Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Gravimetric Analysis
3.2. Micrographs
3.3. FTIR Spectroscopy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Keldibekova, R.; Suleimenova, S.; Nurgozhina, G.; Kopishev, E. Interpolymer Complexes Based on Cellulose Ethers: Application. Polymers 2023, 15, 3326. [Google Scholar] [CrossRef] [PubMed]
- Ramgonda, P.; Masareddy, R.S.; Patil, A.; Bolmal, U. Development of Budesonide Oral Colon Specific Drug Delivery System Using Interpolymer Complexation Method. Indian J. Pharm. Educ. Res. 2021, 55, s164–s175. [Google Scholar] [CrossRef]
- Potaś, J.; Szymańska, E.; Basa, A.; Hafner, A.; Winnicka, K. Tragacanth Gum/Chitosan Polyelectrolyte Complexes-Based Hydrogels Enriched with Xanthan Gum as Promising Materials for Buccal Application. Materials 2020, 14, 86. [Google Scholar] [CrossRef]
- Inagamov, S.Y.; Asrorov, U.A.; Xujanov, E.B. Structure and Physico-Mechanical Properties of Polyelectrolyte Complexes Based on Sodium Carboxymethylcellulose Polysaccharide and Polyacrylamide. East Eur. J. Phys. 2023, 258–266. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Xu, J.; Xu, S.; Li, Y.; Sun, R.; Huang, J.; Peng, J.; Gong, Z.; Wang, J.; et al. Development of a Hydroxypropyl Methyl Cellulose/Polyacrylic Acid Interpolymer Complex Formulated Buccal Mucosa Adhesive Film to Facilitate the Delivery of Insulin for Diabetes Treatment. Int. J. Biol. Macromol. 2024, 269, 131876. [Google Scholar] [CrossRef]
- Feldstein, M.M.; Dormidontova, E.E.; Khokhlov, A.R. Pressure Sensitive Adhesives Based on Interpolymer Complexes. Prog. Polym. Sci. 2015, 42, 79–153. [Google Scholar] [CrossRef]
- Boval’dinova, K.A.; Sherstneva, N.E.; Fel’dshtein, M.M.; Moskalets, A.P.; Khokhlov, A.R. Pressure-Sensitive Adhesives with Tunable Tackiness. Polym. Sci. Ser. B 2019, 61, 458–470. [Google Scholar] [CrossRef]
- Khutoryanskiy, V.V.; Cascone, M.G.; Lazzeri, L.; Nurkeeva, Z.S.; Mun, G.A.; Mangazbaeva, R.A. Phase Behaviour of Methylcellulose–Poly(Acrylic Acid) Blends and Preparation of Related Hydrophilic Films. Polym. Int. 2003, 52, 62–67. [Google Scholar] [CrossRef]
- Iovescu, A.; Stîngă, G.; Maxim, M.E.; Gosecka, M.; Basinska, T.; Slomkowski, S.; Angelescu, D.; Petrescu, S.; Stănică, N.; Băran, A.; et al. Chitosan-Polyglycidol Complexes to Coating Iron Oxide Particles for Dye Adsorption. Carbohydr. Polym. 2020, 246, 116571. [Google Scholar] [CrossRef]
- Boonlai, W.; Tantishaiyakul, V.; Hirun, N.; Sangfai, T.; Suknuntha, K. Thermosensitive Poloxamer 407/Poly(Acrylic Acid) Hydrogels with Potential Application as Injectable Drug Delivery System. AAPS PharmSciTech 2018, 19, 2103–2117. [Google Scholar] [CrossRef]
- Raj, H.; Sharma, A.; Sharma, S.; Verma, K.K.; Chaudhary, A. Mucoadhesive Microspheres: A Targeted Drug Delivery System. J. Drug Deliv. Ther. 2021, 11, 150–155. [Google Scholar] [CrossRef]
