Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions
Abstract
:1. Introduction
2. Materials and Methods
Sustainable PCMs
3. Bio-Based PCMs
3.1. Advantages and Limitations
3.2. Applications of Bio-Based PCMs in Buildings
3.3. Thermal, Mechanical and In-Service Performance of Bio-Based PCMs
4. Waste-Derived PCMs
4.1. Advantages and Limitations
4.2. Applications of Waste-Derived PCMs in Building
4.3. Thermal, Mechanical and In-Service Performance of Waste-Derived PCMs
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shah, M.M. Sustainable Development. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: Oxford, UK, 2008; pp. 3443–3446. ISBN 978-0-08-045405-4. [Google Scholar]
- Popescu, C.; Dissanayake, H.; Mansi, E.; Stancu, A. Eco Breakthroughs: Sustainable Materials Transforming the Future of Our Planet. Sustainability 2024, 16, 10790. [Google Scholar] [CrossRef]
- Shree, V.; Dwivedi, A.; Saxena, A.; Pathak, S.K.; Agrawal, N.; Tripathi, B.M.; Shukla, S.K.; Kumar, R.; Goel, V. A Comprehensive Review of Harnessing the Potential of Phase Change Materials (PCMs) in Energy-Efficient Building Envelopes. J. Build. Eng. 2025, 101, 111841. [Google Scholar] [CrossRef]
- Awasthi, A.; Nirmalkar, N.; Tiwari, A.K. A Review of PCM Based Hybrid Battery Thermal Management Systems for the Prismatic Lithium-Ion Batteries of the Electric Vehicle. Future Batter. 2025, 5, 100035. [Google Scholar] [CrossRef]
- Takash, A.A.; Faraj, K.; Faraj, J.; Hage, H.E.; Hage-Diab, A.; Khaled, M.; Salameh, T.; Hamid, A.-K.; Hussein, M. A Review on Advanced Phase Change Material-Based Cooling for Energy-Efficient Electronics. Energy Convers. Manag. X 2025, 26, 100994. [Google Scholar] [CrossRef]
- Ismail, K.A.R.; Lino, F.A.M.; Teggar, M.; Laouer, A.; Henriquez, J.R.; Rocha, T.T.M. Potential Applications of Phase Change Materials in the Food Industry: A Review. J. Energy Storage 2025, 115, 115946. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Liu, Y.; Zhu, D.; Ma, M.; Yu, W. Polyurethane Foam Skeleton-Based Phase Change Hydrogel for Efficient Battery Thermal Management with Favorable Antivibration Performance. ACS Appl. Mater. Interfaces 2023, 15, 49653–49664. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, C.; Zhao, C.; Zhu, D.; Wang, L.; Xie, H.; Yu, W. A Comprehensive Review for the Heat Traceability in Lithium-Ion Batteries: From Generation and Transfer to Thermal Management. Renew. Sustain. Energy Rev. 2025, 216, 115706. [Google Scholar] [CrossRef]
- Zhang, A.; Xiong, Y.; Zhao, Y.; Wu, Y.; Xu, Q.; Ding, Y. A Review of Passive Building Thermal Management with Phase-Change Materials. Renew. Sustain. Energy Rev. 2025, 211, 115334. [Google Scholar] [CrossRef]
- Rubio-Aguinaga, A.; Fernández, J.M.; Navarro-Blasco, Í.; Álvarez, J.I. Air Lime Renders with Microencapsulated Phase Change Materials: Assessment of Microstructural and Thermal Properties. Constr. Build. Mater. 2024, 452, 138862. [Google Scholar] [CrossRef]
- Duan, Q.; Zhang, X.; Lang, S.; Liu, G.; Wang, H.; Zhou, X.; Du, G. Dimensionally Stable Delignified Bamboo Matrix Phase-Change Composite under Ambient Temperature for Indoor Thermal Regulation. Polymers 2023, 15, 1727. [Google Scholar] [CrossRef]
- Anter, A.G.; Sultan, A.A.; Hegazi, A.A.; El Bouz, M.A. Thermal Performance and Energy Saving Using Phase Change Materials (PCM) Integrated in Building Walls. J. Energy Storage 2023, 67, 107568. [Google Scholar] [CrossRef]
