Testing the Shelf Life of Mozzarella-Type Cheese Packaged with Polyurethane-Based Films with Curcumin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Polyurethane-Based Films
2.3. Application of Polyurethane-Based Active Films as Sliced Mozzarella-Type Cheese Packaging
- (i)
- Unpackaged sliced Mozzarella-type cheese (NC);
- (ii)
- Sliced Mozzarella-type cheese packaged in polyurethane-based films (PU);
- (iii)
- Sliced Mozzarella-type cheese packaged in polyurethane-based films with curcumin (CUR).
2.4. Proximate Composition Analysis of the Sliced Mozzarella-Type Cheese During Storage
2.5. Physicochemical Analysis of the Sliced Mozzarella-Type Cheese During Storage
2.5.1. Color Measurements
2.5.2. Weight Loss
2.5.3. Moisture Content
2.5.4. Water Activity
2.5.5. pH and Titratable Acidity
2.5.6. Total and Non-Protein Nitrogen
2.5.7. Thiobarbituric Acid Reactive Substances (TBARS)
2.6. Microbiology Tests
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Mozzarella-Type Cheese
3.2. Physicochemical Analysis of the Sliced Mozzarella-Type Cheese During Storage
3.2.1. Color Measurement
3.2.2. Weight Loss
3.2.3. Moisture Content
3.2.4. Water Activity
3.2.5. pH and Lactic Acid
3.2.6. Total Nitrogen and Non-Protein Nitrogen
3.2.7. Thiobarbituric Acid Reactive Substances (TBARS)
3.3. Microbial Changes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akarca, G.; Atik, A.; Atik, İ.; Denizkara, A.J. A Comparison Study on Functional and Textural Properties of Mozzarella Cheeses Made from Bovine and Buffalo Milks Using Different Starter Cultures. Int. Dairy J. 2023, 141, 105622. [Google Scholar] [CrossRef]
- El Soda, M.; Awad, S. Accelerated Cheese Ripening. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar] [CrossRef]
- Klein, N.; Lortal, S. Attenuated Starters: An Efficient Means to Influence Cheese Ripening—A Review. Int. Dairy J. 1999, 9, 751–762. [Google Scholar] [CrossRef]
- Vázquez-García, R.; Martín-del-Campo, S.T. Chapter 12—Enzyme Actions during Cheese Ripening and Production of Bioactive Compounds. In Enzymes Beyond Traditional Applications in Dairy Science and Technology; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Ribeiro, L.R.; Magalhães, I.S.; Tribst, A.A.L.; Júnior, B.R.d.C.L. Chapter 7—Effects of High-Pressure Processing on Enzyme Activity in Milk and Dairy Products. In Effect of High-Pressure Technologies on Enzymes; Academic Press: Cambridge, MA, USA, 2023. [Google Scholar] [CrossRef]
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef]
- Quintieri, L.; Caputo, L.; Brasca, M.; Fanelli, F. Recent Advances in the Mechanisms and Regulation of QS in Dairy Spoilage by Pseudomonas Spp. Foods 2021, 10, 3088. [Google Scholar] [CrossRef]
- NTC 4315:1997; Cheese, Mozzarella Cheese and Scarmorza Cheese [Queso. Queso Mozzarella y Queso Scarmoza]. ICONTEC: Bogotá, Colombia, 1997.
