRef]
- Schulten, L.; Spillner, J.; Kanzler, S.; Teubner, A.; Jockenhoevel, S.; Apel, C. A Polyurethane-based Surgical Adhesive for Sealing Blood Vessel Anastomoses—A Feasibility Study in Pigs. J. Biomed. Mater. Res. 2022, 110, 1922–1931. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, J.; Sun, F.; Dou, X.; Liu, J.; Wang, Y.; Li, M.; Gao, J.; Liu, X.; Wang, X.; et al. A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue. Adv. Mater. 2023, 35, 2208622. [Google Scholar] [CrossRef]
- Elbarbary, A.M.; Ghobashy, M.M.; El Khalafawy, G.K.; Salem, M.A.; Kodous, A.S. Radiation Cross-Linking of pH-Sensitive Acrylic Acid Hydrogel Based Polyvinylpyrrolidone/2-Dimethylamino Ethyl Methacrylate Loaded with Betamethasone Dipropionate Drug and in Vitro Anti-Inflammatory Assessment. J. Drug Deliv. Sci. Technol. 2023, 89, 105024. [Google Scholar] [CrossRef]
- Ito, T.; Otani, N.; Fujii, K.; Mori, K.; Eriguchi, M.; Koyama, Y. Bioadhesive and Biodissolvable Hydrogels Consisting of Water-swellable Poly(Acrylic Acid)/Poly(Vinylpyrrolidone) Complexes. J. Biomed. Mater. Res. 2020, 108, 503–512. [Google Scholar] [CrossRef]
- Kim, E.; Jeon, J.; Zhu, Y.; Hoppe, E.D.; Jun, Y.-S.; Genin, G.M.; Zhang, F. A Biosynthetic Hybrid Spidroin-Amyloid-Mussel Foot Protein for Underwater Adhesion on Diverse Surfaces. ACS Appl. Mater. Interfaces 2021, 13, 48457–48468. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, K.Z.; Zhang, X.; Jaeger, J.; Kim, E.; Li, J.; Belaygorod, L.; Arif, B.; Genin, G.M.; Foston, M.B.; et al. Genetically Engineered Protein-Based Bioadhesives with Programmable Material Properties. ACS Appl. Mater. Interfaces 2023, 15, 56786–56795. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dai, C.; Fan, L.; Jiang, Y.; Liu, C.; Zhou, Z.; Guan, P.; Tian, Y.; Xing, J.; Li, X.; et al. Injectable Self-Healing Natural Biopolymer-Based Hydrogel Adhesive with Thermoresponsive Reversible Adhesion for Minimally Invasive Surgery. Adv. Funct. Mater. 2021, 31, 2007457. [Google Scholar] [CrossRef]
- Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv. Healthc. Mater. 2019, 8, 1900670. [Google Scholar] [CrossRef] [PubMed]
- Long, S.; Xie, C.; Lu, X. Natural Polymer-based Adhesive Hydrogel for Biomedical Applications. Biosurf. Biotribol. 2022, 8, 69–94. [Google Scholar] [CrossRef]
- Sindhi, K.; Pingili, R.B.; Beldar, V.; Bhattacharya, S.; Rahaman, J.; Mukherjee, D. The Role of Biomaterials-Based Scaffolds in Advancing Skin Tissue Construct. J. Tissue Viabil. 2025, 34, 100858. [Google Scholar] [CrossRef]
- Sanz-Horta, R.; Matesanz, A.; Gallardo, A.; Reinecke, H.; Jorcano, J.L.; Acedo, P.; Velasco, D.; Elvira, C. Technological Advances in Fibrin for Tissue Engineering. J. Tissue Eng. 2023, 14, 20417314231190288. [Google Scholar] [CrossRef]
- Brown, A.C.; Barker, T.H. Fibrin-Based Biomaterials: Modulation of Macroscopic Properties through Rational Design at the Molecular Level. Acta Biomater. 2014, 10, 1502–1514. [Google Scholar] [CrossRef]
- Erdogan, D.; Van Gulik, T.M. Evolution of Fibrinogen-coated Collagen Patch for Use as a Topical Hemostatic Agent. J. Biomed. Mater. Res. 2008, 85B, 272–278. [Google Scholar] [CrossRef]