- Kalidasan, B.; Pandey, A.K. Next Generation Phase Change Materials: State-of-the-Art towards Sustainable Future. Prog. Mater. Sci. 2025, 148, 101380. [Google Scholar] [CrossRef]
- Manikandan, S.; Devarajan, Y.; Vickram, S. Advancing Thermal Energy Storage with Industrial and Agricultural Waste-Derived Phase Change Materials: A Path towards Sustainable Energy Systems. Process Saf. Environ. Prot. 2025, 198, 107068. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Pérez, G. 13—Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) Used in Buildings. In Eco-Efficient Construction and Building Materials; Pacheco-Torgal, F., Cabeza, L.F., Labrincha, J., de Magalhães, A., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 287–310. ISBN 978-0-85709-767-5. [Google Scholar]
- Menoufi, K.; Castell, A.; Farid, M.M.; Boer, D.; Cabeza, L.F. Life Cycle Assessment of Experimental Cubicles Including PCM Manufactured from Natural Resources (Esters): A Theoretical Study. Renew. Energy 2013, 51, 398–403. [Google Scholar] [CrossRef]
- Aridi, R.; Yehya, A. Review on the Sustainability of Phase-Change Materials Used in Buildings. Energy Convers. Manag. X 2022, 15, 100237. [Google Scholar] [CrossRef]
- Simonsen, G.; Ravotti, R.; O’Neill, P.; Stamatiou, A. Biobased Phase Change Materials in Energy Storage and Thermal Management Technologies. Renew. Sustain. Energy Rev. 2023, 184, 113546. [Google Scholar] [CrossRef]
- Benhorma, A.; Bensenouci, A.; Teggar, M.; Ismail, K.A.R.; Arıcı, M.; Mezaache, E.; Laouer, A.; Lino, F.A.M. Prospects and Challenges of Bio-Based Phase Change Materials: An up to Date Review. J. Energy Storage 2024, 90, 111713. [Google Scholar] [CrossRef]
- Malode, S.J.; Shetti, N.P. Thermal Energy Storage Systems Using Bio-Based Phase Change Materials: A Comprehensive Review for Building Energy Efficiency. J. Energy Storage 2025, 105, 114709. [Google Scholar] [CrossRef]
- Pielichowska, K.; Nowicka-Dunal, K.; Pielichowski, K. Bio-Based Polymers for Environmentally Friendly Phase Change Materials. Polymers 2024, 16, 328. [Google Scholar] [CrossRef]
- Mohaisen, K.O.; Hasan Zahir, M.; Maslehuddin, M.; Al-Dulaijan, S.U. Development of a Shape-Stabilized Phase Change Material Utilizing Natural and Industrial Byproducts for Thermal Energy Storage in Buildings. J. Energy Storage 2022, 50, 104205. [Google Scholar] [CrossRef]
- Bošnjak Hordov, J.; Nižetić, S.; Jurčević, M.; Čoko, D.; Ćosić, M.; Jakić, M.; Arıcı, M. Review of Organic and Inorganic Waste-Based Phase Change Composites in Latent Thermal Energy Storage: Thermal Properties and Applications. Energy 2024, 306, 132421. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Yeap, I.S.R.; Wang, S.; Tomczak, N.; Lin, M.; Kai, D.; Ye, E.; Thitsartarn, W.; Tan, J.B.H.; Yin, X.; et al. Advancements in Sustainable Phase Change Materials: Valorizing Waste for Eco-Friendly Applications. Mater. Today Chem. 2024, 39, 102163. [Google Scholar] [CrossRef]
- Sarcinella, A.; de Aguiar, J.L.B.; Frigione, M. Use of Sustainable Phase Change Material (PCM) in Mortars for Building Energy Efficiency. J. Phys. Conf. Ser. 2022, 2385, 012009. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; de Barreneche, C.; De Gracia, A.; Fernández, A. Materials Used as PCM in Thermal Energy Storage in Buildings: A Review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Luo, Z.; Wang, K.; Shah, S.P. A Critical Review on Phase Change Materials (PCM) for Sustainable and Energy Efficient Building: Design, Characteristic, Performance and Application. Energy Build. 2022, 260, 111923. [Google Scholar] [CrossRef]
