A Review of Weathering Studies in Plastics and Biocomposites—Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs)
Abstract
:1. Introduction
2. Plastics Degradation
2.1. Thermal Degradation
2.2. Photodegradation
2.2.1. UV Screeners
2.2.2. UV Absorbers
2.2.3. Excited State Quenchers
2.2.4. Free Radical Scavengers and/or Hydroperoxide Decomposers
2.3. Biodegradation
3. Natural vs. Accelerated Weathering
3.1. Natural Weathering
3.2. Accelerated Weathering
4. Case Studies on Weathering
4.1. Plastics
4.2. Biocomposites
4.3. Photodegradation in Marine Environment
5. Analysis of VOC Emissions
5.1. Ambient Mass Spectrometry Analysis
5.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis
5.3. Headspace Techniques
5.4. Solvent Extraction Techniques
5.5. Thermal Desorption–Gas Chromatography–Mass Spectrometry
5.6. Studies on VOC Emissions in Plastics and Biocomposites
6. Conclusions
Funding
Conflicts of Interest
References
- González-López, M.E.; Del Campo AS, M.; Robledo-Ortíz, J.R.; Arellano, M.; Pérez-Fonseca, A.A. Accelerated weathering of poly (lactic acid) and its biocomposites: A review. Polym. Degrad. Stab. 2020, 179, 109290. [Google Scholar] [CrossRef]
- Laycock, B.; Nikolić, M.; Colwell, J.M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G. Lifetime prediction of biodegradable polymers. Prog. Polym. Sci. 2017, 71, 144–189. [Google Scholar] [CrossRef]
- Zhang, X.; Su, H.; Gao, P.; Li, B.; Feng, L.; Liu, Y.; Du, Z.; Zhang, L. Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight. J. Hazard. Mater. 2022, 433, 128813. [Google Scholar] [CrossRef] [PubMed]
- Parwaiz, S.; Khan, M.M.; Pradhan, D. CeO2-based nanocomposites: An advanced alternative to TiO2 and ZnO in sunscreens. Mater. Express 2019, 9, 185–202. [Google Scholar] [CrossRef]
- Martínez-Romo, A.; González-Mota, R.; Soto-Bernal, J.; Rosales-Candelas, I. Investigating the degradability of HDPE, LDPE, PE-Bio, and pe-oxo films under UV-B radiation. J. Spectrosc. 2015, 2015, 586514. [Google Scholar] [CrossRef]
- Michalski, S. Agent of deterioration: Light, ultraviolet and infrared. Can. Conserv. Inst. 2018, 17. [Google Scholar] [CrossRef]
- Yousif, E.; Haddad, R. Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus 2013, 2, 398. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, L.; Wang, R.; Chen, H.; Xu, Y.; Zang, Y.; Li, Z.; Feng, S.; Lei, Q.; Xia, C. Fabrication and photoelectric properties of a graphene-silicon nanowire heterojunction on a flexible polytetrafluoroethylene substrate. Mater. Lett. 2020, 281, 128599. [Google Scholar] [CrossRef]
- Azwa, Z.; Yousif, B.; Manalo, A.; Karunasena, W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013, 47, 424–442. [Google Scholar] [CrossRef]
- Lungulescu, E.M.; Zaharescu, T. Stabilization of polymers against photodegradation. In Photochemical Behavior of Multicomponent Polymeric-Based Materials; Springer: Berlin/Heidelberg, Germany, 2016; pp. 165–192. [Google Scholar]
- Allen, N.S.; Edge, M. Perspectives on additives for polymers. Part 2. Aspects of photostabilization and role of fillers and pigments. J. Vinyl Addit. Technol. 2021, 27, 211–239. [Google Scholar] [CrossRef]
- Stark, N.M.; Matuana, L.M. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy. Polym. Degrad. Stab. 2004, 86, 1–9. [Google Scholar] [CrossRef]
- Pickett, J.E. Weathering of plastics. In Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gijsman, P. Photostabilization of polymer materials. In Photochemistry and Photophysics of Polymer; Wiley: Hoboken, NJ, USA, 2010; pp. 627–679. [Google Scholar]
