The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications
Abstract
:1. Introduction
2. Experimental Section
2.1. Polymer/SWCNT Composite Film Preparation
2.2. Fabrication of p-Type Polymer/SWCNTs TE Devices
3. Results and Discussion
3.1. Synthesis and Characterization of Polymers
3.2. Raman Spectroscopy
3.3. X-ray Diffraction
3.4. Microscopic Morphology Studies
3.5. Mechanical Properties
3.6. Thermoelectric Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, L.; Fan, J.; Wang, M.; Chen, G.; Sun, G. Ternary Thermoelectric Composites of Polypyrrole/PEDOT:PSS/Carbon Nanotube with Unique Layered Structure Prepared by One-Dimensional Polymer Nanostructure as Template. Compos. Sci. Technol. 2020, 187, 107948. [Google Scholar] [CrossRef]
- Cheng, H.; He, X.; Fan, Z.; Ouyang, J. Flexible Quasi-Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Adv. Energy Mater. 2019, 9, 1901085. [Google Scholar] [CrossRef]
- El-Shamy, A.G. Review on the Recent Advance in PEDOT:PSS/Carbonic Fillers Based Nanocomposite for Flexible Thermoelectric Devices and Sensors. Mater. Today Phys. 2023, 35, 101101. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhao, D.; Aili, A.; Zhang, S.; Shi, C.; Zhang, J.; Geng, H.; Zhang, J.; Zhang, L.; et al. High-Performance Wearable Thermoelectric Generator with Self-Healing, Recycling, and Lego-like Reconfiguring Capabilities. Sci. Adv. 2021, 7, eabe0586. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; We, J.H.; Cho, B.J. A Wearable Thermoelectric Generator Fabricated on a Glass Fabric. Energy Environ. Sci. 2014, 7, 1959–1965. [Google Scholar] [CrossRef]
- Lu, Y.; Qiu, Y.; Cai, K.; Li, X.; Gao, M.; Jiang, C.; He, J. Ultrahigh Performance PEDOT/Ag2Se/CuAgSe Composite Film for Wearable Thermoelectric Power Generators. Mater. Today Phys. 2020, 14, 100223. [Google Scholar] [CrossRef]
- Cao, T.; Shi, X.-L.; Chen, Z.-G. Advances in the Design and Assembly of Flexible Thermoelectric Device. Prog. Mater. Sci. 2023, 131, 101003. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.-L.; Yang, Y.-L.; Chen, Z.-G. Flexible Thermoelectric Materials and Devices: From Materials to Applications. Mater. Today 2021, 46, 62–108. [Google Scholar] [CrossRef]
- Di, C.; Xu, W.; Zhu, D. Organic Thermoelectrics for Green Energy. Natl. Sci. Rev. 2016, 3, 269–271. [Google Scholar] [CrossRef]
- MacLeod, B.A.; Stanton, N.J.; Gould, I.E.; Wesenberg, D.; Ihly, R.; Owczarczyk, Z.R.; Hurst, K.E.; Fewox, C.S.; Folmar, C.N.; Hughes, K.H.; et al. Large N- and p-Type Thermoelectric Power Factors from Doped Semiconducting Single-Walled Carbon Nanotube Thin Films. Energy Environ. Sci. 2017, 10, 2168–2179. [Google Scholar] [CrossRef]
- Hung, N.T.; Nugraha, A.R.T.; Hasdeo, E.H.; Dresselhaus, M.S.; Saito, R. Diameter Dependence of Thermoelectric Power of Semiconducting Carbon Nanotubes. Phys. Rev. B 2015, 92, 165426. [Google Scholar] [CrossRef]
- Yun, J.-S.; Choi, S.; Im, S.H. Advances in Carbon-Based Thermoelectric Materials for High-Performance, Flexible Thermoelectric Devices. Carbon Energy 2021, 3, 667–708. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog. Polym. Sci. 2022, 129, 101548. [Google Scholar] [CrossRef]