- Magendran, S.S.; Khan, F.S.A.; Mubarak, N.M.; Vaka, M.; Walvekar, R.; Khalid, M.; Abdullah, E.C.; Nizamuddin, S.; Karri, R.R. Synthesis of Organic Phase Change Materials (PCM) for Energy Storage Applications: A Review. Nano-Struct. Nano-Objects 2019, 20, 100399. [Google Scholar] [CrossRef]
- Cunha, S.; Sarcinella, A.; Aguiar, J.; Frigione, M. Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review. Energies 2023, 16, 4806. [Google Scholar] [CrossRef]
- Jayathunga, D.S.; Karunathilake, H.P.; Narayana, M.; Witharana, S. Phase Change Material (PCM) Candidates for Latent Heat Thermal Energy Storage (LHTES) in Concentrated Solar Power (CSP) Based Thermal Applications—A Review. Renew. Sustain. Energy Rev. 2024, 189, 113904. [Google Scholar] [CrossRef]
- Anand, A.; Mansor, M.; Sharma, K.; Shukla, A.; Sharma, A.; Siddiqui, M.I.H.; Sadasivuni, K.K.; Priyadarshi, N.; Twala, B. A Comprehensive Review on Eutectic Phase Change Materials: Development, Thermophysical Properties, Thermal Stability, Reliability, and Applications. Alex. Eng. J. 2025, 112, 254–280. [Google Scholar] [CrossRef]
- Duquesne, M.; Mailhé, C.; Ruiz-Onofre, K.; Achchaq, F. Biosourced Organic Materials for Latent Heat Storage: An Economic and Eco-Friendly Alternative. Energy 2019, 188, 116067. [Google Scholar] [CrossRef]
- Sharwan, S.; Sikarwar, P.; Mazumdar, B. Recent Innovations in Support Materials for Shape-Stable Organic Composite Phase Change Materials: A Comprehensive Review. Sol. Energy Mater. Sol. Cells 2024, 272, 112910. [Google Scholar] [CrossRef]
- Sarcinella, A.; Frigione, M. Selection of PEG-Matrix Combinations to Achieve High Performance Form-Stable Phase Change Materials for Building Applications. Coatings 2024, 14, 250. [Google Scholar] [CrossRef]
- Li, D.; Zhuang, B.; Chen, Y.; Li, B.; Landry, V.; Kaboorani, A.; Wu, Z.; Wang, X.A. Incorporation Technology of Bio-Based Phase Change Materials for Building Envelope: A Review. Energy Build. 2022, 260, 111920. [Google Scholar] [CrossRef]
- Mathis, D.; Blanchet, P.; Lagière, P.; Landry, V. Performance of Wood-Based Panels Integrated with a Bio-Based Phase Change Material: A Full-Scale Experiment in a Cold Climate with Timber-Frame Huts. Energies 2018, 11, 3093. [Google Scholar] [CrossRef]
- Wi, S.; Yang, S.; Yeol Yun, B.; Kim, S. Exterior Insulation Finishing System Using Cementitious Plaster/Microencapsulated Phase Change Material for Improving the Building Thermal Storage Performance. Constr. Build. Mater. 2021, 299, 123932. [Google Scholar] [CrossRef]
- Righetti, G.; Zilio, C.; Guarda, D.; Feo, D.; Auerbach, M.; Butters, M.; Mancin, S. Experimental Analysis of a Commercial Size Bio-Based Latent Thermal Energy Storage for Air Conditioning. J. Energy Storage 2023, 72, 108477. [Google Scholar] [CrossRef]
- Parameshwaran, R.; Naresh, R.; Ram, V.V.; Srinivas, P.V. Microencapsulated Bio-Based Phase Change Material-Micro Concrete Composite for Thermal Energy Storage. J. Build. Eng. 2021, 39, 102247. [Google Scholar] [CrossRef]
- Choi, J.Y.; Nam, J.; Yuk, H.; Yang, S.; Kim, S. Enhancing the Hygrothermal Performance of Corn Cob Residue-Based Eco-Friendly Building Materials through Biochar and Microencapsulated Phase Change Material Incorporation. J. Build. Eng. 2024, 89, 109189. [Google Scholar] [CrossRef]