- Kuperkar, K.; Atanase, L.; Bahadur, A.; Crivei, I.; Bahadur, P. Degradable Polymeric Bio(Nano)Materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef] [PubMed]
- Bianchera, A.; Bettini, R. Polysaccharide Nanoparticles for Oral Controlled Drug Delivery: The Role of Drug–Polymer and Interpolymer Interactions. Expert Opin. Drug Deliv. 2020, 17, 1345–1359. [Google Scholar] [CrossRef]
- Putro, J.N.; Lunardi, V.B.; Soetaredjo, F.E.; Yuliana, M.; Santoso, S.P.; Wenten, I.G.; Ismadji, S. A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes 2021, 9, 1796. [Google Scholar] [CrossRef]
- Bourganis, V.; Karamanidou, T.; Kammona, O.; Kiparissides, C. Polyelectrolyte Complexes as Prospective Carriers for the Oral Delivery of Protein Therapeutics. Eur. J. Pharm. Biopharm. 2017, 111, 44–60. [Google Scholar] [CrossRef]
- Gadwal, I. A Brief Overview on Preparation of Self-Healing Polymers and Coatings via Hydrogen Bonding Interactions. Macromol 2020, 1, 18–36. [Google Scholar] [CrossRef]
- Munim, S.A.; Raza, Z.A. Poly(Lactic Acid) Based Hydrogels: Formation, Characteristics and Biomedical Applications. J. Porous Mater. 2019, 26, 881–901. [Google Scholar] [CrossRef]
- Schüttner, S.; Lu, Y.; Frey, H.; Coates, G.W. Stereoregular Poly(Phenyl Glycidyl Ethers): In Situ Formation of a Polyether Stereocomplex from a Racemic Monomer Mixture. Angew. Chem. Int. Ed. 2024, 64, e202413643. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, J.; Shen, J. Ion-Triggered Exfoliation of Layer-by-Layer Assembled Poly(Acrylic Acid)/Poly(Allylamine Hydrochloride) Films from Substrates: A Facile Way to Prepare Free-Standing Multilayer Films. Chem. Mater. 2007, 19, 5058–5062. [Google Scholar] [CrossRef]
- El-Sayed, M.Y.; Refat, M.S. The Intermolecular Charge-Transfer Complexes of the First Generation of Poly(Propylene Amine) Dendrimers with g and n Acceptors. Int. J. Electrochem. Sci. 2014, 9, 6608–6626. [Google Scholar] [CrossRef]
- Pergushov, D.V.; Borisov, O.V.; Zezin, A.B.; Müller, A.H.E. Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology. In Self Organized Nanostructures of Amphiphilic Block Copolymers I; Springer: Berlin/Heidelberg, Germany, 2010; pp. 131–161. [Google Scholar]
- Shovsky, A.; Varga, I.; Makuška, R.; Claesson, P.M. Formation and Stability of Water-Soluble, Molecular Polyelectrolyte Complexes: Effects of Charge Density, Mixing Ratio, and Polyelectrolyte Concentration. Langmuir 2009, 25, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Salimi, H.; Aryanasab, F.; Banazadeh, A.R.; Shabanian, M.; Seidi, F. Designing Syntheses of Cellulose and Starch Derivatives with Basic or Cationic N-functions: Part I—Cellulose Derivatives. Polym. Adv. Technol. 2016, 27, 5–32. [Google Scholar] [CrossRef]
- Papisov, I.M.; Kuzovleva, O.E.; Markov, S.V.; Litmanovich, A.A. Chemical and Structural Modification of Polymers by Matrix Polymerization. Eur. Polym. J. 1984, 20, 195–200. [Google Scholar] [CrossRef]
