Study on Microstructure Evolution and Deformation Failure Mechanism of PTFE-Cu Composites Under Compression Load
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Experiment of Differential Scanning Calorimetry
3.2. Quasi-Static Compression Test Conditions
3.3. Molecular Dynamics Simulation
4. Results and Discussion
4.1. Analysis of DSC Test Results
4.2. Quasi-Static Compression Test Results
4.2.1. Quasi-Static Compressive Mechanical Properties
4.2.2. Failure Mode Analysis
4.3. Molecular Dynamics Simulation Results
4.3.1. Crystallization Simulation Results
4.3.2. Compression Simulation Results
5. Conclusions
- (1)
- The composition ratio of PTFE-Cu composites affects the phase transformation and crystallization behavior of the material. The addition of Cu powder can affect the phase transition temperature of PTFE. Within a certain range, Cu powder can induce the phase transition temperature to decrease; however, when the content of copper powder exceeds the content of PTFE, the phase transition temperature may be delayed. The crystallinity of the three PTFE-Cu composites was 43.05%, 39.49% and 40.13%, respectively. With an increase in the copper powder content, the crystallinity decreased first and then increased, but it was lower than that of pure PTFE material.
- (2)
- The quasi-static compression curve of PTFE-Cu composites has gone through three stages: elastic deformation stage, plastic strengthening stage and failure stage. The lower the crystallinity of the material, the higher the elastic modulus and yield strength, up to 521.27 MPa and 20.74 MPa, respectively. The side of the failure sample shows different degrees of crack morphology. The failure mode is mainly manifested as the axial splitting failure with two ends connected. The sample with a density of 3.0 g/cm3 also shows a shear tearing morphology.
- (3)
- The coupling elastic distortion mechanism of the chain segment motion of the PTFE molecular chain and the lattice distortion of the Cu atom cluster leads to the anisotropic Poisson effect of the composite material at the macro scale. The synergistic deformation mechanism of the dynamic coupling of polymer chain orientation and metal lattice motion promotes the irreversible structural reorganization of the material at the molecular or atomic scale, which, in turn, manifests as permanent changes in shape or size at the macro scale. In the high-strain state, the interface mismatch effect is further strengthened, which leads to the formation of voids. The addition of Cu hinders the orderly orientation movement of its molecular chain, which leads to the internal defects of PTFE.
- (4)
- When the three materials fail, the internal porosity is 6.51%, 14.99%, and 26.97%, respectively. The bond energy of PTFE-based composites initially decreases with lower PTFE content but rapidly increases before compressive failure as covalent bond stretching in PTFE molecular chains dominates, with higher PTFE content yielding greater energy enhancement. The radial distribution function shows that the first coordination peak is located near 6.5Å, which is significantly beyond the typical van der Waals range (<5 Å), indicating that the interaction of the PTFE-Cu interface is physical adsorption.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffmann, T.; Lehmann, D. Chemical modification of poly(tetrafluoroethylene) micropowder-basis for special lubricant additives. Lubr. Sci. 2013, 25, 313–327. [Google Scholar] [CrossRef]