- Erkizia, E.; Strunz, C.; Dauvergne, J.-L.; Goracci, G.; Peralta, I.; Serrano, A.; Ortega, A.; Alonso, B.; Zanoni, F.; Düngfelder, M.; et al. Study of Paraffinic and Biobased Microencapsulated PCMs with Reduced Graphene Oxide as Thermal Energy Storage Elements in Cement-Based Materials for Building Applications. J. Energy Storage 2024, 84, 110675. [Google Scholar] [CrossRef]
- Gbekou, F.K.; Benzarti, K.; Boudenne, A.; Eddhahak, A.; Duc, M. Mechanical and Thermophysical Properties of Cement Mortars Including Bio-Based Microencapsulated Phase Change Materials. Constr. Build. Mater. 2022, 352, 129056. [Google Scholar] [CrossRef]
- Alharbey, R.A.; Daqrouq, K.O.; Alkhateeb, A. Energy Exchange of Inserting Eco-Friendly Bio Phase Change Material into the Vertical Walls to Make the Buildings Energy-Efficient. J. Build. Eng. 2022, 56, 104777. [Google Scholar] [CrossRef]
- Gnanachelvam, S.; Ariyanayagam, A.; Mahendran, M. Fire Resistance of LSF Wall Systems Lined with Different Wallboards Including Bio-PCM Mat. J. Build. Eng. 2020, 32, 101628. [Google Scholar] [CrossRef]
- Guermat, Z.; Kabar, Y.; Kuznik, F.; Boukelia, T.E. Numerical Investigation of the Integration of New Bio-Based PCM in Building Envelopes during the Summer in Algerian Cities. J. Energy Storage 2024, 79, 110111. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Barbanera, M.; Cabeza, L.F. Palm Oil-Based Bio-PCM for Energy Efficient Building Applications: Multipurpose Thermal Investigation and Life Cycle Assessment. J. Energy Storage 2020, 28, 101129. [Google Scholar] [CrossRef]
- Ju, S.; Miao, Y.; Shi, J.; Wang, L.; Wang, F.; Liu, Z.; Jiang, J. Thermal Storage Cementitious Materials Containing SiO2-Coated Cenosphere@bio-Based PCMs: Microstructural, Mechanical, and Thermal Properties. Constr. Build. Mater. 2024, 437, 137005. [Google Scholar] [CrossRef]
- Ismail, A.; Zhou, J.; Aday, A.; Davidoff, I.; Odukomaiya, A.; Wang, J. Microencapsulation of Bio-Based Phase Change Materials with Silica Coated Inorganic Shell for Thermal Energy Storage. J. Build. Eng. 2023, 67, 105981. [Google Scholar] [CrossRef]
- Kehli, K.; Belhadj, B.; Ferhat, A. Development of a New Lightweight Gypsum Composite: Effect of Mixed Treatment of Barley Straws with Hot Water and Bio-Based Phase Change Material on the Thermo-Mechanical Properties. Constr. Build. Mater. 2023, 389, 131597. [Google Scholar] [CrossRef]
- Dehmous, M.; Franquet, E.; Lamrous, N. Mechanical and Thermal Characterizations of Various Thermal Energy Storage Concretes Including Low-Cost Bio-Sourced PCM. Energy Build. 2021, 241, 110878. [Google Scholar] [CrossRef]
- Ismail, A.; Bahmani, M.; Wang, X.; Aday, A.; Odukomaiya, A.; Wang, J. Enabling Thermal Energy Storage in Structural Cementitious Composites with a Novel Phase Change Material Microcapsule Featuring an Inorganic Shell and a Bio-Inspired Silica Coating. J. Energy Storage 2024, 83, 110677. [Google Scholar] [CrossRef]
- Frota de Albuquerque Landi, F.; Fabiani, C.; Pisello, A.L. Palm Oil for Seasonal Thermal Energy Storage Applications in Buildings: The Potential of Multiple Melting Ranges in Blends of Bio-Based Fatty Acids. J. Energy Storage 2020, 29, 101431. [Google Scholar] [CrossRef]