- Xing, X.; Han, Y.; Cheng, H. Biomedical Applications of Chitosan/Silk Fibroin Composites: A Review. Int. J. Biol. Macromol. 2023, 240, 124407. [Google Scholar] [CrossRef]
- Haiyan, Z.; Baoqi, Z. Functional Silk Fibroin Hydrogels: Preparation, Properties and Applications. J. Mater. Chem. B 2021, 9, 1238. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, Y.J.; Chao, J.R.; Kim, D.Y.; Sultan, M.T.; Lee, H.J.; Lee, J.M.; Lee, J.S.; Lee, O.J.; Hong, H.; et al. Rapidly Photocurable Silk Fibroin Sealant for Clinical Applications. NPG Asia Mater. 2020, 12, 46. [Google Scholar] [CrossRef]
- Madappura, A.P.; Madduri, S. A Comprehensive Review of Silk-Fibroin Hydrogels for Cell and Drug Delivery Applications in Tissue Engineering and Regenerative Medicine. Comput. Struct. Biotechnol. J. 2023, 21, 4868–4886. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Suzuki, S.; Tabayashi, N.; Abe, T.; Hayata, Y.; Hirose, T.; Hiraga, S.; Niwa, K.; Fukuba, R.; Takeda, M.; et al. Experimental Use of Crosslinked Gelatin Glue for Arterial Hemostasis in Cardiovascular Surgery. BME 2015, 25, 361–370. [Google Scholar] [CrossRef]
- Song, F.; Kong, Y.; Shao, C.; Cheng, Y.; Lu, J.; Tao, Y.; Du, J.; Wang, H. Chitosan-Based Multifunctional Flexible Hemostatic Bio-Hydrogel. Acta Biomater. 2021, 136, 170–183. [Google Scholar] [CrossRef]
- Xia, Y.; Yang, R.; Wang, H.; Li, Y.; Fu, C. Application of Chitosan-Based Materials in Surgical or Postoperative Hemostasis. Front. Mater. 2022, 9, 994265. [Google Scholar] [CrossRef]
- Trombino, S.; Servidio, C.; Curcio, F.; Cassano, R. Strategies for Hyaluronic Acid-Based Hydrogel Design in Drug Delivery. Pharmaceutics 2019, 11, 407. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Ma, J.; Khoo, T.S.; Abdullah, N.; Nik Md Noordin Kahar, N.N.F.; Abdul Hamid, Z.A.; Mustapha, M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front. Bioeng. Biotechnol. 2021, 9, 735090. [Google Scholar] [CrossRef]
- Yuan, Y.; Shen, S.; Fan, D. A Physicochemical Double Cross-Linked Multifunctional Hydrogel for Dynamic Burn Wound Healing: Shape Adaptability, Injectable Self-Healing Property and Enhanced Adhesion. Biomaterials 2021, 276, 120838. [Google Scholar] [CrossRef]
- Dhandapani, V.; Ringuette, V.; Desrochers, M.; Sirois, M.; Vermette, P. Composition, Host Responses and Clinical Applications of Bioadhesives. J. Biomed. Mater. Res. 2022, 110, 2779–2797. [Google Scholar] [CrossRef]
- Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A.H.; Mujtaba, M.A.; Alghamdi, N.A.; Wageh, S.; Ramesh, K.; Ramesh, S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers 2020, 12, 2702. [Google Scholar] [CrossRef]
- Ni, P.; Ye, S.; Xiong, S.; Zhong, M.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. A Chitosan-Optimized Polyethyleneimine/Polyacrylic Acid Multifunctional Hydrogel for Reducing the Risk of Ulcerative Arterial Bleeding. J. Mater. Chem. B 2023, 11, 5207–5222. [Google Scholar] [CrossRef]
- Slezak, P.; Klang, A.; Ferguson, J.; Monforte, X.; Schmidt, P.; Bauder, B.; Url, A.; Osuchowski, M.; Redl, H.; Spazierer, D.; et al. Tissue Reactions to Polyethylene Glycol and Glutaraldehyde-Based Surgical Sealants in a Rabbit Aorta Model. J. Biomater. Appl. 2020, 34, 1330–1340. [Google Scholar] [CrossRef]