- Bounioux, C.; Díaz-Chao, P.; Campoy-Quiles, M.; Martín-González, M.S.; Goñi, A.R.; Yerushalmi-Rozen, R.; Müller, C. Thermoelectric Composites of Poly(3-Hexylthiophene) and Carbon Nanotubes with a Large Power Factor. Energy Environ. Sci. 2013, 6, 918–925. [Google Scholar] [CrossRef]
- Hong, C.T.; Lee, W.; Kang, Y.H.; Yoo, Y.; Ryu, J.; Cho, S.Y.; Jang, K.-S. Effective Doping by Spin-Coating and Enhanced Thermoelectric Power Factors in SWCNT/P3HT Hybrid Films. J. Mater. Chem. A 2015, 3, 12314–12319. [Google Scholar] [CrossRef]
- Du, Y.; Xu, J.; Lin, T. Single-Walled Carbon Nanotube/Polypyrrole Thermoelectric Composite Materials. IOP Conf. Ser. Earth Environ. Sci. 2018, 108, 022040. [Google Scholar] [CrossRef]
- Jana Chatterjee, M.; Mitra, M.; Banerjee, D. Thermoelectric Performance of Polypyrrole and Single Walled Carbon Nanotube Composite. Mater. Today Proc. 2018, 5, 9743–9748. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Y.; Lv, H.; Deng, L.; Chen, G. SWCNT Network Evolution of PEDOT:PSS/SWCNT Composites for Thermoelectric Application. Chem. Eng. J. 2022, 428, 131137. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Du, Y.; Chen, L. Preparation and Thermoelectric Properties of SWCNT/PEDOT:PSS Coated Tellurium Nanorod Composite Films. J. Alloys Compd. 2019, 778, 163–169. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Li, P.; Yuan, D.; Zhou, X.; Sun, J.; Lu, X.; He, C. Interfacial Control and Carrier Tuning of Carbon Nanotube/Polyaniline Composites for High Thermoelectric Performance. Carbon 2018, 136, 292–298. [Google Scholar] [CrossRef]
- Feng, L.; Wu, R.; Liu, C.; Lan, J.; Lin, Y.-H.; Yang, X. Facile Green Vacuum-Assisted Method for Polyaniline/SWCNT Hybrid Films with Enhanced Thermoelectric Performance by Interfacial Morphology Control. ACS Appl. Energy Mater. 2021, 4, 4081–4089. [Google Scholar] [CrossRef]
- Li, X.; Cai, K.; Gao, M.; Du, Y.; Shen, S. Recent Advances in Flexible Thermoelectric Films and Devices. Nano Energy 2021, 89, 106309. [Google Scholar] [CrossRef]
- Hao, L.; Kang, J.; Shi, J.; Xu, J.; Cao, J.; Wang, L.; Liu, Y.; Pan, C. Enhanced Thermoelectric Performance of Poly(3-Substituted Thiophene)/Single-Walled Carbon Nanotube Composites via Polar Side Chain Modification. Compos. Sci. Technol. 2020, 199, 108359. [Google Scholar] [CrossRef]
- He, P.; Shimano, S.; Salikolimi, K.; Isoshima, T.; Kakefuda, Y.; Mori, T.; Taguchi, Y.; Ito, Y.; Kawamoto, M. Noncovalent Modification of Single-Walled Carbon Nanotubes Using Thermally Cleavable Polythiophenes for Solution-Processed Thermoelectric Films. ACS Appl. Mater. Interfaces 2019, 11, 4211–4218. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, S.; Yin, X.; Yang, F.; Wen, Y.; Cao, G.; Wu, Y.; Xin, H.; Gao, C.; Wang, L. Promoting Thermoelectric Performance of Two-Dimensional Benzodithiophene-Based Conjugated Polymer/Single-Walled Carbon Nanotube Composites by Polar Side Chain Engineering. Compos. Commun. 2022, 31, 101103. [Google Scholar] [CrossRef]