- Baylis, C.; Cruickshank, C.A. Economics and Lifecycle Carbon Assessment of Coconut Oil as an Alternative to Paraffin Phase Change Materials in North America. Energy Build. 2023, 294, 113268. [Google Scholar] [CrossRef]
- Eller, C.; Rida, M.; Boudier, K.; Otoni, C.; Celani, G.; Labaki, L.; Hoffmann, S. Climate-Based Analysis for the Potential Use of Coconut Oil as Phase Change Material in Buildings. Sustainability 2021, 13, 10731. [Google Scholar] [CrossRef]
- Nazari Sam, M.; Caggiano, A.; Mankel, C.; Koenders, E. A Comparative Study on the Thermal Energy Storage Performance of Bio-Based and Paraffin-Based PCMs Using DSC Procedures. Materials 2020, 13, 1705. [Google Scholar] [CrossRef] [PubMed]
- Abdulmunem, A.R.; Mazali, I.I.; Samin, P.M.; Sopian, K.; Ghazali, H. Bio-Phase Change Materials Based on Stearin of Sheep Tail-Fats Loaded with Nanoparticles: Melting Performance Analysis in Rectangular Cavity as a Sustainable Building Envelopes. Energy Build. 2025, 336, 115612. [Google Scholar] [CrossRef]
- Behruzian, M.; Najafi, G.; Heugebaert, T.; Rashidi, A.; Gorjian, S.; Banakar, A. High-Performance Shape-Stabilized Phase Change Material Modified by Bio-Based Nano Porous Graphene for Electro-to-Thermal and Solar-to-Thermal Conversion and Storage. J. Energy Storage 2025, 107, 114946. [Google Scholar] [CrossRef]
- Fabiani, C.; Pisello, A.L.; Barbanera, M.; Cabeza, L.F.; Cotana, F. Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation. Energies 2019, 12, 1111. [Google Scholar] [CrossRef]
- Sawadogo, M.; Benmahiddine, F.; Hamami, A.E.A.; Belarbi, R.; Godin, A.; Duquesne, M. Investigation of a Novel Bio-Based Phase Change Material Hemp Concrete for Passive Energy Storage in Buildings. Appl. Therm. Eng. 2022, 212, 118620. [Google Scholar] [CrossRef]
- El Majd, A.; Sair, S.; Ousaleh, H.A.; Moulakhnif, K.; Younsi, Z.; Belouaggadia, N.; El Bouari, A. Advanced Gypsum/PCM Composites Incorporating Biopolymer-Encapsulated Phase Change Materials for Enhanced Thermal Management in Buildings. Constr. Build. Mater. 2024, 451, 138872. [Google Scholar] [CrossRef]
- Dora, S.; Kuznik, F.; Mini, K.M. A Novel PCM-Based Foam Concrete for Heat Transfer in Buildings -Experimental Developments and Simulation Modelling. J. Energy Storage 2025, 105, 114625. [Google Scholar] [CrossRef]
- Sun, M.; Feng, D.; Sun, F.; Di, H.; Wang, Q.; Lin, L. Insights into Effect of Lignocellulosic Biomass Framework Types on Bio-Based Shape Stable Composite Phase Change Materials. J. Energy Storage 2024, 91, 112103. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Kar, T.; Keleş, S.; Kaygusuz, K.; Tyagi, V.V.; Sharma, R.K.; Al-Ahmed, A.; Al-Sulaiman, F.A.; Saleh, T.A. Walnut Shell Derived Bio-Carbon/Methyl Palmitate as Novel Composite Phase Change Material with Enhanced Thermal Energy Storage Properties. J. Energy Storage 2021, 35, 102288. [Google Scholar] [CrossRef]
- Suh, W.D.; Yuk, H.; Choi, J.Y.; Nam, J.; Kim, S. Enhancing Thermal Performance of Gypsum with Luffa Fiber-Based Phase Change Materials for Application in Advanced Indoor Finishing Material. Constr. Build. Mater. 2024, 428, 136248. [Google Scholar] [CrossRef]
- Hekimoğlu, G.; Sarı, A.; Gencel, O.; Önal, Y.; Ustaoğlu, A.; Erdogmus, E.; Harja, M.; Tyagi, V.V. Thermal Energy Storage Performance Evaluation of Bio-Based Phase Change Material/Apricot Kernel Shell Derived Activated Carbon in Lightweight Mortar. J. Energy Storage 2023, 73, 109122. [Google Scholar] [CrossRef]