- Driver, K.; Baco, S.; Khutoryanskiy, V.V. Hollow Capsules Formed in a Single Stage via Interfacial Hydrogen-Bonded Complexation of Methylcellulose with Poly(Acrylic Acid) and Tannic Acid. Eur. Polym. J. 2013, 49, 4249–4256. [Google Scholar] [CrossRef]
- Fang, S.; Guan, K.; Mai, Z.; Zhou, S.; Song, Q.; Li, Z.; Xu, P.; Hu, M.; Chiao, Y.-H.; Zhang, P.; et al. Complexation of Cellulose Nanocrystals and Amine Monomer for Improved Interfacial Polymerization of Nanofiltration Membrane. J. Memb. Sci. 2023, 687, 122048. [Google Scholar] [CrossRef]
- KHUTORYANSKIY, V. Hydrogen-Bonded Interpolymer Complexes as Materials for Pharmaceutical Applications. Int. J. Pharm. 2007, 334, 15–26. [Google Scholar] [CrossRef]
- Wang, C.; Pham, D.A.; Zhang, H.; Rabanel, J.; Hassanpour, N.; Banquy, X. Layer-by-Layer Deposition of a Polycationic Bottlebrush Polymer with Hyaluronic Acid Reveals Unusual Assembly Mechanism and Selective Effect on Cell Adhesion and Fate. Adv. Funct. Mater. 2024, 34, 2402960. [Google Scholar] [CrossRef]
- Bizley, S.C.; Williams, A.C.; Khutoryanskiy, V.V. Thermodynamic and Kinetic Properties of Interpolymer Complexes Assessed by Isothermal Titration Calorimetry and Surface Plasmon Resonance. Soft Matter 2014, 10, 8254–8260. [Google Scholar] [CrossRef]
- Shestakova, D.O.; San’kova, N.N.; Parkhomchuk, E.V. Conductometric and Potentiometric Titration of Carboxyl Groups in Polymer Microspheres. Polym. Sci. Ser. A 2023, 65, 580–592. [Google Scholar] [CrossRef]
- Morariu, S.; Avadanei, M.; Nita, L.E. Effect of PH on the Poly(Acrylic Acid)/Poly(Vinyl Alcohol)/Lysozyme Complexes Formation. Molecules 2023, 29, 208. [Google Scholar] [CrossRef]
- Croitoru, C.; Roata, I.C.; Pascu, A.; Stanciu, E.M. Diffusion and Controlled Release in Physically Crosslinked Poly (Vinyl Alcohol)/Iota-Carrageenan Hydrogel Blends. Polymers 2020, 12, 1544. [Google Scholar] [CrossRef] [PubMed]
- Piela, P.; Mitzel, J.; Rosini, S.; Tokarz, W.; Valle, F.; Pilenga, A.; Malkow, T.; Tsotridis, G. Looking Inside Polymer Electrolyte Membrane Fuel Cell Stack Using Tailored Electrochemical Methods. J. Electrochem. Energy Convers. Storage 2020, 17, 031018. [Google Scholar] [CrossRef]
- Ruiz-Rubio, L.; Vilas, J.L.; Rodríguez, M.; León, L.M. Thermal Behaviour of H-Bonded Interpolymer Complexes Based on Polymers with Acrylamide or Lactame Groups and Poly(Acrylic Acid): Influence of N-Alkyl and α-Methyl Substitutions. Polym. Degrad. Stab. 2014, 109, 147–153. [Google Scholar] [CrossRef]
- Tomić, S.L.; Filipović, J.M. Synthesis and Characterization of Complexes between Poly(Itaconic Acid) and Poly(Ethylene Glycol). Polym. Bull. 2004, 52, 355–364. [Google Scholar] [CrossRef]
- Liew, C.-W.; Ramesh, S.; Arof, A.K. Characterization of Ionic Liquid Added Poly(Vinyl Alcohol)-Based Proton Conducting Polymer Electrolytes and Electrochemical Studies on the Supercapacitors. Int. J. Hydrogen Energy 2015, 40, 852–862. [Google Scholar] [CrossRef]