- Doraiswamy, A.; Crombez, R.; Shen, W.; Lee, Y.-S.; Narayan, R.J. Microscale Patterning of Two-Component Biomedical Hydrogel. J. Adhes. 2010, 86, 62–71. [Google Scholar] [CrossRef]
- Ge, L.; Chen, S. Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers 2020, 12, 939. [Google Scholar] [CrossRef]
- Bal-Ozturk, A.; Cecen, B.; Avci-Adali, M.; Topkaya, S.N.; Alarcin, E.; Yasayan, G.; Ethan, Y.-C.; Bulkurcuoglu, B.; Akpek, A.; Avci, H.; et al. Tissue Adhesives: From Research to Clinical Translation. Nano Today 2021, 36, 101049. [Google Scholar] [CrossRef]
- Ma, C.; Sun, J.; Li, B.; Feng, Y.; Sun, Y.; Xiang, L.; Wu, B.; Xiao, L.; Liu, B.; Petrovskii, V.S.; et al. Ultra-Strong Bio-Glue from Genetically Engineered Polypeptides. Nat. Commun. 2021, 12, 3613. [Google Scholar] [CrossRef]
- Yin, Y.; Roas-Escalona, N.; Linder, M.B. Molecular Engineering of a Spider Silk and Mussel Foot Hybrid Protein Gives a Strong and Tough Biomimetic Adhesive. Adv. Mater. Inter. 2024, 11, 2300934. [Google Scholar] [CrossRef]
- Jeon, J.; Subramani, S.V.; Lee, K.Z.; Jiang, B.; Zhang, F. Microbial Synthesis of High-Molecular-Weight, Highly Repetitive Protein Polymers. Int. J. Mol. Sci. 2023, 24, 6416. [Google Scholar] [CrossRef]
- Lee, K.Z.; Jeon, J.; Jiang, B.; Subramani, S.V.; Li, J.; Zhang, F. Protein-Based Hydrogels and Their Biomedical Applications. Molecules 2023, 28, 4988. [Google Scholar] [CrossRef]
- Lim, S.; Choi, Y.S.; Kang, D.G.; Song, Y.H.; Cha, H.J. The Adhesive Properties of Coacervated Recombinant Hybrid Mussel Adhesive Proteins. Biomaterials 2010, 31, 3715–3722. [Google Scholar] [CrossRef]
- Kim, E.; Dai, B.; Qiao, J.B.; Li, W.; Fortner, J.D.; Zhang, F. Microbially Synthesized Repeats of Mussel Foot Protein Display Enhanced Underwater Adhesion. ACS Appl. Mater. Interfaces 2018, 10, 43003–43012. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Qin, X.; Qiao, J.B.; Zeng, Q.; Fortner, J.D.; Zhang, F. Graphene Oxide/Mussel Foot Protein Composites for High-Strength and Ultra-Tough Thin Films. Sci. Rep. 2020, 10, 19082. [Google Scholar] [CrossRef]
- Li, J.; Zhang, F. Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int. J. Mol. Sci. 2021, 22, 10698. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Yu, H.; Dai, B.; Jun, Y.-S.; Zhang, F. Microbially Synthesized Polymeric Amyloid Fiber Promotes β-Nanocrystal Formation and Displays Gigapascal Tensile Strength. ACS Nano 2021, 15, 11843–11853. [Google Scholar] [CrossRef]
- Dai, B.; Sargent, C.J.; Gui, X.; Liu, C.; Zhang, F. Fibril Self-Assembly of Amyloid–Spider Silk Block Polypeptides. Biomacromolecules 2019, 20, 2015–2023. [Google Scholar] [CrossRef]
- Subramani, S.V.; Li, J.; Lee, K.Z.; Fisher, N.; Zhang, F. Blending Recombinant Amyloid Silk Proteins Generates Composite Fibers with Tunable Mechanical Properties. Mater. Adv. 2024, 5, 3506–3516. [Google Scholar] [CrossRef]
- Li, J.; Jiang, B.; Chang, X.; Yu, H.; Han, Y.; Zhang, F. Bi-Terminal Fusion of Intrinsically-Disordered Mussel Foot Protein Fragments Boosts Mechanical Strength for Protein Fibers. Nat. Commun. 2023, 14, 2127. [Google Scholar] [CrossRef]
- Schmuck, B.; Greco, G.; Barth, A.; Pugno, N.M.; Johansson, J.; Rising, A. High-Yield Production of a Super-Soluble Miniature Spidroin for Biomimetic High-Performance Materials. Mater. Today 2021, 50, 16–23. [Google Scholar] [CrossRef]