- Yu, Z.; Rao, G.; Wei, Y.; Yu, J.; Wu, S.; Fang, Y. Preparation, Characterization, and Antibacterial Properties of Biofilms Comprising Chitosan and ε-Polylysine. Int. J. Biol. Macromol. 2019, 141, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and Sustainable Biobased Materials: An Assessment on Biofibers, Biofilms, Biopolymers and Biocomposites. J. Clean. Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. Isocyanate Terminated Castor Oil-Based Polyurethane Prepolymer: Synthesis and Characterization. Prog. Org. Coat. 2015, 80, 39–48. [Google Scholar] [CrossRef]
- Zhong, Y.; Godwin, P.; Jin, Y.; Xiao, H. Biodegradable Polymers and Green-Based Antimicrobial Packaging Materials: A Mini-Review. Adv. Ind. Eng. Polym. Res. 2020, 3, 27–35. [Google Scholar] [CrossRef]
- Ruiz, D.; Uscátegui, Y.L.; Diaz, L.; Arrieta-Pérez, R.R.; Gómez-Tejedor, J.A.; Valero, M.F. Obtention and Study of Polyurethane-Based Active Packaging with Curcumin and/or Chitosan Additives for Fruits and Vegetables—Part I: Analysis of Morphological, Mechanical, Barrier, and Migration Properties. Polymers 2023, 15, 4456. [Google Scholar] [CrossRef]
- Sarojini, S.K.; Indumathi, M.P.; Rajarajeswari, G.R. Mahua Oil-Based Polyurethane/Chitosan/Nano ZnO Composite Films for Biodegradable Food Packaging Applications. Int. J. Biol. Macromol. 2019, 124, 163–174. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Z.; Song, X.; Peng, W.; Zhao, X.; Zhao, H.; Liang, D.; Huang, C.; Duan, Q. A Silver Nanoparticles-Polylactic Acid Microspheres/Polylactic Acid-Thermoplastic Polyurethane Nanofibers Hierarchical Antibacterial Film. Ind. Crops Prod. 2024, 207, 117773. [Google Scholar] [CrossRef]
- Mahmood, K.; Zia, K.M.; Zuber, M.; Salman, M.; Anjum, M.N. Recent Developments in Curcumin and Curcumin Based Polymeric Materials for Biomedical Applications: A Review. Int. J. Biol. Macromol. 2015, 81, 877–890. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, W.; Deng, Y.; Chu, Y.; Zhong, Y.; Wang, G.; Xiong, Y.; Liu, X.; Chen, L.; Li, H. Curcumin-Based Waterborne Polyurethane-Gelatin Composite Bioactive Films for Effective UV Shielding and Inhibition of Oil Oxidation. Food Control 2022, 141, 109199. [Google Scholar] [CrossRef]
- Lan, Q.; Mao, X.; Xia, C.; Zhang, D.; Huang, P.; Zhang, W.; Shi, S.; Wang, Z. Curcumin Based Polyurethane Materials and Their Functional Applications: A Review. Mater. Res. Express 2024, 11, 052001. [Google Scholar] [CrossRef]
- Chen, Z.; Xia, Y.; Liao, S.; Huang, Y.; Li, Y.; He, Y.; Tong, Z.; Li, B. Thermal Degradation Kinetics Study of Curcumin with Nonlinear Methods. Food Chem. 2014, 155, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; de Queiroz, A. Determination of crude fat or ether extracts [Determinação de gordura bruta ou do extrato etéreo]. In Analysis of foods [Análise de Alimentos]; Universidade Federal de Viçosa: Belo Horizonte, Brazil, 2005; ISBN 85-7269-105-7. [Google Scholar]
- Instituto Adolfo Lutz 032/IV Lipids or ether extract—Direct extraction in Soxhlet [032/IV Lipídios ou extrato etéreo—Extração direta em Soxhlet]. Physico-Chemical Methods for Food Analysis [Métodos Físico-Químicos para Análise de Alimentos]; Instituto Adolfo Lutz: Sao Paulo, Brazil, 2005; ISBN 85-334-1038-7. [Google Scholar]
- Instituto Adolfo Lutz Crude fiber [044/IV Fibra bruta]. Determinação da Fibra Brutas [Determinação da Fibra Bruta]; Instituto Adolfo Lutz: Sao Paulo, Brazil, 2005; ISBN 85-334-1038-7. [Google Scholar]
