Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Materials
3.1.1. Molecular Structure and Morphology—Raman Spectroscopy and SEM
3.1.2. Zeta Potential by DLS
3.2. Electrochemical Characterization
Electrodes | Heavy Metal Ions | Linear Range | LOD | Ref. |
---|---|---|---|---|
MOF/EB-1 | Cd2+ | 0.54–1.15 ppm (0.7 to 1.5 µM) | 0.077 ppm (0.103 µM) | This work |
Pb2+ | 0.23–0.40 ppm (0.7 to 1.2 µM) | 0.033 ppm (0.100 µM) | ||
EDTA_PANI/SWCNTs | Pb2+ | - | 0.34 ppm (1.65 µM) | [22] |
PEDOT | Cd2+ | 5–20 ppm | 0.6 ppm | [46] |
Pb2+ | 5–20 ppm | 0.5 ppm | ||
EGAMPANI | Cd2+ | - | 0.15 ppm (1.2 µM) | [45] |
Pb2+ | - | 2.03 ppm (0.98 µM) | ||
PANI–PDTDA | Cd2+ | 1000–0.001 μM | 0.29 μM | [44] |
Pb2+ | 1000–0.001 μM | 0.17 μM | ||
PANI | Cd2+ | 1000–0.01 μM | 0.86 μM | [44] |
Pb2+ | 1000–0.01 μM | 1.3 μM | ||
Chit-CNT film | Cd2+ | 1.50–4.44 ppm | 0.8 ppm | [38] |
Pb2+ | 0.63–3.70 ppm | 0.6 ppm | ||
ZIF-8-CS | Cd2+ | 1.0–100 μM | 0.048 ppm (0.135 µM) | [47] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wu, X.; Sun, J.; Wang, C.; Zhu, G.; Bai, L.P.; Jiang, Z.H.; Zhang, W. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochem. Commun. 2022, 136, 107233. [Google Scholar] [CrossRef]
- Wang, X.; Lin, W.; Chen, C.; Kong, L.; Huang, Z.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Neural networks based fluorescence and electrochemistry dual-modal sensor for sensitive and precise detection of cadmium and lead simultaneously. Sens. Actuators B Chem. 2022, 366, 131922. [Google Scholar] [CrossRef]
- Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Asokan, S. Selective detection of lead in water using etched fiber Bragg grating sensor. Sens. Actuators B Chem. 2022, 354, 131208. [Google Scholar]
- Sreekanth, S.; Alodhayb, A.; Assaifan, A.K.; Alzahrani, K.E.; Muthuramamoorthy, M.; Alkhammash, H.I.; Pandiaraj, S.; Alswieleh, A.M.; Van Le, Q.; Mangaiyarkarasi, R.; et al. Multi-walled carbon nanotube-based nanobiosensor for the detection of cadmium in water. Environ. Res. 2021, 197, 111148. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, Y.; Zhang, Z.; Wu, Y.; Zhu, G. Recent developments in electrochemical detection of cadmium. Trends Environ. Anal. Chem. 2022, 33, e00152. [Google Scholar] [CrossRef]
- Šljukić, B.R.; Banks, C.E.; Compton, R.G. Sonoelectroanalysis—Application to lead determination. Hem. Ind. 2009, 63, 529–534. [Google Scholar]
- Savić-Biserčić, M.; Marjanović, B.; Zasońska, B.A.; Stojadinović, S.; Ćirić-Marjanović, G. Novel microporous composites of MOF-5 and polyaniline with high specific surface area. Synth. Met. 2020, 262, 116348. [Google Scholar] [CrossRef]
- Savić-Biserčić, M.; Marjanović, B.; Vasiljević, B.N.; Mentus, S.; Zasońska, B.A.; Ćirić-Marjanović, G. The quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Microporous Mesoporous Mater. 2019, 278, 23–29. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Hernandez-Garcia, F.; Alvarez, G.A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev. 2020, 412, 213263. [Google Scholar] [CrossRef]
- Li, G.; Belwal, T.; Luo, Z.; Li, Y.; Li, L.; Xu, Y. Direct detection of Pb2+ and Cd2+ in juice and beverage samples using PDMS modified nanochannels electrochemical sensors. Food Chem. 2021, 356, 129632. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Wang, Q.; Chen, X.; Qiu, W.; Zhan, F.; Gao, F.; Wang, Q. Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: Theoretical modeling, experimental study and electroanalytical application. Biosens. Bioelectron. 2017, 98, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Pengou, M.; Ngassa, G.B.P.; Boutianala, M.; Tchakouté, H.K.; Nanseu-Njiki, C.P.; Ngameni, E. Geopolymer cement–modified carbon paste electrode: Application to electroanalysis of traces of lead(II) ions in aqueous solution. J. Solid State Electrochem. 2021, 25, 1183–1195. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, F.; Dong, C.; Li, J.; Zhang, C.; Han, X. UiO-66 based electrochemical sensor for simultaneous detection of Cd(II) and Pb(II). Inorg. Chem. Commun. 2021, 131, 108785. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal—Organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B Chem. 2013, 177, 1161–1166. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Sonkar, P.K.; Gupta, R. Electrochimica Acta Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta. 2016, 200, 276–282. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Li, C.X.; Ding, X.T.; Yang, Q.; Qi, Y.M.; Zhang, H.M.; Qu, L.T. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin. Chem Lett. 2017, 28, 1473–1478. [Google Scholar] [CrossRef]
- Wang, D.; Ke, Y.; Guo, D.; Guo, H.; Chen, J.; Weng, W. Sensors and Actuators B: Chemical Facile fabrication of cauliflower-like MIL-100 (Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens. Actuators B Chem. 2015, 216, 504–510. [Google Scholar] [CrossRef]
- Roushani, M.; Valipour, A.; Saedi, Z. Sensors and Actuators B: Chemical Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sens. Actuators B Chem. 2016, 233, 419–425. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta. 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Y.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim. Acta. 2021, 384, 138414. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Tang, L.; Zeng, G.; Zhang, J.; Peng, B.; Xie, X.; Lai, C.; Long, B.; Zhu, J. Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and squarewave anodic stripping voltammetry. Nanomaterials 2016, 6, 7. [Google Scholar] [CrossRef]
- Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta. 2015, 874, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Huang, S.; Cai, H.; Lin, X.; Mei, R.; Wang, N. In-situ synthesis of bi-metallic metal organic Framework/Polyaniline nanocomposites as ultrasensitive and selective electrodes for electrochemical detection of heavy metal ions. Microchem. J. 2023, 193, 109185. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B—Condens. Matter. Mater. Phys. 2010, 81, 174103. [Google Scholar] [CrossRef]
- Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K.-P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 5, 2300–2301. [Google Scholar] [CrossRef] [PubMed]
- Ćirić-Marjanović, G.; Trchová, M.; Stejskal, J. The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J. Raman Spectrosc. 2008, 39, 1375–1387. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. J. Colloid Interface Sci. 2010, 348, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; p. 131922. [Google Scholar]
- Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Ćirić-Marjanović, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B. 2006, 110, 9461–9468. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, T.; Ivaska, A. Raman based pH measurements with polyaniline. J. Electroanal. Chem. 2005, 580, 320–329. [Google Scholar] [CrossRef]
- Tachikawa, T.; Choi, J.R.; Fujitsuka, M.; Majima, T. Photoinduced charge-transfer processes on MOF-5 nanoparticles: Elucidating differences between metal-organic frameworks and semiconductor metal oxides. J. Phys. Chem. C 2008, 112, 14090–14101. [Google Scholar] [CrossRef]
- Le Hai, T.; Hung, L.C.; Phuong TT, B.; Ha BT, T.; Nguyen, B.S.; Hai, T.D.; Nguyen, V.H. Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem. J. 2020, 153, 104456. [Google Scholar] [CrossRef]
- Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 2017, 17, 1832. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.H.; Lo, H.M.; Wang, J.C.; Yu, S.Y.; De Yan, B. Electrochemical detection of heavy metal pollutant using crosslinked chitosan/carbon nanotubes thin film electrodes. Mater. Express 2017, 7, 15–24. [Google Scholar] [CrossRef]
- Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A Mater. Sci. Process 2004, 78, 981–987. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zhou, J.; Guo, S. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res. 2004, 38, 2643–2650. [Google Scholar] [CrossRef]