- Xu, D.; Chen, W.; Liang, W.; Lei, L.; Yulong, W.; Xingxing, D.; Jiahao, W.; Wenjun, C.; Aitao, T.; Fusheng, P. Influences of pulse frequency on formation and properties of composite anodic oxide films on Ti-10V-2Fe-3Al alloy. Chin. J. Aeronaut. 2021, 34, 228–242. [Google Scholar]
- Fang, Z.; Qiu, Y.; Luo, Y. Surface modification of polytetrafluoroethylene film using the atmospheric pressure glow discharge in air. J. Phys. D Appl. Phys. Europhys. J. 2003, 36, 2980–2985. [Google Scholar] [CrossRef]
- Noh, H.J.; Baik, K.H.; Noh, I.; Park, C.; Lee, I. Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application. Surf. Coat. Technol. 2006, 201, 5097–5101. [Google Scholar] [CrossRef]
- Yu, J.; Tang, Y. Coating-type three-dimensional acetate-driven microbial fuel cells. J. Biosci. Bioeng. 2015, 120, 135–139. [Google Scholar] [CrossRef]
- Tian, Z.; Changzheng, C.; Shengli, C.; Xinping, A.; Hanxi, Y.; Ping, S.; Zhenrong, P. A novel mediatorless microbial fuel cell based on direct biocatalysis of Escherichia coli. Chem. Commun. 2006, 21, 2257–2259. [Google Scholar]
- Mei, L.; Litao, W.; Jing, L.; Fandong, K.; Aixia, L.; Tingmei, W.; Qihua, W. Surface energy, hardness, and tribological properties of carbon-fiber/polytetrafluoroethylene composites modified by proton irradiation. Tribol. Int. 2018, 132, 237–243. [Google Scholar]
- Gan, Y.; Wang, Y.; Liu, K.; Han, L.; Luo, Q.; Liu, H. A novel and effective method for cryogenic milling of polytetrafluoroethylene. Int. J. Adv. Manuf. Technol. 2021, 112, 969–976. [Google Scholar] [CrossRef]
- Ling, L.Y.W.; Zhang, S.; Fu, H.; Huang, M.; Quansan, J.; Liu, X.; Wang, N. A brief review of alternative propellants and requirements for pulsed plasma thrusters in micropropulsion applications. Chin. J. Aeronaut. 2020, 33, 2999–3010. [Google Scholar] [CrossRef]
- Ran, X.; Ding, L.; Zhou, J.; Tang, W. Research on the Energy Release Characteristics of Six Kinds of Reactive Materials. Materials 2019, 12, 3940. [Google Scholar] [CrossRef]
- Jianya, Y.; Ruijie, H.; Xuezhi, T.; Siman, G.; Zhijun, W.; Jianping, Y. Study on the Effect of PTFE/Cu Composite Material Preparation Process on Penetration Performance. Polymers 2023, 15, 3504. [Google Scholar] [CrossRef]
- Jianya, Y.; Ruijie, H.; Qing, J.; Siman, G.; Zhijun, W.; Jianping, Y. Study on the Equation of State and Jet Forming of 3D-Printed PLA and PLA-Cu Materials. Polymers 2023, 15, 3564. [Google Scholar]
- Lu, Y.; Tan, B.; Li, Y.; Tan, S.; Yang, S.; Ji, W. Numerical Simulation Study on Impact Initiation on Shielded Charge Using Hypervelocity Composite-Structure Reactive Fragments. Polymers 2024, 16, 1054. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.E.; Rae, J.P.; Orler, B.E.; Gary, G.T.; Dattelbaum, D.M. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater. Sci. Eng. C 2005, 26, 1338–1343. [Google Scholar] [CrossRef]