- Silva, D.; de Queiroz, A. Determination of crude fiber [Determinação da fibra bruta]. In Analysis of Foods [Análise de Alimentos]; Universidade Federal de Viçosa: Belo Horizonte, Brazil, 2005; ISBN 85-7269-105-7. [Google Scholar]
- Luciano, C.G.; Tessaro, L.; Bonilla, J.; Balieiro, J.C.D.C.; Trindade, M.A.; Sobral, P.J.D.A. Application of Bi-Layers Active Gelatin Films for Sliced Dried-Cured Coppa Conservation. Meat Sci. 2022, 189, 108821. [Google Scholar] [CrossRef]
- Chiabrando, V.; Garavaglia, L.; Giacalone, G. The Postharvest Quality of Fresh Sweet Cherries and Strawberries with an Active Packaging System. Foods 2019, 8, 335. [Google Scholar] [CrossRef]
- Bonilla, J.; Sobral, P.J.A. Gelatin-chitosan Edible Film Activated with Boldo Extract for Improving Microbiological and Antioxidant Stability of Sliced Prato Cheese. Int. J. Food Sci. Technol. 2019, 54, 1617–1624. [Google Scholar] [CrossRef]
- Minz, P.S.; Saini, C.S. Comparison of Computer Vision System and Colour Spectrophotometer for Colour Measurement of Mozzarella Cheese. Appl. Food Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- AOAC International Official Method 935.42, Ash of Cheese—Gravimetric Method. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; ISBN 0-935584-54-4. [Google Scholar]
- Troller, J. Methods to Measure Water Activity. J. Food Prot. 1983, 46, 129–134. [Google Scholar] [CrossRef]
- Official Method 920-124, Acidity of Cheese—Titrimetic Method. Official Methods of Analysis of AOAC International; AOAC International: Arlington, VA, USA, 1995; ISBN 0-935584-54-4. [Google Scholar]
- Instituto Adolfo Lutz 017/IV Determination of pH [017/IV Determinação do pH]. Physico-Chemical Methods for Food Analysis [Métodos Físico-Químicos para Análise de Alimentos]; Instituto Adolfo Lutz: Sao Paulo, Brazil, 2005; ISBN 85-334-1038-7. [Google Scholar]
- Silva, D.; de Queiroz, A. Determination of pH, titratable acidity and lactic acid of silage [Determinação do pH, da acidez titulável e do ácido láctico da silagem]. In Analysis of Foods [Análise de Alimentos]; Universidade Federal de Viçosa: Belo Horizonte, Brazil, 2005; ISBN 85-7269-105-7. [Google Scholar]
- Silva, D.; de Queiroz, A. Determination of total nitrogen and crude protein [Determinação do nitrogênio total e da proteína bruta]. In Analysis of Foods [Análise de Alimentos]; Universidade Federal de Viçosa: Belo Horizonte, Brazil, 2005; ISBN 85-7269-105-7. [Google Scholar]
- DeVries, J.W.; Greene, G.W.; Payne, A.; Zbylut, S.; Scholl, P.F.; Wehling, P.; Evers, J.M.; Moore, J.C. Non-Protein Nitrogen Determination: A Screening Tool for Nitrogenous Compound Adulteration of Milk Powder. Int. Dairy J. 2017, 68, 46–51. [Google Scholar] [CrossRef]
- Sørensen, G.; Jørgensen, S.S. A Critical Examination of Some Experimental Variables in the 2-Thiobarbituric Acid (TBA) Test for Lipid Oxidation in Meat Products. Z. Lebensm. Unters. Forch. 1996, 202, 205–210. [Google Scholar] [CrossRef]
- NTC 4092; Microbiology of Food and Animal Feeding Stuffs. General Requirements and Guidance for Microbiological Examinations [Microbiología de Alimentos y Productos para Alimentación Animal. Requisitos Generales y Directrices para Análisis Microbiológicos]. ICONTEC: Bogotá, Colombia, 2009.
- Francolino, S.; Locci, F.; Ghiglietti, R.; Iezzi, R.; Mucchetti, G. Use of Milk Protein Concentrate to Standardize Milk Composition in Italian Citric Mozzarella Cheese Making. LWT–Food Sci. Technol. 2010, 43, 310–314. [Google Scholar] [CrossRef]