- Pourshahrestani, S.; Zeimaran, E.; Kadri, N.A.; Mutlu, N.; Boccaccini, A.R. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv. Healthc. Mater. 2020, 9, 2000905. [Google Scholar] [CrossRef]
- Li, J.; Celiz, A.D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B.R.; Vasilyev, N.V.; Vlassak, J.J.; Suo, Z.; et al. Tough Adhesives for Diverse Wet Surfaces. Science 2017, 357, 378–381. [Google Scholar] [CrossRef]
- Gaharwar, A.K.; Avery, R.K.; Assmann, A.; Paul, A.; McKinley, G.H.; Khademhosseini, A.; Olsen, B.D. Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage. ACS Nano 2014, 8, 9833–9842. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, X.; Ma, X.; Cui, X.; Yi, Z.; Li, X. Cellulose/Keratin–Catechin Nanocomposite Hydrogel for Wound Hemostasis. J. Mater. Chem. B 2018, 6, 6133–6141. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Wang, Y.; Chen, Y.; Zhao, Y.; Zhang, Q.; Zheng, X.; Chen, L.; Zhang, L. Strong and Rapidly Self-Healing Hydrogels: Potential Hemostatic Materials. Adv. Healthc. Mater. 2016, 5, 2813–2822. [Google Scholar] [CrossRef] [PubMed]
- Song, C.K.; Kim, M.-K.; Lee, J.; Davaa, E.; Baskaran, R.; Yang, S.-G. Dopa-Empowered Schiff Base Forming Alginate Hydrogel Glue for Rapid Hemostatic Control. Macromol. Res. 2019, 27, 119–125. [Google Scholar] [CrossRef]
- Sakoda, M.; Kaneko, M.; Ohta, S.; Qi, P.; Ichimura, S.; Yatomi, Y.; Ito, T. Injectable Hemostat Composed of a Polyphosphate-Conjugated Hyaluronan Hydrogel. Biomacromolecules 2018, 19, 3280–3290. [Google Scholar] [CrossRef]
- Bu, Y.; Zhang, L.; Liu, J.; Zhang, L.; Li, T.; Shen, H.; Wang, X.; Yang, F.; Tang, P.; Wu, D. Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations. ACS Appl. Mater. Interfaces 2016, 8, 12674–12683. [Google Scholar] [CrossRef]
- Hwang, D.S.; Zeng, H.; Lu, Q.; Israelachvili, J.; Waite, J.H. Adhesion Mechanism in a DOPA-Deficient Foot Protein from Green Mussels. Soft Matter 2012, 8, 5640. [Google Scholar] [CrossRef]
- Chan Choi, Y.; Choi, J.S.; Jung, Y.J.; Cho, Y.W. Human Gelatin Tissue-Adhesive Hydrogels Prepared by Enzyme-Mediated Biosynthesis of DOPA and Fe3+ Ion Crosslinking. J. Mater. Chem. B 2014, 2, 201–209. [Google Scholar] [CrossRef]
- Rajabi, N.; Kharaziha, M.; Emadi, R.; Zarrabi, A.; Mokhtari, H.; Salehi, S. An Adhesive and Injectable Nanocomposite Hydrogel of Thiolated Gelatin/Gelatin Methacrylate/Laponite® as a Potential Surgical Sealant. J. Colloid Interface Sci. 2020, 564, 155–169. [Google Scholar] [CrossRef]
- Krishnadoss, V.; Melillo, A.; Kanjilal, B.; Hannah, T.; Ellis, E.; Kapetanakis, A.; Hazelton, J.; San Roman, J.; Masoumi, A.; Leijten, J.; et al. Bioionic Liquid Conjugation as Universal Approach To Engineer Hemostatic Bioadhesives. ACS Appl. Mater. Interfaces 2019, 11, 38373–38384. [Google Scholar] [CrossRef]
- Muñoz Taboada, G.; Dosta, P.; Edelman, E.R.; Artzi, N. Sprayable Hydrogel for Instant Sealing of Vascular Anastomosis. Adv. Mater. 2022, 34, 2203087. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, L.; Cheng, H.; Zhu, J.; Li, X.; Ye, S.; Li, X. Hydrogel-Based Dressings Designed to Facilitate Wound Healing. Mater. Adv. 2024, 5, 1364–1394. [Google Scholar] [CrossRef]