- Feldman, D. Polymer weathering: Photo-oxidation. J. Polym. Environ. 2002, 10, 163–173. [Google Scholar] [CrossRef]
- Ammala, A.; Bateman, S.; Dean, K.; Petinakis, E.; Sangwan, P.; Wong, S.; Yuan, Q.; Yu, L.; Patrick, C.; Leong, K. An overview of degradable and biodegradable polyolefins. Prog. Polym. Sci. 2011, 36, 1015–1049. [Google Scholar] [CrossRef]
- Oda, H. Effect of phenyl ester UV absorbers bearing a singlet oxygen quencher on photofading of crystal violet in a polymer substrate. Text. Res. J. 2001, 71, 1057–1062. [Google Scholar] [CrossRef]
- Rabie, S.; Mahran, A.; Kamel, E.; Abdel Hamid, N. Photodegradation of polystyrene stabilized with uracil derivative. J. Appl. Sci. Res. 2008, 4, 2015–2026. [Google Scholar]
- Corrigan, N.; Shanmugam, S.; Xu, J.; Boyer, C. Photocatalysis in organic and polymer synthesis. Chem. Soc. Rev. 2016, 45, 6165–6212. [Google Scholar] [CrossRef]
- Gugumus, F. Re-examination of the thermal oxidation reactions of polymers 2. Thermal oxidation of polyethylene. Polym. Degrad. Stab. 2002, 76, 329–340. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Chen, H.; Muros-Cobos, J.L.; Amirfazli, A. Contact angle measurement with a smartphone. Rev. Sci. Instrum. 2018, 89, 035117. [Google Scholar] [CrossRef]
- Kabir, H.; Garg, N. Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements. Sci. Rep. 2023, 13, 1497. [Google Scholar] [CrossRef]
- Law, K.L.; Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 2022, 7, 104–116. [Google Scholar] [CrossRef]
- BS EN 13432:2000; Packaging—Requirements for Packaging Recoverable through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging. EN: Brussels, Belgium, 2000.
- Ray, S.; Cooney, R.P. Thermal degradation of polymer and polymer composites. In Handbook of Environmental Degradation of Materials; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Yamashita, K.; Yamamoto, N.; Mizukoshi, A.; Noguchi, M.; Ni, Y.; Yanagisawa, Y. Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets. J. Air Waste Manag. Assoc. 2009, 59, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Royer, S.-J.; Ferrón, S.; Wilson, S.T.; Karl, D.M. Production of methane and ethylene from plastic in the environment. PLoS ONE 2018, 13, e0200574. [Google Scholar] [CrossRef] [PubMed]
- Sang, T.; Wallis, C.J.; Hill, G.; Britovsek, G.J. Polyethylene terephthalate degradation under natural and accelerated weathering conditions. Eur. Polym. J. 2020, 136, 109873. [Google Scholar] [CrossRef]
- Agroui, K.; Collins, G. Determination of thermal properties of crosslinked EVA encapsulant material in outdoor exposure by TSC and DSC methods. Renew. Energy 2014, 63, 741–746. [Google Scholar] [CrossRef]
- Yadav SK, J.; Vedrtnam, A.; Gunwant, D. Experimental and numerical study on mechanical behavior and resistance to natural weathering of sugarcane leave reinforced polymer composite. Constr. Build. Mater. 2020, 262, 120785. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, J.; Tao, Y.; Zhao, S.; Zeng, W.; Shi, Y.; Lu, T.; Guo, L.; Wang, S.; Zhang, X. Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review. Polym. Test. 2021, 93, 106940. [Google Scholar] [CrossRef]
- ASTM Standard G155-13; Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of Non-Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM Standard D7869-13; Standard Practice for Xenon Arc Exposure Test with Enhanced Light and Water Exposure for Transportation Coatings. ASTM International: West Conshohocken, PA, USA, 2013.