- Yazdani McCord, M.R.; Kankkunen, A.; Chatzikosmidou, D.; Seppälä, A.; Seppälä, J.; Baniasadi, H. Polypyrrole-Modified Flax Fiber Sponge Impregnated with Fatty Acids as Bio-Based Form-Stable Phase Change Materials for Enhanced Thermal Energy Storage and Conversion. J. Energy Storage 2024, 81, 110363. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, R.; Zhang, N.; Chen, L.; Chen, D.; Li, X. Performance Improvement of Lauric Acid-1-Hexadecanol Eutectic Phase Change Material with Bio-Sourced Seashell Powder Addition for Thermal Energy Storage in Buildings. Constr. Build. Mater. 2023, 366, 130223. [Google Scholar] [CrossRef]
- Nazari, M.; Jebrane, M.; Terziev, N. Multicomponent Bio-Based Fatty Acids System as Phase Change Material for Low Temperature Energy Storage. J. Energy Storage 2021, 39, 102645. [Google Scholar] [CrossRef]
- Li, D.; Brinker, S.; Mai, C.; Landry, V.; Wang, X. Impregnation of Solid Wood with 1-Octadecanol/1-Dodecanol Eutectic PCM for Potential Building Thermal Energy Storage Applications. J. Energy Storage 2025, 114, 115797. [Google Scholar] [CrossRef]
- Jain, A.; Pal, G. Development and Characterization of Saturated Fatty Acids and Biopolymer Based Novel Multilayer Encapsulated Phase Change Materials System for Buildings. Constr. Build. Mater. 2024, 454, 139115. [Google Scholar] [CrossRef]
- Taj, S.A.; Khalid, W.; Nazir, H.; Khan, A.; Sajid, M.; Waqas, A.; Hussain, A.; Ali, M.; Zaki, S.A. Experimental Investigation of Eutectic PCM Incorporated Clay Brick for Thermal Management of Building Envelope. J. Energy Storage 2024, 84, 110838. [Google Scholar] [CrossRef]
- Hua, W.; Hu, J.; Zhao, Y.; Zhang, X.; Cai, S.; Ji, J. Development and Thermal Property Analysis of Biobased Binary Composite Heat Storage Materials. J. Energy Storage 2024, 95, 112556. [Google Scholar] [CrossRef]
- Li, D.; Lenfant, T.; Landry, V.; Rodrigue, D.; Kaboorani, A.; Wang, X. Development and Investigation of Biobased Binary Eutectic Phase Change Materials for Low-Temperature Building Applications: 1-Hexadecanol/1-Dodecanol and 1-Octadecanol/1-Dodecanol. J. Energy Storage 2024, 103, 114345. [Google Scholar] [CrossRef]
- Toifane, H.; Tittelein, P.; Cherif, Y.; Zalewski, L.; Leuck, H. Thermophysical Characterization of a Thermoregulating Interior Coating Containing a Bio-Sourced Phase Change Material. Appl. Sci. 2022, 12, 3827. [Google Scholar] [CrossRef]
- Duquesne, M.; Mailhé, C.; Doppiu, S.; Dauvergne, J.-L.; Santos-Moreno, S.; Godin, A.; Fleury, G.; Rouault, F.; Palomo del Barrio, E. Characterization of Fatty Acids as Biobased Organic Materials for Latent Heat Storage. Materials 2021, 14, 4707. [Google Scholar] [CrossRef]
- Ravotti, R.; Fellmann, O.; Lardon, N.; Fischer, L.J.; Stamatiou, A.; Worlitschek, J. Synthesis and Investigation of Thermal Properties of Highly Pure Carboxylic Fatty Esters to Be Used as PCM. Appl. Sci. 2018, 8, 1069. [Google Scholar] [CrossRef]
- Asadi, I.; Ji, G.; Steiner, G. Impact of Microencapsulated Phase Change Materials (PCMs) on the Thermal and Mechanical Performance of Cement Mortar. Dev. Built Environ. 2025, 21, 100594. [Google Scholar] [CrossRef]
- Das, D.; Crosby, R.; Paul, M.C. A Comprehensive Review on the Form Stable Phase Change Materials for Storing Renewable Heat Preparation, Characterization and Application. J. Energy Storage 2025, 110, 115284. [Google Scholar] [CrossRef]