- Li, Y.; Xu, T.; Tu, Z.; Dai, W.; Xue, Y.; Tang, C.; Gao, W.; Mao, C.; Lei, B.; Lin, C. Bioactive Antibacterial Silica-Based Nanocomposites Hydrogel Scaffolds with High Angiogenesis for Promoting Diabetic Wound Healing and Skin Repair. Theranostics 2020, 10, 4929–4943. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.J.; Bae, S.K.; Jung, Y.S.; Kim, J.C.; Kim, J.S.; Park, S.K.; Suh, J.S.; Yi, S.J.; Ahn, S.H.; Lim, J.O. Enhanced Wound Healing Using a 3D Printed VEGF-Mimicking Peptide Incorporated Hydrogel Patch in a Pig Model. Biomed. Mater. 2021, 16, 045013. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Volkova, E.; Blatchley, M.R.; Gerecht, S. Hydrogel Vehicles for Sequential Delivery of Protein Drugs to Promote Vascular Regeneration. Adv. Drug Deliv. Rev. 2019, 149–150, 95–106. [Google Scholar] [CrossRef]
- Blache, U.; Ehrbar, M. Inspired by Nature: Hydrogels as Versatile Tools for Vascular Engineering. Adv. Wound Care 2018, 7, 232–246. [Google Scholar] [CrossRef]
- Elomaa, L.; Lindner, M.; Leben, R.; Niesner, R.; Weinhart, M. In Vitro Vascularization of Hydrogel-Based Tissue Constructs via a Combined Approach of Cell Sheet Engineering and Dynamic Perfusion Cell Culture. Biofabrication 2023, 15, 015004. [Google Scholar] [CrossRef]
- Karchoubi, F.; Afshar Ghotli, R.; Pahlevani, H.; Baghban Salehi, M. New Insights into Nanocomposite Hydrogels; a Review on Recent Advances in Characteristics and Applications. Adv. Ind. Eng. Polym. Res. 2024, 7, 54–78. [Google Scholar] [CrossRef]
- Moura, D.; Rohringer, S.; Ferreira, H.P.; Pereira, A.T.; Barrias, C.C.; Magalhães, F.D.; Bergmeister, H.; Gonçalves, I.C. Long-Term in Vivo Degradation and Biocompatibility of Degradable pHEMA Hydrogels Containing Graphene Oxide. Acta Biomater. 2024, 173, 351–364. [Google Scholar] [CrossRef]
- Akalp, U.; Bryant, S.J.; Vernerey, F.J. Tuning Tissue Growth with Scaffold Degradation in Enzyme-Sensitive Hydrogels: A Mathematical Model. Soft Matter 2016, 12, 7505–7520. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, J.-J.; Han, C.-R.; Duan, J.-F. Keys to Enhancing Mechanical Properties of Silica Nanoparticle Composites Hydrogels: The Role of Network Structure and Interfacial Interactions. Compos. Sci. Technol. 2014, 95, 1–7. [Google Scholar] [CrossRef]
- Taylor, D.L.; In Het Panhuis, M. Self-Healing Hydrogels. Adv. Mater. 2016, 28, 9060–9093. [Google Scholar] [CrossRef]
- Demirci, G.; Niedźwiedź, M.J.; Kantor-Malujdy, N.; El Fray, M. Elastomer–Hydrogel Systems: From Bio-Inspired Interfaces to Medical Applications. Polymers 2022, 14, 1822. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Di Marco, G.; Iudin, D.; Viola, M.; Van Nostrum, C.F.; Van Ravensteijn, B.G.P.; Vermonden, T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023, 56, 8377–8392. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Li, J.; Li, P.; Li, S. Gecko-Inspired Controllable Adhesive: Structure, Fabrication, and Application. Biomimetics 2024, 9, 149. [Google Scholar] [CrossRef]