- Costabel, L.; Pauletti, M.S.; Hynes, E. Proteolysis in Mozzarella Cheeses Manufactured by Different Industrial Processes. J. Dairy Sci. 2007, 90, 2103–2112. [Google Scholar] [CrossRef]
- Tran Do, D.H.; Kong, F. Texture Changes and Protein Hydrolysis in Different Cheeses under Simulated Gastric Environment. LWT 2018, 93, 197–203. [Google Scholar] [CrossRef]
- Gonçalves, F.C.; De Oliveira, V.M.; Martins, F.T.; Lião, L.M.; Ferri, P.H.; Queiroz Júnior, L.H.K. Predicting Chemical Shelf Life of Mozzarella Cheese Submitted to Irregular Refrigeration Practices by Nuclear Magnetic Resonance Spectroscopy and Statistical Analysis. J. Food Compos. Anal. 2022, 105, 104229. [Google Scholar] [CrossRef]
- Rudan, M.A.; Barbano, D.M.; Joseph Yun, J.; Kindstedt, P.S. Effect of Fat Reduction on Chemical Composition, Proteolysis, Functionality, and Yield of Mozzarella Cheese. J. Dairy Sci. 1999, 82, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Ah, J.; Tagalpallewar, G.P. Functional Properties of Mozzarella Cheese for Its End Use Application. J. Food Sci. Technol. 2017, 54, 3766–3778. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Vannini, L.; Salvetti, E.; Torriani, S.; Gardini, F.; Lanciotti, R. Use of a Nisin-Producing Lactococcus Lactis Strain, Combined with Natural Antimicrobials, to Improve the Safety and Shelf-Life of Minimally Processed Sliced Apples. Food Microbiol. 2016, 54, 11–19. [Google Scholar] [CrossRef]
- Franzoi, M.; Ghetti, M.; Di Monte, L.; De Marchi, M. Investigation of Weight Loss in Mozzarella Cheese Using NIR Predicted Chemical Composition and Multivariate Analysis. J. Food Compos. Anal. 2021, 102, 104002. [Google Scholar] [CrossRef]
- Nemati, V.; Guimarães, J.T. The Effects of Dielectric Barrier Discharge Cold Plasma on the Safety and Shelf Life Parameters of Mozzarella Cheese. Food Chem. Adv. 2024, 5, 100756. [Google Scholar] [CrossRef]
- Olivares, M.L.; Sihufe, G.A.; Capra, M.L.; Rubiolo, A.C.; Zorrilla, S.E. Effect of Protective Atmospheres on Physicochemical, Microbiological and Rheological Characteristics of Sliced Mozzarella Cheese. LWT 2012, 47, 465–470. [Google Scholar] [CrossRef]
- Troller, J.A.; Christian, J.H.B. Water Activity and Food; Academic Press: London, UK, 1978; ISBN 0-12-700650-8. [Google Scholar]
- Barbosa-Cánovas, G.V.; Fontana Jr, A.J.; Schmidt, T.P.L. Water Activity in Foods: Fundamentals and Applications, 2nd ed.; Institute of Food Technologists Series; Wiley-Blackwell: Chicago, IL, USA, 2007; ISBN 978-0-8138-2408-6. [Google Scholar]
- Zappia, A.; Branca, M.L.; Piscopo, A.; Poiana, M. Shelf Life Extension of Mozzarella Cheese Packed in Preserving Liquid with Calcium Lactate and Bergamot Juice Concentrate. J. Dairy Res. 2020, 87, 474–479. [Google Scholar] [CrossRef]
- Akhtar, A.; Araki, T.; Kamata, T.; Nei, D.; Khalid, N. A Comparison of Low-Fat Mozzarella Cheese with Basil Seed and Taro Root Mucilage as Natural Fat Replacers through Chemical and Rheological Analysis. J. Agric. Food Res. 2025, 20, 101766. [Google Scholar] [CrossRef]
- Artur, H.; Mary Ann, F. pH and Titratable Acidity. In Cheese Making Technology e-Book; University of Guelph: Guelph, ON, Canada, 2021. [Google Scholar]
- Mei, J.; Guo, Q.; Wu, Y.; Li, Y.; Yu, H. Study of Proteolysis, Lipolysis, and Volatile Compounds of a Camembert-Type Cheese Manufactured Using a Freeze-Dried Tibetan Kefir Co-Culture during Ripening. Food Sci. Biotechnol. 2015, 24, 393–402. [Google Scholar] [CrossRef]
- Johnson, M. Cheese pH—What’s Behind the Rise and Fall? Dairy Pipeline; Wisconsin Center for Dairy Research: Madison, USA, 2002. [Google Scholar]