- Ning, N.; Sun, C.; Ma, Z.J.; Guo, S.; Jiang, S.; Zhang, J.; Hou, D.; Wang, C. A Review of Incorporating PCMs in Various Types of Concrete: Thermal and Mechanical Properties, Crack Control, Frost-Resistance, and Workability. J. Energy Storage 2025, 114, 115814. [Google Scholar] [CrossRef]
- Cunha, S.; Lima, M.; Aguiar, J.B. Influence of Adding Phase Change Materials on the Physical and Mechanical Properties of Cement Mortars. Constr. Build. Mater. 2016, 127, 1–10. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M.; Sarcinella, A.; Barroso de Aguiar, J.L. Applications of Sustainable Polymer-Based Phase Change Materials in Mortars Composed by Different Binders. Materials 2019, 12, 3502. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Zhang, J.; Lin, L.; Shi, J. A Review of Composite Phase Change Materials Based on Biomass Materials. Polymers 2022, 14, 4089. [Google Scholar] [CrossRef]
- Irsyad, M.; Amrizal; Harmen; Amrul; Susila Es, M.D.; Diva Putra, A.R. Experimental Study of the Thermal Properties of Waste Cooking Oil Applied as Thermal Energy Storage. Results Eng. 2023, 18, 101080. [Google Scholar] [CrossRef]
- Boussaba, L.; Lefebvre, G.; Makhlouf, S.; Grados, A.; Royon, L. Investigation and Properties of a Novel Composite Bio-PCM to Reduce Summer Energy Consumptions in Buildings of Hot and Dry Climates. Sol. Energy 2021, 214, 119–130. [Google Scholar] [CrossRef]
- Bragaglia, M.; Lamastra, F.R.; Berrocal, J.A.; Paleari, L.; Nanni, F. Sustainable Phase Change Materials (PCMs): Waste Fat from Cooking Pork Meat Confined in Polypropylene Fibrous Mat from Waste Surgical Mask and Porous Bio-Silica. Mater. Today Sustain. 2023, 23, 100454. [Google Scholar] [CrossRef]
- Rashid, Y.; Alnaimat, F.; Mathew, B. Energy Performance Assessment of Waste Materials for Buildings in Extreme Cold and Hot Conditions. Energies 2018, 11, 3131. [Google Scholar] [CrossRef]
- Sarcinella, A.; Cunha, S.; Aguiar, J.; Frigione, M. Thermo-Chemical Characterization of Organic Phase Change Materials (PCMs) Obtained from Lost Wax Casting Industry. Sustainability 2024, 16, 7057. [Google Scholar] [CrossRef]
- Yan, C.; Abed, A.M.; Chaturvedi, R.; Dahari, M.; Abdullaev, S.; Zhou, X.; Mahariq, I.; Elmasry, Y. Sustainable Commercially-Scaled Greenhouse Building Cooling Solution: Integrating PCM Storage, Desiccant Wheels, and Absorption Chillers Powered by Dual-Source Solar/Biomass Energy. J. Energy Storage 2024, 101, 113871. [Google Scholar] [CrossRef]
Type of PCMs | Advantages | Disadvantages |
---|---|---|
Bio-based PCMs |
|
|
Waste-derived PCMs |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarcinella, A.; Cunha, S.; Aguiar, I.; Aguiar, J.; Frigione, M. Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions. Polymers 2025, 17, 1343. https://doi.org/10.3390/polym17101343
Sarcinella A, Cunha S, Aguiar I, Aguiar J, Frigione M. Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions. Polymers. 2025; 17(10):1343. https://doi.org/10.3390/polym17101343
Chicago/Turabian StyleSarcinella, Antonella, Sandra Cunha, Ingried Aguiar, José Aguiar, and Mariaenrica Frigione. 2025. "Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions" Polymers 17, no. 10: 1343. https://doi.org/10.3390/polym17101343
APA StyleSarcinella, A., Cunha, S., Aguiar, I., Aguiar, J., & Frigione, M. (2025). Sustainable Organic Phase Change Materials for Sustainable Energy Efficiency Solutions. Polymers, 17(10), 1343. https://doi.org/10.3390/polym17101343