- Santos, R.; Botelho, G.; Cramez, C.; Machado, A. Outdoor and accelerated weathering of acrylonitrile-butadiene-styrene: A correlation study. Polym. Degrad. Stab. 2013, 98, 2111–2115. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stab. 2011, 96, 703–707. [Google Scholar] [CrossRef]
- Pérez, J.; Vilas, J.; Laza, J.; Arnáiz, S.; Mijangos, F.; Bilbao, E.; Rodríguez, M.; León, L. Effect of reprocessing and accelerated ageing on thermal and Mechanical polycarbonate properties. J. Mater. Process. Technol. 2010, 210, 727–733. [Google Scholar] [CrossRef]
- Grigoriadou, I.; Paraskevopoulos, K.; Chrissafis, K.; Pavlidou, E.; Stamkopoulos, T.-G.; Bikiaris, D. Effect of different nanoparticles on HDPE UV stability. Polym. Degrad. Stab. 2011, 96, 151–163. [Google Scholar] [CrossRef]
- Kumar, S.; Saha, A.; Bhowmik, S. Accelerated weathering effects on mechanical, thermal and viscoelastic properties of kenaf/pineapple biocomposite laminates for load bearing structural applications. J. Appl. Polym. Sci. 2022, 139, 51465. [Google Scholar] [CrossRef]
- Philip, M.; Al-Azzawi, F. Effects of natural and artificial weathering on the physical properties of recycled poly (ethylene terephthalate). J. Polym. Environ. 2018, 26, 3139–3148. [Google Scholar] [CrossRef]
- Hingant, M.; Mallarino, S.; Conforto, E.; Dubillot, E.; Barbier, P.; Bringer, A.; Thomas, H. Artificial weathering of plastics used in oyster farming. Sci. Total Environ. 2023, 868, 161638. [Google Scholar] [CrossRef] [PubMed]
- Turku, I.; Kärki, T. Accelerated weathering of fire-retarded wood–polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016, 81, 305–312. [Google Scholar] [CrossRef]
- Bakshi, P.; Pappu, A.; Bharti, D.K.; Patidar, R. Accelerated weathering performance of injection moulded PP and LDPE composites reinforced with calcium rich waste resources. Polym. Degrad. Stab. 2021, 192, 109694. [Google Scholar] [CrossRef]
- Yorseng, K.; Rangappa, S.M.; Pulikkalparambil, H.; Siengchin, S.; Parameswaranpillai, J. Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: Morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Constr. Build. Mater. 2020, 235, 117464. [Google Scholar] [CrossRef]
- Dan-mallam, Y.; Abdullah, M.Z.; Puteri, S.M. Megat-Yusoff, P.S.M. Mechanical properties of knitted kenaf fiber reinforced polyoxymethylene (pom) laminate composite. Malays. J. Microsc. 2013, 9, 31–36. [Google Scholar]
- Hongsriphan, N.; Jeensikhong, K.; Sornnuwat, K.; Yaemyen, N. Properties of Renewable Biocomposite from Poly (butylene succinate) and Teakwood Sawdust before and after Accelerated Weathering Condition. J. Bionic Eng. 2018, 15, 1075–1086. [Google Scholar] [CrossRef]
- ASTM Standard G154-23; Standard Practice for Operating Fluorescent Ultraviolet (UV) Lamp Apparatus for Exposure of Materials. ASTM International: West Conshohocken, PA, USA, 2023.
- Pucciariello, R.; Villani, V.; Bonini, C.; D’auria, M.; Vetere, T. Physical properties of straw lignin-based polymer blends. Polymer 2004, 45, 4159–4169. [Google Scholar] [CrossRef]
- Spiridon, I.; Leluk, K.; Resmerita, A.M.; Darie, R.N. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Compos. Part B Eng. 2015, 69, 342–349. [Google Scholar] [CrossRef]
- Botta, L.; Titone, V.; Teresi, R.; Scarlata, M.C.; Re, G.L.; La Mantia, F.P.; Lopresti, F. Biocomposite PBAT/lignin blown films with enhanced photo-stability. Int. J. Biol. Macromol. 2022, 217, 161–170. [Google Scholar] [CrossRef]