- Ubaldo, J.C.S.R.; Carvalho, A.F.; Fonseca, L.M.; Glória, M.B.A. Bioactive Amines in Mozzarella Cheese from Milk with Varying Somatic Cell Counts. Food Chem. 2015, 178, 229–235. [Google Scholar] [CrossRef]
- Marrella, M.; Bertani, G.; Ricci, A.; Volpe, R.; Roustel, S.; Ferriani, F.; Nipoti, E.; Neviani, E.; Lazzi, C.; Bernini, V. Pseudomonas Fluorescens and Escherichia Coli in Fresh Mozzarella Cheese: Effect of Cellobiose Oxidase on Microbiological Stability during Refrigerated Shelf Life. Foods 2022, 12, 145. [Google Scholar] [CrossRef]
- Gowen, N.; Gai, N.; O’Mahony, J.A.; O’Regan, J.; Goulding, D.A. Non-Protein Nitrogen in Dairy Ingredients: A Closer Look at Its Contribution in Infant Nutritional Product Formulation. Int. Dairy J. 2025, 164, 106201. [Google Scholar] [CrossRef]
- Ardö, Y.; McSweeney, P.L.H.; Magboul, A.A.A.; Upadhyay, V.K.; Fox, P.F. Chapter 18—Biochemistry of Cheese Ripening: Proteolysis. In Cheese; Academic Press: London, UK, 2017; pp. 445–482. ISBN 978-0-12-417012-4. [Google Scholar]
- El-Sayed, S.M.; Kholif, A.M.M.; El-Sayed, H.S.; Youssef, A.M. Augmenting the Quality and Shelf Life of Ras Cheese by Adding Microencapsulated Allspice Berry Extract Nanoemulsion. Food Bioprocess. Technol. 2025, 18, 588–604. [Google Scholar] [CrossRef]
- Golzarijalal, M.; Ong, L.; Neoh, C.R.; Harvie, D.J.E.; Gras, S.L. Machine Learning for the Prediction of Proteolysis in Mozzarella and Cheddar Cheese. Food Bioprod. Process. 2024, 144, 132–144. [Google Scholar] [CrossRef]
- R, C.; Sorrentino, E.; Cinquanta, L.; Rossi, F.; Iorizzo, M.; L, G. Shelf-Life of Mozzarella Cheese Samples Packaged without Liquid and Stored at Different Temperatures. Ital. J. Food Sci. 1995, 7, 351. [Google Scholar]
- Piscopo, A.; Mincione, A.; Summo, C.; Silletti, R.; Giacondino, C.; Rocco, I.; Pasqualone, A. Influence of the Mozzarella Type on Chemical and Sensory Properties of “Pizza Margherita”. Foods 2024, 13, 209. [Google Scholar] [CrossRef]
- Clarke, H.J.; McCarthy, W.P.; O’Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Oxidative Quality of Dairy Powders: Influencing Factors and Analysis. Foods 2021, 10, 2315. [Google Scholar] [CrossRef]
- Lipid Oxidation: Measuring Present Status. Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer International Publishing: Cham, Switzerland, 2017; pp. 418–421. ISBN 978-3-319-45774-1. [Google Scholar]
- Flórez, M.; Vázquez, M.; Cazón, P. Enhancing the Quality of Havarti Cheese: Chitosan Films with Nettle Urtica Dioica L. Extract as Slice Separators to Retard Lipid Oxidation. LWT 2023, 189, 115504. [Google Scholar] [CrossRef]
- Farbod, F.; Kalbasi, A.; Moini, S.; Emam-Djomeh, Z.; Razavi, H.; Mortazavi, A. Effects of Storage Time on Compositional, Micro-Structural, Rheological and Sensory Properties of Low Fat Iranian UF-Feta Cheese Fortified with Fish Oil or Fish Oil Powder. J. Food Sci. Technol. 2015, 52, 1372–1382. [Google Scholar] [CrossRef]
- Saravani, M.; Ehsani, A.; Aliakbarlu, J.; Ghasempour, Z. Gouda Cheese Spoilage Prevention: Biodegradable Coating Induced by Bunium Persicum Essential Oil and Lactoperoxidase System. Food Sci. Nutr. 2019, 7, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Taticchi, A.; Bartocci, S.; Servili, M.; Di Giovanni, S.; Pauselli, M.; Mourvaki, E.; Meo Zilio, D.; Terramoccia, S. Effect on Quanti-Quality Milk and Mozzarella Cheese Characteristics with Further Increasing the Level of Dried Stoned Olive Pomace in Diet for Lactating Buffalo. Asian-Australas J. Anim. Sci. 2017, 30, 1605–1611. [Google Scholar] [CrossRef]