- Shinohara, A.; Guo, Z.; Pan, C.; Nakanishi, T. Solvent-Free Conjugated Polymer Fluids with Optical Functions. Org. Mater. 2021, 03, 309–320. [Google Scholar] [CrossRef]
- Tripathi, A.; Ko, Y.; Kim, M.; Lee, Y.; Lee, S.; Park, J.; Kwon, Y.-W.; Kwak, J.; Woo, H.Y. Optimization of Thermoelectric Properties of Polymers by Incorporating Oligoethylene Glycol Side Chains and Sequential Solution Doping with Preannealing Treatment. Macromolecules 2020, 53, 7063–7072. [Google Scholar] [CrossRef]
- Shi, Y.; Li, J.; Sun, H.; Li, Y.; Wang, Y.; Wu, Z.; Jeong, S.Y.; Woo, H.Y.; Fabiano, S.; Guo, X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew. Chem. Int. Ed. 2022, 61, e202214192. [Google Scholar] [CrossRef]
- Sheina, E.E.; Liu, J.; Iovu, M.C.; Laird, D.W.; McCullough, R.D. Chain Growth Mechanism for Regioregular Nickel-Initiated Cross-Coupling Polymerizations. Macromolecules 2004, 37, 3526–3528. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Hafner, J.H.; Lieber, C.M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M.S. Structural (n,m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering. Phys. Rev. Lett. 2001, 86, 1118–1121. [Google Scholar] [CrossRef]
- Guldi, D.M.; Taieb, H.; Rahman, G.M.A.; Tagmatarchis, N.; Prato, M. Novel Photoactive Single-Walled Carbon Nanotube–Porphyrin Polymer Wraps: Efficient and Long-Lived Intracomplex Charge Separation. Adv. Mater. 2005, 17, 871–875. [Google Scholar] [CrossRef]
- Luo, J.; Billep, D.; Waechtler, T.; Otto, T.; Toader, M.; Gordan, O.; Sheremet, E.; Martin, J.; Hietschold, M.; Zahn, D.R.T.; et al. Enhancement of the Thermoelectric Properties of PEDOT:PSS Thin Films by Post-Treatment. J. Mater. Chem. A 2013, 1, 7576–7583. [Google Scholar] [CrossRef]
- Li, Q.; Deng, M.; Zhang, S.; Zhao, D.; Jiang, Q.; Guo, C.; Zhou, Q.; Liu, W. Synergistic Enhancement of Thermoelectric and Mechanical Performances of Ionic Liquid LiTFSI Modulated PEDOT Flexible Films. J. Mater. Chem. C 2019, 7, 4374–4381. [Google Scholar] [CrossRef]
- Badre, C.; Marquant, L.; Alsayed, A.M.; Hough, L.A. Highly Conductive Poly(3,4-Ethylenedioxythiophene):Poly (Styrenesulfonate) Films Using 1-Ethyl-3-Methylimidazolium Tetracyanoborate Ionic Liquid. Adv. Funct. Mater. 2012, 22, 2723–2727. [Google Scholar] [CrossRef]
- Meng, C.; Liu, C.; Fan, F. A Promising Approach to Enhanced Thermoelectric Properties Using Carbon Nanotube Networks. Adv. Mater. 2010, 22, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Zhou, X.; Wei, G.; Wang, S.; Gao, C.; Wang, L. Intrinsically Self-Healable and Wearable All-Organic Thermoelectric Composite with High Electrical Conductivity for Heat Harvesting. ACS Appl. Mater. Interfaces 2022, 14, 43421–43430. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-S.; Inagaki, S.; Liu, J.-H.; Chen, M.-C.; Higashihara, T.; Liu, C.-L. The Role of Branched Alkylthio Side Chain on Dispersion and Thermoelectric Properties of Regioregular Polythiophene/Carbon Nanotubes Nanocomposites. Chem. Eng. J. 2023, 458, 141366. [Google Scholar] [CrossRef]