- Drzeżdżon, J.; Jacewicz, D.; Sielicka, A.; Chmurzyński, L. Characterization of Polymers Based on Differential Scanning Calorimetry Based Techniques. TrAC Trends Anal. Chem. 2019, 110, 51–56. [Google Scholar] [CrossRef]
- Noskov, A.V.; Alekseeva, O.V.; Guseinov, S.S. A Differential Scanning Calorimetry Study of Phase Transitions in Ethyl Cellulose/Bentonite Polymer Composites. Prot. Met. Phys. Chem. Surf. 2023, 59, 112–116. [Google Scholar] [CrossRef]
- Slyusarenko, N.V.; Vasilyeva, N.Y.; Kazachenko, A.S.; Gerasimova, M.A.; Romanchenko, A.S.; Slyusareva, E.A. Synthesis and Properties of Interpolymer Complexes Based on Chitosan and Sulfated Arabinogalactan. Polym. Sci. Ser. B 2020, 62, 272–278. [Google Scholar] [CrossRef]
- Farahani, B.V.; Shalbafan, M. Synthesis, Controlled Release and Kinetic Studies of Polyacrylic Acid-Polyethylene Oxide/β-Cyclodextrin Nano-Interpolymer Complex with Naproxen. Orbital Electron. J. Chem. 2020, 12, 39–47. [Google Scholar] [CrossRef]
- Cras, J.J.; Rowe-Taitt, C.A.; Nivens, D.A.; Ligler, F.S. Comparison of Chemical Cleaning Methods of Glass in Preparation for Silanization. Biosens. Bioelectron. 1999, 14, 683–688. [Google Scholar] [CrossRef]
- Leibauer, B.; Pop-Georgievski, O.; Sosa, M.D.; Dong, Y.; Tremel, W.; Butt, H.-J.; Steffen, W. How Surface and Substrate Chemistry Affect Slide Electrification. J. Am. Chem. Soc. 2024, 146, 10073–10083. [Google Scholar] [CrossRef] [PubMed]
- Pyo, M.; Jeong, S.; Kim, J.H.; Jeon, M.J.; Lee, E.-J. Hydrophobicity and Membrane Distillation Performance of Glass Fiber Membranes Modified by Dip Coating of Pure PDMS. J. Environ. Chem. Eng. 2024, 12, 112534. [Google Scholar] [CrossRef]
- Anders, K. Resolution of Students T-Tests, ANOVA and Analysis of Variance Components from Intermediary Data. Biochem. Med. 2017, 27, 253–258. [Google Scholar] [CrossRef]
IPC Pair | O–H Stretch (cm−1) | C=O Stretch (cm−1) |
---|---|---|
PAA–MC | 3260 | 1632 |
PAA–HPC | 3258 | 1629 |
PAA–HEC90 | 3257 | 1628 |
PAA–HEC250 | 3256 | 1626 |
PAA–HEC720 | 3255 | 1625 |
PAA–PX188 | 3265 | 1630 |
PAA–PX407 | 3263 | 1631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopishev, E.; Jafarova, F.; Tolymbekova, L.; Seitenova, G.; Sаfarov, R. Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior. Polymers 2025, 17, 1414. https://doi.org/10.3390/polym17101414
Kopishev E, Jafarova F, Tolymbekova L, Seitenova G, Sаfarov R. Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior. Polymers. 2025; 17(10):1414. https://doi.org/10.3390/polym17101414
Chicago/Turabian StyleKopishev, Eldar, Fatima Jafarova, Lyazat Tolymbekova, Gaini Seitenova, and Ruslan Sаfarov. 2025. "Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior" Polymers 17, no. 10: 1414. https://doi.org/10.3390/polym17101414
APA StyleKopishev, E., Jafarova, F., Tolymbekova, L., Seitenova, G., & Sаfarov, R. (2025). Interpolymer Complexation Between Cellulose Ethers, Poloxamers, and Polyacrylic Acid: Surface-Dependent Behavior. Polymers, 17(10), 1414. https://doi.org/10.3390/polym17101414