- Hararak, B.; Wanmolee, W.; Wijaranakul, P.; Prakymoramas, N.; Winotapun, C.; Kraithong, W.; Nakason, K. Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int. J. Biol. Macromol. 2023, 229, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.; Lauschke, T.; Schlebrowski, T.; Beucher, L.; Schweyen, P.; Alenezi, B.; Hahn, B.; Dierkes, G.; Ternes, T.; Fischer, C.B. Photoaging phenomena of biodegradable polybutylene succinate and conventional low density polyethylene by artificial weathering–a comparative surface study. Appl. Surf. Sci. 2022, 590, 153058. [Google Scholar] [CrossRef]
- Nishida, M.; Tanaka, T.; Tanaka, T.; Hayakawa, Y. Nucleating and plasticization effects in drawn poly (lactic acid) fiber during accelerated weathering degradation. Polymers 2018, 10, 365. [Google Scholar] [CrossRef]
- Kaynak, C.; Erdogan, A.R. Mechanical and thermal properties of polylactide/talc microcomposites: Before and after accelerated weathering. Polym. Adv. Technol. 2016, 27, 812–822. [Google Scholar] [CrossRef]
- Sajna, V.; Nayak, S.K.; Mohanty, S. Weathering and biodegradation study on graft copolymer compatibilized hybrid bionanocomposites of poly (lactic acid). J. Mater. Eng. Perform. 2016, 25, 2895–2906. [Google Scholar] [CrossRef]
- Buffum, K.; Pacheco, H.; Shivkumar, S. Environmental effects on the properties of biopolymer service-ware products. Polym.-Plast. Technol. Eng. 2015, 54, 506–514. [Google Scholar] [CrossRef]
- Yew, G.; Chow, W.; Mohd Ishak, Z.; Mohd Yusof, A. Natural weathering of poly (lactic acid): Effects of rice starch and epoxidized natural rubber. J. Elastomers Plast. 2009, 41, 369–382. [Google Scholar] [CrossRef]
- Chollakup, R.; Askanian, H.; Delor-Jestin, F. Initial properties and ageing behaviour of pineapple leaf and palm fibre as reinforcement for polypropylene. J. Thermoplast. Compos. Mater. 2017, 30, 174–195. [Google Scholar] [CrossRef]
- Ahmad Sawpan, M.; Islam, M.R.; Beg MD, H.; Pickering, K. Effect of accelerated weathering on physico-mechanical properties of polylactide bio-composites. J. Polym. Environ. 2019, 27, 942–955. [Google Scholar] [CrossRef]
- Wei, L.; Mcdonald, A.G. Accelerated weathering studies on the bioplastic, poly (3-hydroxybutyrate-co-3-hydroxyvalerate). Polym. Degrad. Stab. 2016, 126, 93–100. [Google Scholar] [CrossRef]
- Islam, M.S.; Pickering, K.L.; Foreman, N.J. Influence of accelerated ageing on the physico-mechanical properties of alkali-treated industrial hemp fibre reinforced poly (lactic acid)(PLA) composites. Polym. Degrad. Stab. 2010, 95, 59–65. [Google Scholar] [CrossRef]
- Chen, D.; Li, J.; Ren, J. Biocomposites based on ramie fibers and poly (L-lactic acid)(PLLA): Morphology and properties. Polym. Adv. Technol. 2012, 23, 198–207. [Google Scholar] [CrossRef]
- Sit, M.; Ling, J.; Jiang, C.; Zhang, Z.; Khalfallah, M.; Ioos, F.; Grossmann, E.; Dhakal, H.N. Influence of accelerated weathering on the properties of flax reinforced PLA biocomposites. Results Mater. 2022, 16, 100333. [Google Scholar] [CrossRef]
- Inseemeesak, B.; Siripaiboon, C.; Somkeattikul, K.; Attasophonwattana, P.; Kiatiwat, T.; Punsuvon, V.; Areeprasert, C. Biocomposite fabrication from pilot-scale steam-exploded coconut fiber and PLA/PBS with mechanical and thermal characterizations. J. Clean. Prod. 2022, 379, 134517. [Google Scholar] [CrossRef]
- Lila, M.K.; Shukla, K.; Komal, U.K.; Singh, I. Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Compos. Part B Eng. 2019, 156, 121–127. [Google Scholar] [CrossRef]
- Bolio-López, G.; Veleva, L.; Valadez-González, A.; Quintana-Owen, P. Weathering and biodegradation of polylactic acid composite reinforced with cellulosewhiskers. Rev. Mex. Ing. Química 2013, 12, 143–153. [Google Scholar]
- Araújo, A.; Botelho, G.L.; Silva, M.; Machado, A.V. UV stability of poly (lactic acid) nanocomposites. J. Mater. Sci. Eng. B 2013, 3, 75. [Google Scholar]