- Brown, N.E.; Dattelbaum, M.D. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer 2005, 46, 3056–3068. [Google Scholar] [CrossRef]
- Rae, P.; Dattelbaum, D. The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 2004, 45, 7615–7625. [Google Scholar] [CrossRef]
- Rae, P.; Brown, E. The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 2005, 46, 8128–8140. [Google Scholar] [CrossRef]
- Rae, J.P.; Brown, N.E.; Clements, E.B.; Dattelbaum, M.D. Pressure-induced phase change in poly(tetrafluoroethylene) at modest impact velocities. J. Appl. Phys. 2005, 98, 063521. [Google Scholar] [CrossRef]
- Feng, B.; Fang, X.; Li, Y.C.; Wu, S. Influence of Processing Techniques on Mechanical Properties and Impact Initiation of an Al-PTFE Reactive Material. Cent. Eur. J. Energetic Mater. 2016, 13, 989–1004. [Google Scholar] [CrossRef]
- Tang, E.; He, Z.; Chen, C.; Han, Y. Characterization of dynamic compressive strength and impact release energy of Al/PTFE energetic materials reinforced by aluminum honeycomb skeleton. Compos. Struct. 2020, 241, 112063. [Google Scholar] [CrossRef]
- Liang, M.; Chenyang, W.; Rong, H.; Wanxiang, H.; Puguang, L. Effects of Al Particle Size on the Impact Energy Release of Al-Rich PTFE/Al Composites under Different Strain Rates. Materials 2021, 14, 1911. [Google Scholar]
- Ge, C.; Yu, Q.; Zhang, H.; Zheng, Y. On dynamic response and fracture-induced initiation characteristics of aluminum particle filled PTFE reactive material using hat-shaped specimens. Mater. Des. 2020, 188, 108472. [Google Scholar] [CrossRef]
- Ge, C.; Maimaitituersun, W.; Dong, Y.; Tian, C. A Study on the Mechanical Properties and Impact-Induced Initiation Characteristics of Brittle PTFE/Al/W Reactive Materials. Materials 2017, 10, 452. [Google Scholar] [CrossRef]
- Jiaxiang, W.; Bin, F.; Zhenru, G.; Qin, Y.; Junyi, H.; Shuangzhang, W.; Yuchun, L. Effect of multi-oxidants on mechanical response and reactive characteristics of PTFE/Al reactive material under dynamic impact. Mater. Lett. 2021, 283, 128886. [Google Scholar]
- Xu, Y.F.; Liu, B.S.; Zheng, F.Y.; Yu, Q.B.; Wang, H.F. Quasi-Static Compression Properties and Failure of PTFE/Al/W Reactive Materials. Adv. Eng. Mater. 2017, 19, 1600350. [Google Scholar] [CrossRef]
- Huan-Guo, G.; Yuan-feng, Z.; Suo, H.; Qing-Bo, Y.; Hai-fu, W. Reaction characteristic of PTFE/Al/Cu/Pb composites and application in shaped charge liner. Def. Technol. 2022, 18, 1578–1588. [Google Scholar]
- Wang, H.; Geng, B.; Guo, H.; Zheng, Y.; Yu, Q.; Ge, C. The effect of sintering and cooling process on geometry distortion and mechanical properties transition of PTFE/Al reactive materials. Def. Technol. 2020, 16, 720–730. [Google Scholar] [CrossRef]
- Linfeng, W.; Yi, D.; Jing, T.; Tianbao, M.; Zhendong, D. Study of the mechanisms of contact electrification and charge transfer between polytetrafluoroethylene and metals. J. Phys. D Appl. Phys. 2020, 53, 285302. [Google Scholar]
- Omidvar, H.; Stremsdoerfer, G.; Meas, Y. Formation of composite Cu-graphite and Cu-PTFE coatings and their tribological characterization. J. Mater. Sci. 2008, 43, 1716–1722. [Google Scholar] [CrossRef]
- Beckford, S.; Mathurin, L.; Chen, J.; Zou, M. The Influence of Cu Nanoparticles on the Tribological Properties of Polydopamine/PTFE+Cu Films. Tribol. Lett. 2015, 59, 11. [Google Scholar] [CrossRef]