- Dou, W.; Zeng, X.; Zhu, S.; Zhu, Y.; Liu, H.; Li, S. Mussel-Inspired Injectable Adhesive Hydrogels for Biomedical Applications. Int. J. Mol. Sci. 2024, 25, 9100. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X. Globule-to-Coil Transition of a Single Homopolymer Chain in Solution. Phys. Rev. Lett. 1998, 80, 4092–4094. [Google Scholar] [CrossRef]
- Li, S.; Wang, W.; Li, W.; Xie, M.; Deng, C.; Sun, X.; Wang, C.; Liu, Y.; Shi, G.; Xu, Y.; et al. Fabrication of Thermoresponsive Hydrogel Scaffolds with Engineered Microscale Vasculatures. Adv. Funct. Mater. 2021, 31, 2102685. [Google Scholar] [CrossRef]
- Lu, P.; Ruan, D.; Huang, M.; Tian, M.; Zhu, K.; Gan, Z.; Xiao, Z. Harnessing the Potential of Hydrogels for Advanced Therapeutic Applications: Current Achievements and Future Directions. Signal Transduct. Target. Ther. 2024, 9, 166. [Google Scholar] [CrossRef]
- Md Fadilah, N.I.; Shahabudin, N.A.; Mohd Razif, R.A.; Sanyal, A.; Ghosh, A.; Baharin, K.I.; Ahmad, H.; Maarof, M.; Motta, A.; Fauzi, M.B. Discovery of Bioactive Peptides as Therapeutic Agents for Skin Wound Repair. J. Tissue Eng. 2024, 15, 20417314241280359. [Google Scholar] [CrossRef]
- Yang, Y.; Ren, Y.; Song, W.; Yu, B.; Liu, H. Rational Design in Functional Hydrogels towards Biotherapeutics. Mater. Des. 2022, 223, 111086. [Google Scholar] [CrossRef]
- Ahmad, N.; Bukhari, S.N.A.; Hussain, M.A.; Ejaz, H.; Munir, M.U.; Amjad, M.W. Nanoparticles Incorporated Hydrogels for Delivery of Antimicrobial Agents: Developments and Trends. RSC Adv. 2024, 14, 13535–13564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Vizetto-Duarte, C.; Moay, Z.K.; Setyawati, M.I.; Rakshit, M.; Kathawala, M.H.; Ng, K.W. Composite Hydrogels in Three-Dimensional in Vitro Models. Front. Bioeng. Biotechnol. 2020, 8, 611. [Google Scholar] [CrossRef] [PubMed]
- De France, K.J.; Hoare, T.; Cranston, E.D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Chu, P.K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543. [Google Scholar] [CrossRef]
- Duan, J.; Fan, W.; Xu, Z.; Cui, L.; Wang, Z.; Nie, Z.; Sui, K. Polyelectrolyte-Mediated Modulation of Spatial Internal Stresses of Hydrogels for Complex 3D Actuators. Angew. Chem. Int. Ed. 2024, 63, e202410383. [Google Scholar] [CrossRef]
- Weigel, N.; Li, Y.; Thiele, J.; Fery, A. From Microfluidics to Hierarchical Hydrogel Materials. Curr. Opin. Colloid Interface Sci. 2023, 64, 101673. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, J.; Delparastan, P.; Wang, H.; Sigg, S.J.; DeFrates, K.G.; Cao, Y.; Messersmith, P.B. Molecular Design Principles of Lysine-DOPA Wet Adhesion. Nat. Commun. 2020, 11, 3895. [Google Scholar] [CrossRef]
Material Type | Properties | Advantages | Disadvantages | References |
---|---|---|---|---|
Fibrin-based | Biocompatible, promotes clotting | Widely used, supports clotting | Weak adhesion, poor durability | [19,20] |
Silk Fibroin-based | Strong, tunable mechanical properties | High biocompatibility, robust adhesion | Poor adhesion to wet tissues, requires modification | [21,22] |
Gelatin-based | Biocompatible, tunable adhesion | Good for tissue integration, tunable adhesion | Limited mechanical strength, processing complexity | [23,24] |
Polysaccharide-based | Biodegradable, hemostatic, antibacterial | Promotes healing, antibacterial properties | Water absorption issues, processing challenges | [25,26] |