- Mysiukiewicz, O.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Kloziński, A. Accelerated weathering of polylactide-based composites filled with linseed cake: The influence of time and oil content within the filler. Polymers 2019, 11, 1495. [Google Scholar] [CrossRef]
- Lv, P.; Perre, P.; Perré, G.A. TGA-FTIR analysis of torrefaction of lignocellulosic components (cellulose, xylan, lignin) in isothermal conditions over a wide range of time durations. BioResources 2015, 10, 4239–4251. [Google Scholar] [CrossRef]
- Infurna, G.; Botta, L.; Maniscalco, M.; Morici, E.; Caputo, G.; Marullo, S.; D’Anna, F.; Dintcheva, N.T. Biochar particles obtained from agricultural carob waste as a suitable filler for sustainable biocomposite formulations. Polymers 2022, 14, 3075. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.M.; Pratt, S.; Halley, P.; Richardson, D.; Werker, A.; Laycock, B.; Vandi, L.-J. Mechanical and physical stability of polyhydroxyalkanoate (PHA)-based wood plastic composites (WPCs) under natural weathering. Polym. Test. 2019, 73, 214–221. [Google Scholar] [CrossRef]
- Briassoulis, D.; Pikasi, A.; Papardaki, N.; Mistriotis, A. Aerobic biodegradation of bio-based plastics in the seawater/sediment interface (sublittoral) marine environment of the coastal zone–Test method under controlled laboratory conditions. Sci. Total Environ. 2020, 722, 137748. [Google Scholar] [CrossRef]
- Andrady, A. Microplastics in the marine environment. Mar. Pollut. Bull. 2011, 62, 1596–1605. [Google Scholar] [CrossRef]
- Wu, X.; Liu, P.; Shi, H.; Wang, H.; Huang, H.; Shi, Y.; Gao, S. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Res. 2021, 188, 116456. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, Y.; Chen, Z.; Yang, F.; Xie, Y.; Yao, W. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Sci. Total Environ. 2022, 851, 157991. [Google Scholar] [CrossRef] [PubMed]
- Naik, R.A.; Rowles, L.S., III; Hossain, A.I.; Yen, M.; Aldossary, R.M.; Apul, O.G.; Conkle, J.; Saleh, N.B. Microplastic particle versus fiber generation during photo-transformation in simulated seawater. Sci. Total Environ. 2020, 736, 139690. [Google Scholar] [CrossRef] [PubMed]
- Brebu, M. Environmental degradation of plastic composites with natural fillers—A review. Polymers 2020, 12, 166. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Cabanes, A.; Valdés, F.J.; Fullana, A. A review on VOCs from recycled plastics. Sustain. Mater. Technol. 2020, 25, e00179. [Google Scholar] [CrossRef]
- Langford, V.S.; Graves, I.; Mcewan, M.J. Rapid monitoring of volatile organic compounds: A comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 10–18. [Google Scholar] [CrossRef] [PubMed]
- La Nasa, J.; Lomonaco, T.; Manco, E.; Ceccarini, A.; Fuoco, R.; Corti, A.; Modugno, F.; Castelvetro, V.; Degano, I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro-and microplastics analyzed by selected ion flow-tube mass spectrometry. Chemosphere 2021, 270, 128612. [Google Scholar] [CrossRef]
- Laajimi, H.; Galli, F.; Patience, G.S.; Schieppati, D. Experimental methods in chemical engineering: Gas chromatography—GC. Can. J. Chem. Eng. 2022, 100, 3123–3144. [Google Scholar] [CrossRef]
- Dugheri, S.; Mucci, N.; Bonari, A.; Marrubini, G.; Cappelli, G.; Ubiali, D.; Campagna, M.; Montalti, M.; Arcangeli, G. Liquid phase microextraction techniques combined with chromatography analysis: A review. Acta Chromatogr. 2020, 32, 69–79. [Google Scholar] [CrossRef]