- Ting, X.; Xing, Z.X.; Ming, Z.Y.; Gang, C.; Hua, J.; Wei, J.Y.; Guo, Y.Y. Study on the Friction and Wear Behaviors of Cu/PTFE Self-Lubricating Composites. Appl. Mech. Mater. 2011, 130–134, 1466–1469. [Google Scholar]
- Jianya, Y.; Ruijie, H.; XueZhi, T.; Siman, G.; Zhijun, W.; Jianping, Y. Study on the forming characteristics of polytetrafluoroethylene/copper jet with different preparation processes. Sci. Rep. 2023, 13, 15659. [Google Scholar]
- Yi, J.; Hao, R.; Tang, X.; Guan, S.; Wang, Z.; Yin, J. Research on the destroy characteristics of PTFE/Cu composite liner to explosive reactive armor. Heliyon 2024, 10, e27794. [Google Scholar] [CrossRef]
- Yi, J.; Wang, Z.; Yin, J. Experimental Study on Damage Characteristics of Copper-Reinforced Polytetrafluoroethylene Shaped-Charge Warhead Liner. Polymers 2022, 14, 2068. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.H.; Yin, J.P.; Cui, Z.Q.; Liu, T.X. Numerical simulation of modified low-density jet penetrating shell charge. Int. J. Simul. Model 2015, 14, 426–437. [Google Scholar] [CrossRef]
- Xuezhi, T.; Zhijun, W.; Jianping, Y.; Jianya, Y. Effect of the Fabrication Technique on Compressive Properties of Cu-PTFE Composites. Adv. Mater. Sci. Eng. 2021, 2021, 5518172. [Google Scholar]
- Xuezhi, T.; Zhijun, W.; Xuepeng, Z.; Yongjie, X.; Jianya, Y. Comparative study on microstructure and properties of different designed PTFE/Cu materials. J. Mater. Res. Technol. 2022, 17, 1512–1521. [Google Scholar]
- Tsige, M.; Curro, J.G.; Grest, G.S. Packing of poly(tetrafluoroethylene) in the liquid state: Molecular dynamics simulation and theory. J. Chem. Physic 2008, 129, 214901. [Google Scholar] [CrossRef]
- Song, J.; Zhao, G.; Ding, Q.; Yang, Y. Effect of SiO2 on the tribological properties of PTFE sliding against Cu: A molecular dynamics simulation. Ind. Lubr. Tribol. 2022, 74, 774–779. [Google Scholar] [CrossRef]
- Li, P.; Hou, Y.; Chen, H.; Bai, Y.; Yang, D.; Sheng, Q.; Zhu, S.; Yu, L. Mechanical and tribological properties of layered epoxy coatings synergistically enhanced by graphene and polytetrafluoroethylene: Molecular dynamics simulations and experimental verification. Mater. Today Commun. 2024, 40, 109892. [Google Scholar] [CrossRef]
- Hao, H.X.; Pan, D.; Zhang, Y.Z.; Shu, Q.W.; Shu, Q.W.; Gao, Y.J.; Gu, D.P. Influence of external load on friction coefficient of Fe–polytetrafluoroethylene. Chin. Phys. B 2020, 29, 046802. [Google Scholar] [CrossRef]
- Dong, Z.; Tang, H.; Yang, B.; Shijie, W.; Yunlong, L.; Lin, L. Molecular Dynamics Simulation and Experimental Study of the Mechanical and Tribological Properties of GNS-COOH/PEEK/PTFE Composites. Polymers 2024, 16, 2572. [Google Scholar] [CrossRef] [PubMed]
- Xuezhi, T. Study on Preparation Technology and Properties of PTFE/Cu Liner; North University of China: Taiyuan, China, 2022. [Google Scholar]
- Yunlong, L.; Shijie, W.; Quan, W. Enhancement of tribological properties of polymer composites reinforced by functionalized graphene. Compos. Part B 2017, 120, 83–91. [Google Scholar]