- Jung, J.; Suh, E.H.; Jeong, Y.J.; Yang, H.S.; Lee, T.; Jang, J. Efficient Debundling of Few-Walled Carbon Nanotubes by Wrapping with Donor–Acceptor Polymers for Improving Thermoelectric Properties. ACS Appl. Mater. Interfaces 2019, 11, 47330–47339. [Google Scholar] [CrossRef]
- Lee, W.; Hong, C.T.; Kwon, O.H.; Yoo, Y.; Kang, Y.H.; Lee, J.Y.; Cho, S.Y.; Jang, K.-S. Enhanced Thermoelectric Performance of Bar-Coated SWCNT/P3HT Thin Films. ACS Appl. Mater. Interfaces 2015, 7, 6550–6556. [Google Scholar] [CrossRef]
- Qu, S.; Wang, M.; Chen, Y.; Yao, Q.; Chen, L. Enhanced thermoelectric performance of CNT/P3HT composites with low CNT content. RSC Adv. 2018, 8, 33855–33863. [Google Scholar] [CrossRef]
- Tonga, M.; Wei, L.; Wilusz, E.; Korugic-Karasz, L.; Karasz, F.E.; Lahti, P.M. Solution-fabrication dependent thermoelectric behavior of iodine-doped regioregular and regiorandom P3HT/carbon nanotube composites. Synth. Met. 2018, 239, 51–58. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Wang, T.; Xu, J.; Liu, C.; Jiang, Q.; Jiang, F.; Liu, P. Improved thermoelectric performance of P3HT/SWCNTs composite films by HClO4 post-treatment. Compos. Commun. 2019, 12, 128–132. [Google Scholar] [CrossRef]
- Kang, Y.H.; Lee, U.-H.; Jung, I.H.; Yoon, S.C.; Cho, S.Y. Enhanced Thermoelectric Performance of Conjugated Polymer/CNT Nano-composites by Modulating the Potential Barrier Difference between Conjugated Polymer and CNT. ACS Appl. Electron. Mater. 2019, 1, 1282–1289. [Google Scholar] [CrossRef]
- Liu, C.; Yin, X.; Chen, Z.; Gao, C.; Wang, L. Improving the thermoelectric performance of solution-processed polymer nanocom-posites by introducing platinum acetylides with tailored intermolecular interactions. Chem. Eng. J. 2021, 419, 129624. [Google Scholar] [CrossRef]
- Hong, S.-H.; Lee, T.-C.; Liu, C.-L. All-Solution-Processed Polythiophene/Carbon Nanotube Nanocomposites Integrated on Bio-compatible Silk Fibroin Substrates for Wearable Thermoelectric Generators. ACS Appl. Energy Mater. 2023, 6, 2602–2610. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Chen, S.; Wang, D.; Qiu, Y.; Chen, Z.; Yang, H.; Chen, X.; Yin, Z.; Pan, C. The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications. Polymers 2024, 16, 943. https://doi.org/10.3390/polym16070943
Yang Q, Chen S, Wang D, Qiu Y, Chen Z, Yang H, Chen X, Yin Z, Pan C. The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications. Polymers. 2024; 16(7):943. https://doi.org/10.3390/polym16070943
Chicago/Turabian StyleYang, Qing, Shihong Chen, Dagang Wang, Yongfu Qiu, Zhongming Chen, Haixin Yang, Xiaogang Chen, Zijian Yin, and Chengjun Pan. 2024. "The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications" Polymers 16, no. 7: 943. https://doi.org/10.3390/polym16070943
APA StyleYang, Q., Chen, S., Wang, D., Qiu, Y., Chen, Z., Yang, H., Chen, X., Yin, Z., & Pan, C. (2024). The Enhanced Thermoelectric and Mechanical Performance of Polythiophene/Single-Walled Carbon Nanotube Composites with Polar Ethylene Glycol Branched-Chain Modifications. Polymers, 16(7), 943. https://doi.org/10.3390/polym16070943