- Sithersingh, M.J.; Snow, N.H. Headspace gas chromatography. In Gas Chromatography; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Liu p Li, H.; Wu, J.; Wu, X.; Shi, Y.; Yang, Z.; Huang, K.; Guo, X.; Gao, S. Polystyrene microplastics accelerated photodegradation of co-existed polypropylene via photosensitization of polymer itself and released organic compounds. Water Res. 2022, 214, 118209. [Google Scholar] [CrossRef]
- Väisänen, T.; Laitinen, K.; Tomppo, L.; Joutsensaari, J.; Raatikainen, O.; Lappalainen, R.; Yli-Pirilä, P. A rapid technique for monitoring volatile organic compound emissions from wood–plastic composites. Indoor Built Environ. 2018, 27, 194–204. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal. Chem. 2009, 28, 943–951. [Google Scholar] [CrossRef]
- Manjare, S.D.; Dhingra, K. Supercritical fluids in separation and purification: A review. Mater. Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Chuang, Y.-H.; Zhang, Y.; Zhang, W.; Boyd, S.A.; Li, H. Comparison of accelerated solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction and determination of pharmaceuticals in vegetables. J. Chromatogr. A 2015, 1404, 1–9. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Cheng, J.-H. Acceleration of microwave-assisted extraction processes of food components by integrating technologies and applying emerging solvents: A review of latest developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.; Calinescu, I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Alassali, A.; Calmano, W.; Gidarakos, E.; Kuchta, K. The degree and source of plastic recyclates contamination with polycyclic aromatic hydrocarbons. RSC Adv. 2020, 10, 44989–44996. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.; Scholz, P.; Jung, C.; Weidner, S. Thermal desorption gas chromatography-mass spectrometry for investigating the thermal degradation of polyurethanes. Anal. Methods 2023, 15, 1979–1984. [Google Scholar] [CrossRef] [PubMed]
- Materazzi, S.; Vecchio, S. Evolved Gas Analysis by Mass Spectrometry. Appl. Spectrosc. Rev. 2011, 46, 261–340. [Google Scholar] [CrossRef]
- Li, H.; Su, Q.-Z.; Liang, J.; Miao, H.; Jiang, Z.; Wu, S.; Dong, B.; Xie, C.; Li, D.; Ma, T.; et al. Potential safety concerns of volatile constituents released from coffee-ground-blended single-use biodegradable drinking straws: A chemical space perspective. J. Hazard. Mater. 2024, 467, 133663. [Google Scholar] [CrossRef]
- Badji, C.; Beigbeder, J.; Garay, H.; Bergeret, A.; Bénézet, J.-C.; Desauziers, V. Under glass weathering of hemp fibers reinforced polypropylene biocomposites: Impact of Volatile Organic Compounds emissions on indoor air quality. Polym. Degrad. Stab. 2018, 149, 85. [Google Scholar] [CrossRef]
- Lomonaco, T.; Manco, E.; Corti, A.; La Nasa, J.; Ghimenti, S.; Biagini, D.; Di Francesco, F.; Modugno, F.; Ceccarini, A.; Fuoco, R. Release of harmful volatile organic compounds (VOCs) from photo-degraded plastic debris: A neglected source of environmental pollution. J. Hazard. Mater. 2020, 394, 122596. [Google Scholar] [CrossRef]
- Wu, X.; Chen, X.; Jiang, R.; You, J.; Ouyang, G. New insights into the photo-degraded polystyrene microplastic: Effect on the release of volatile organic compounds. J. Hazard. Mater. 2022, 431, 128523. [Google Scholar] [CrossRef]
- Wu, X.; Tan, Z.; Liu, R.; Liao, Z.; Ou, H. Gaseous products generated from polyethylene and polyethylene terephthalate during ultraviolet irradiation: Mechanism, pathway and toxicological analyses. Sci. Total Environ. 2023, 876, 162717. [Google Scholar] [CrossRef]
- Boom, Y.J.; Enfrin, M.; Xuan, D.L.; Grist, S.; Robert, D.; Giustozzi, F. Laboratory evaluation of PAH and VOC emission from plastic-modified asphalt. J. Clean. Prod. 2022, 377, 134489. [Google Scholar] [CrossRef]
Biopolymer | Bio-Based Filler/Fibre | Accelerating Weathering Conditions | Main Results | References |