- Losito, F.; Arienzo, A.; Bottini, G.; Priolisi, F.R.; Mari, A.; Antonini, G. Microbiological Safety and Quality of Mozzarella Cheese Assessed by the Microbiological Survey Method. J. Dairy Sci. 2014, 97, 46–55. [Google Scholar] [CrossRef]
- Akarca, G.; Tomar, O.; Gök, V. Effect of Different Packaging Methods on the Quality of Stuffed and Sliced Mozzarella Cheese during Storage: Different Packaging for Sliced Mozzarella Cheese. J. Food Process. Preserv. 2015, 39, 2912–2918. [Google Scholar] [CrossRef]
- Trmčić, A.; Chauhan, K.; Kent, D.J.; Ralyea, R.D.; Martin, N.H.; Boor, K.J.; Wiedmann, M. Coliform Detection in Cheese Is Associated with Specific Cheese Characteristics, but No Association Was Found with Pathogen Detection. J. Dairy Sci. 2016, 99, 6105–6120. [Google Scholar] [CrossRef] [PubMed]
Treatment | Color Parameter | Day 0 | SD */Range | Day 7 | SD */Range | Day 14 | SD/Range |
---|---|---|---|---|---|---|---|
NC | a* side A ** | 1.29 | 0.07 *** | 2.10 | 0.09 | 0.92 | 0.30 |
b* side A | 22.53 | 0.23 | 38.59 | 0.61 | 30.46 | 3.11 | |
L* side A | 89.04 | 0.13 | 79.65 | 0.63 | 73.66 | 3.90 | |
a* side B | 1.54 | 0.01 | 0.74 | 0.18 | 0.73 | 1.00 | |
b* side B ** | 23.14 | 0.42 | 27.54 | 0.39 | 31.41 | 2.30 | |
L* side B | 88.75 | 0.59 | 84.81 | 0.54 | 73.01 | 1.46 | |
dE side A | 21.54 | 0.29 | 39.81 | 0.57 | 35.93 | 4.05 | |
dE side B | 22.22 | 1.17 | 27.38 | 0.85 | 35.93 | 2.9 | |
PU | a* side A ** | 1.29 | 0.07 | 0.48 | 0.20 | 0.42 | 0.17 |
b* side A | 22.53 | 0.23 | 27.22 | 1.49 | 26.76 | 1.47 | |
L* side A | 89.04 | 0.13 *** | 83.87 | 3.56 | 86.39 | 1.36 | |
a* side B | 1.54 | 0.01 | 0.53 | 0.1 | 0.63 | 0.26 | |
b* side B ** | 23.14 | 0.42 | 28.55 | 1.21 | 29.09 | 3.05 | |
L* side B | 88.75 | 0.59 | 83.23 | 6.38 | 83.28 | 1.77 | |
dE side A | 21.54 | 0.29 | 27.7 | 0.5 | 26.2 | 1.79 | |
dE side B | 22.22 | 1.17 | 29.81 | 4.62 | 28.13 | 7.26 | |
CUR | a* side A ** | 1.29 | 0.07 | 0.58 | 0.09 | 0.43 | 0.02 |
b* side A | 22.53 | 0.23 | 26.43 | 0.41 | 25.34 | 5.13 | |
L* side A | 89.04 | 0.13 *** | 86.16 | 0.4 | 86.23 | 0.9 | |
a* side B | 1.54 | 0.01 | 1.07 | 1.25 | 0.69 | 0.26 | |
b* side B ** | 23.14 | 0.42 | 29.90 | 2.64 | 28.41 | 1.73 | |
L* side B | 88.75 | 0.59 | 84.46 | 1.23 | 84.37 | 1.32 | |
dE side A | 21.54 | 0.29 | 25.96 | 0.27 | 24.89 | 5.15 | |
dE side B | 22.22 | 1.17 | 29.82 | 6.43 | 28.19 | 4.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz, D.; Tessaro, L.; Sobral, P.J.d.A.; Uscátegui, Y.; Diaz, L.E.; Valero, M.F. Testing the Shelf Life of Mozzarella-Type Cheese Packaged with Polyurethane-Based Films with Curcumin. Polymers 2025, 17, 1342. https://doi.org/10.3390/polym17101342
Ruiz D, Tessaro L, Sobral PJdA, Uscátegui Y, Diaz LE, Valero MF. Testing the Shelf Life of Mozzarella-Type Cheese Packaged with Polyurethane-Based Films with Curcumin. Polymers. 2025; 17(10):1342. https://doi.org/10.3390/polym17101342
Chicago/Turabian StyleRuiz, David, Larissa Tessaro, Paulo José do Amaral Sobral, Yomaira Uscátegui, Luis Eduardo Diaz, and Manuel F. Valero. 2025. "Testing the Shelf Life of Mozzarella-Type Cheese Packaged with Polyurethane-Based Films with Curcumin" Polymers 17, no. 10: 1342. https://doi.org/10.3390/polym17101342
APA StyleRuiz, D., Tessaro, L., Sobral, P. J. d. A., Uscátegui, Y., Diaz, L. E., & Valero, M. F. (2025). Testing the Shelf Life of Mozzarella-Type Cheese Packaged with Polyurethane-Based Films with Curcumin. Polymers, 17(10), 1342. https://doi.org/10.3390/polym17101342