- Xianming, Z.; Lianfang, F.; Wenxing, C.; Guohua, H. Numerical simulation and experimental validation of mixing performance of kneading discs in a twin screw extruder. Polym. Eng. Sci. 2009, 49, 1772–1783. [Google Scholar]
- Yunlong, L.; Shijie, W.; Quan, W. A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon 2017, 111, 538–545. [Google Scholar]
- Yanwen, X.; Fengyue, X.; Yuanfeng, Z.; Qingbo, Y.; Haifu, W. Quasi-Static Compression Properties of Cold Isostatically Pressed Reactive Materials. Trans. Beijing Inst. Technol. 2017, 37, 337–341+347. [Google Scholar]
- Xiaojun, L.; Huilan, R. Preparation and Quasi-Static MechanicaProperties of a Reactive Material. Trans. Beijing Inst. Technol. 2016, 36, 365–369. [Google Scholar]
- Zhou, X.; Liu, X.; Lei, J.; Yang, Q. Atomic simulations of the formation of twist grain boundary and mechanical properties of graphene/aluminum nanolaminated composites. Comput. Mater. Sci. 2020, 172, 109342. [Google Scholar] [CrossRef]
- Lu, X.; Jijun, X.; Jianfen, F.; Wei, Z.; HeMing, X. Molecular dynamics simulation of mechanical properties and surface interaction for nitrate plasticizer. Acta Chim. Sin. 2008, 66, 874. [Google Scholar]
No. | Theoretical Density (g/cm3) | Actual Density (g/cm3) | PTFE/wt% | Cu/wt% |
---|---|---|---|---|
PTFE-Cu-1 | 3.0 | 2.97 | 63 | 37 |
PTFE-Cu-2 | 3.5 | 3.54 | 49.5 | 50.5 |
PTFE-Cu-3 | 4.0 | 3.96 | 40 | 60 |
Sample No. | PTFE/Cu-1 | PTFE/Cu-2 | PTFE/Cu-3 |
---|---|---|---|
Phase transition onset/°C | 17.32 | 19.50 | 19.20 |
Melting peak temperature/°C | 327.69 | 333.31 | 332.84 |
Sample No. | PTFE/Cu-1 | PTFE/Cu-2 | PTFE/Cu-3 |
---|---|---|---|
Number-average molecular weight | 5.50 × 106 | 7.28 × 107 | 6.61 × 107 |
Crystallization peak temperature/°C | 314.59 | 313.75 | 313.84 |
Sample No. | Density (g/cm3) | Elastic Modulus (MPa) | Yield Strength (MPa) | Compressive Strength (MPa) | Failure Strain |
---|---|---|---|---|---|
PTFE-Cu-1 | 3 | 375.61 | 16.86 | 68.81 | 0.163 |
PTFE-Cu-2 | 3.5 | 521.57 | 20.74 | 67.05 | 0.174 |
PTFE-Cu-3 | 4 | 419.68 | 18.78 | 79.40 | 0.165 |
Sample No. | PTFE/Cu-1 | PTFE/Cu-2 | PTFE/Cu-3 |
---|---|---|---|
DSC experiment | 587.74 K | 586.90 K | 586.99 K |
Crystallization simulation | 600.90 K | 591.32 K | 596.94 K |
Error | 2.24% | 0.75% | 1.69% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, S.; Wang, Z.; Tang, X.; Hao, R.; Yi, J. Study on Microstructure Evolution and Deformation Failure Mechanism of PTFE-Cu Composites Under Compression Load. Polymers 2025, 17, 1380. https://doi.org/10.3390/polym17101380
Guan S, Wang Z, Tang X, Hao R, Yi J. Study on Microstructure Evolution and Deformation Failure Mechanism of PTFE-Cu Composites Under Compression Load. Polymers. 2025; 17(10):1380. https://doi.org/10.3390/polym17101380
Chicago/Turabian StyleGuan, Siman, Zhijun Wang, Xuezhi Tang, Ruijie Hao, and Jianya Yi. 2025. "Study on Microstructure Evolution and Deformation Failure Mechanism of PTFE-Cu Composites Under Compression Load" Polymers 17, no. 10: 1380. https://doi.org/10.3390/polym17101380
APA StyleGuan, S., Wang, Z., Tang, X., Hao, R., & Yi, J. (2025). Study on Microstructure Evolution and Deformation Failure Mechanism of PTFE-Cu Composites Under Compression Load. Polymers, 17(10), 1380. https://doi.org/10.3390/polym17101380