---|---|---|---|---|
PLA | Hemp | 340 nm fluorescent UV lamp; Cycle: 8 h UV light at 60 °C; 0.25 h water spray without light; 0.75 h condensation at 50 °C. Duration: 768 h |
| [59] |
Alkali treated hemp | 340 nm fluorescent UV lamp; Cycle: 1 h UV exposure; 1 min water spray; 2 h condensation all at 50 °C. Duration: 1000 h |
| [61] | |
Ramie | B313 nm fluorescent UV lamp; Cycle: 8 h of UV exposure at 60 °C; 4 h condensation at 50 °C. Duration: 252 h |
| [62] | |
Flax Nonwovens | 60 °C temperature and 95% relative humidity (RH) and 30 °C temperature and 95% RH. Duration: 500 h |
| [63] | |
Coir | Cycle: 0.89 W/m2/nm, 340 nm, UV-irradiation at 60 °C, and condensation temperature of 50 °C. Duration: 192 h |
| [64] | |
Bagasse | Temperature cycle of −20 °C to 65 °C (12 h a day at each temperature) for a period of 12 weeks. |
| [65] | |
Lignin | Mercury lamp at 30 °C and 60% humidity. Duration: 600 h |
| [49] | |
Cellulose whiskers | 340 nm fluorescent UV lamp, Cycle: 8 h of UV exposure at 50 °C and 30% RH; 4 h condensation at 40 °C and 100% RH. |
| [66] | |
Talc | 310 nm fluorescent UV lamp; Cycle: 8 h UV exposure at 70 °C; 4 h condensation at 50 °C. Duration: 300 h |
| [54] | |
Nano clays | Cycle (Rain and Dry): 18 min at 23 °C and 85% R.H; 102 min at 30 °C and 58% RH |
| [67] | |
Linseed cake | UV light (340 nm, 0.76 W/m2, 60 °C) and periodically sprayed with water; 18 min spraying was followed by a 102 min dry period. Duration: 500 h |
| [68] | |
Starch and wood flour | Cycle: 8-h UV exposure; 4 h condensation. Duration: 1200 h |
| [69] | |
PBS-PLA | Coir fibre | Cycle: 0.89 W/m2/nm, 340 nm, UV-irradiation at 60 °C, and condensation temperature of 50 °C. Duration: 192 h |
| [64] |
PBS | Teakwood sawdust | 60 °C, 8 h irradiation, 4 h condensation per cycle; 5 cycles, 60 h. Total duration: 300 h |
| [46] |
Lignin | 8 h of light at 55 °C followed by 4 h condensation at 45 °C and RH 40 ± 3%. Duration: 72 h |
| [51] | |
PBAT | Lignin | 8 h of light at 55 °C followed by 4 h condensation at 45 °C and RH 40 ± 3%. Duration: 72 h |
| [50] |
Biochar | Samples were exposed at 70 °C to an irradiance of 0.89 W/m2 (at a wavelength λ = 313 nm) and monitored every 24 h. |
| [70] | |
PHBV | Wood fibre | Natural weathering Duration: 12 months |
| [71] |
Technique | Advantages | Disadvantages |
---|---|---|
Gas chromatography–mass spectrometry analysis |
|
|
Ambient mass spectrometry analysis |
|
|
Headspace techniques |
|
|
Solvent extraction techniques |
|
|
Thermal-desorption–gas chromatography–mass spectrometry |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nzimande, M.C.; Mtibe, A.; Tichapondwa, S.; John, M.J. A Review of Weathering Studies in Plastics and Biocomposites—Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs). Polymers 2024, 16, 1103. https://doi.org/10.3390/polym16081103
Nzimande MC, Mtibe A, Tichapondwa S, John MJ. A Review of Weathering Studies in Plastics and Biocomposites—Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs). Polymers. 2024; 16(8):1103. https://doi.org/10.3390/polym16081103
Chicago/Turabian StyleNzimande, Monwabisi Cyril, Asanda Mtibe, Shepherd Tichapondwa, and Maya Jacob John. 2024. "A Review of Weathering Studies in Plastics and Biocomposites—Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs)" Polymers 16, no. 8: 1103. https://doi.org/10.3390/polym16081103
APA StyleNzimande, M. C., Mtibe, A., Tichapondwa, S., & John, M. J. (2024). A Review of Weathering Studies in Plastics and Biocomposites—Effects on Mechanical Properties and Emissions of Volatile Organic Compounds (VOCs). Polymers, 16(8), 1103. https://doi.org/10.3390/polym16081103