Polyurethane-based | Flexible, high mechanical strength | Durable, used in vascular applications | Requires precise application, potential biocompatibility issues | [27,28] |
Polyacrylic Acid-based | Swells in response to pH changes | Responsive to biological environments | Weak adhesion to tissues, swelling control needed | [29,30] |
Polyethylene Glycol (PEG)-based | Hydrophilic, crosslinking for adhesion | Strong adhesion, FDA-approved versions available | Potential cytotoxicity, adhesion strength variability | [16,28] |
Recombinant Protein-based | Bioengineered, highly tunable | Highly customizable, biomimetic adhesion | High production cost | [31,32] |
Accomplished | Challenges | References | |
---|---|---|---|
Rapid Adhesion | Use of mussel-inspired catechol chemistry, fibrin-based adhesives for rapid clot formation, and photopolymerizable hydrogels for fast adhesion. | Further optimization for rapid solidification under physiological conditions; improved adhesion under dynamic vascular environments. | [22,23,63,74,75] |
Tunable Mechanical Properties | Integration of nanomaterials like graphene oxide and silica nanoparticles; hybrid hydrogels developed to enhance flexibility and elasticity. | Precise control over mechanical tuning for different vascular sites; further integration of self-healing mechanisms. | [27,28,30,32,51,65] |
Biofunctionalization | Incorporation of bioactive molecules, such as vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), for enhanced healing. | Long-term bioactivity validation; optimizing controlled release mechanisms for sustained therapeutic effects. | [83,85,86,88,109] |
Biocompatibility | Use of natural polymers (fibrin, silk fibroin, chitosan, gelatin) and synthetic hydrogels (PEG, polyurethane) with validated biocompatibility studies. | Addressing immune response and inflammation concerns in long-term applications; minimizing foreign body reactions. | [20,23,26,36,47] |
Sufficient Mechanical Strength | Development of reinforced polymer networks, multi-functional protein adhesives, and high-strength hydrogel formulations to improve durability. | Achieving physiological mechanical properties of native vascular tissues; balancing strength with flexibility. | [57,69,91,92,93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, J.; Subramani, S.V.; Lee, K.Z.; Elizondo-Benedetto, S.; Zayed, M.A.; Zhang, F. Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair. Polymers 2025, 17, 959. https://doi.org/10.3390/polym17070959
Jeon J, Subramani SV, Lee KZ, Elizondo-Benedetto S, Zayed MA, Zhang F. Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair. Polymers. 2025; 17(7):959. https://doi.org/10.3390/polym17070959
Chicago/Turabian StyleJeon, Juya, Shri Venkatesh Subramani, Kok Zhi Lee, Santiago Elizondo-Benedetto, Mohamed Adel Zayed, and Fuzhong Zhang. 2025. "Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair" Polymers 17, no. 7: 959. https://doi.org/10.3390/polym17070959
APA StyleJeon, J., Subramani, S. V., Lee, K. Z., Elizondo-Benedetto, S., Zayed, M. A., & Zhang, F. (2025). Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair. Polymers, 17(7), 959. https://doi.org/10.3390/polym17070959