- Radotić, K.; Djikanović, D.; Simonović Radosavljević, J.; Jović-Jovičić, N.; Mojović, Z. Comparative study of lignocellulosic biomass and its components as electrode modifiers for detection of lead and copper ions. J. Electroanal. Chem. 2020, 862, 114010. [Google Scholar] [CrossRef]
- Wierzba, S.; Rajfur, M.; Nabrdalik, M.; Kłos, A. The application of electroanalytical methods to determine affinity series of metal cations for functional biosorbent groups. J. Electroanal. Chem. 2018, 809, 8–13. [Google Scholar] [CrossRef]
- Radinović, K.; Milikić, J.; Santos, D.M.F.; Saccone, A.; De Negri, S.; Šljukić, B. Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys. J. Electroanal. Chem. 2020, 872, 114232. [Google Scholar] [CrossRef]
- Somerset, V.S.; Hernandez, L.H.; Iwuoha, E.I. Stripping voltammetric measurement of trace metal ions using screen-printed carbon and modified carbon paste electrodes on river water from the Eerste-Kuils River System. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 17–32. [Google Scholar] [CrossRef]
- Joseph, A.; Subramanian, S.; Ramamurthy, P.C.; Sampath, S.; Kumar, R.V.; Schwandt, C. Amine Functionalized polyaniline grafted to exfoliated graphite oxide: Synthesis, characterization and multi-element sensor studies. J. Electroanal. Chem. 2015, 757, 137–143. [Google Scholar] [CrossRef]
- Salinas, G.; Frontana-Uribe, B.A. Electrochemical Analysis of Heavy Metal Ions Using Conducting Polymer Interfaces. Electrochem 2022, 3, 492–506. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, F.; Gao, F.; Wang, Q. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+, and Cd2+ by ZIF-8 and its electrochemical analytical application. J. Electroanal. Chem. 2019, 835, 293–300. [Google Scholar] [CrossRef]
Samples/Electrodes | Zeta Potential (mV) | Cd2+ | Pb2+ | ||
---|---|---|---|---|---|
Ip/mA | Ep/V | Ip/mA | Ep/V | ||
MOF/ES-1 | 11.73 | 1.478 | −0.62 | 0.574 | −0.45 |
MOF/ES-2 | 9.06 | 1.361 | −0.65 | 0.474 | −0.45 |
MOF/ES-3 | 6.92 | 0.928 | −0.65 | 0.286 | −0.45 |
MOF/EB-1 | 14.93 | 2.235 | −0.68 | 0.733 | −0.46 |
MOF/EB-2 | 12.00 | 0.957 | −0.64 | 0.263 | −0.46 |
MOF/EB-3 | 11.77 | 1.765 | −0.70 | 0.462 | −0.48 |
MOF-5 | −0.12 | 0.894 | −0.67 | 0.251 | −0.48 |
PANI-ES | 13.14 | 1.358 | −0.70 | 0.471 | −0.48 |
PANI-EB | 15.20 | 0.994 | −0.70 | 0.479 | −0.39 |
Vulcan | - | 0.797 | −0.57 | 0.647 | −0.43 |
Electrodes | Cd2+ | Pb2+ | ||
---|---|---|---|---|
Ip/mA | Ep/V | Ip/mA | Ep/V | |
MOF/ES-1 | 0.076 | −0.69 | 0.040 | −0.52 |
MOF/ES-2 | 0.110 | −0.69 | 0.037 | −0.50 |
MOF/ES-3 | 0.111 | −0.69 | 0.033 | −0.51 |
MOF/EB-1 | 0.081 | −0.75 | 0.049 | −0.55 |
MOF/EB-2 | 0.043 | −0.73 | 0.012 | −0.57 |
MOF/EB-3 | 0.062 | −0.75 | 0.032 | −0.54 |
MOF-5 | 0.032 | −0.76 | 0.007 | −0.56 |
PANI-ES | 0.046 | −0.76 | 0.033 | −0.55 |
PANI-EB | 0.028 | −0.76 | 0.027 | −0.55 |
MOF/EB-1 without Vulcan | 0.015 | −0.78 | 0.015 | −0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milikić, J.; Savić, M.; Janošević Ležaić, A.; Šljukić, B.; Ćirić-Marjanović, G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers 2024, 16, 683. https://doi.org/10.3390/polym16050683
Milikić J, Savić M, Janošević Ležaić A, Šljukić B, Ćirić-Marjanović G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers. 2024; 16(5):683. https://doi.org/10.3390/polym16050683
Chicago/Turabian StyleMilikić, Jadranka, Marjetka Savić, Aleksandra Janošević Ležaić, Biljana Šljukić, and Gordana Ćirić-Marjanović. 2024. "Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites" Polymers 16, no. 5: 683. https://doi.org/10.3390/polym16050683
APA StyleMilikić, J., Savić, M., Janošević Ležaić, A., Šljukić, B., & Ćirić-Marjanović, G. (2024). Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers, 16(5), 683. https://doi.org/10.3390/polym16050683