Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Materials
3.1.1. Molecular Structure and Morphology—Raman Spectroscopy and SEM
3.1.2. Zeta Potential by DLS
3.2. Electrochemical Characterization
Electrodes | Heavy Metal Ions | Linear Range | LOD | Ref. |
---|---|---|---|---|
MOF/EB-1 | Cd2+ | 0.54–1.15 ppm (0.7 to 1.5 µM) | 0.077 ppm (0.103 µM) | This work |
Pb2+ | 0.23–0.40 ppm (0.7 to 1.2 µM) | 0.033 ppm (0.100 µM) | ||
EDTA_PANI/SWCNTs | Pb2+ | - | 0.34 ppm (1.65 µM) | [22] |
PEDOT | Cd2+ | 5–20 ppm | 0.6 ppm | [46] |
Pb2+ | 5–20 ppm | 0.5 ppm | ||
EGAMPANI | Cd2+ | - | 0.15 ppm (1.2 µM) | [45] |
Pb2+ | - | 2.03 ppm (0.98 µM) | ||
PANI–PDTDA | Cd2+ | 1000–0.001 μM | 0.29 μM | [44] |
Pb2+ | 1000–0.001 μM | 0.17 μM | ||
PANI | Cd2+ | 1000–0.01 μM | 0.86 μM | [44] |
Pb2+ | 1000–0.01 μM | 1.3 μM | ||
Chit-CNT film | Cd2+ | 1.50–4.44 ppm | 0.8 ppm | [38] |
Pb2+ | 0.63–3.70 ppm | 0.6 ppm | ||
ZIF-8-CS | Cd2+ | 1.0–100 μM | 0.048 ppm (0.135 µM) | [47] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wu, X.; Sun, J.; Wang, C.; Zhu, G.; Bai, L.P.; Jiang, Z.H.; Zhang, W. Stripping voltammetric determination of cadmium and lead ions based on a bismuth oxide surface-decorated nanoporous bismuth electrode. Electrochem. Commun. 2022, 136, 107233. [Google Scholar] [CrossRef]
- Wang, X.; Lin, W.; Chen, C.; Kong, L.; Huang, Z.; Kirsanov, D.; Legin, A.; Wan, H.; Wang, P. Neural networks based fluorescence and electrochemistry dual-modal sensor for sensitive and precise detection of cadmium and lead simultaneously. Sens. Actuators B Chem. 2022, 366, 131922. [Google Scholar] [CrossRef]
- Baghayeri, M.; Amiri, A.; Maleki, B.; Alizadeh, Z.; Reiser, O. A simple approach for simultaneous detection of cadmium(II) and lead(II) based on glutathione coated magnetic nanoparticles as a highly selective electrochemical probe. Sens. Actuators B Chem. 2018, 273, 1442–1450. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Kavitha, B.S.; Asokan, S. Selective detection of lead in water using etched fiber Bragg grating sensor. Sens. Actuators B Chem. 2022, 354, 131208. [Google Scholar]
- Sreekanth, S.; Alodhayb, A.; Assaifan, A.K.; Alzahrani, K.E.; Muthuramamoorthy, M.; Alkhammash, H.I.; Pandiaraj, S.; Alswieleh, A.M.; Van Le, Q.; Mangaiyarkarasi, R.; et al. Multi-walled carbon nanotube-based nanobiosensor for the detection of cadmium in water. Environ. Res. 2021, 197, 111148. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, Y.; Zhang, Z.; Wu, Y.; Zhu, G. Recent developments in electrochemical detection of cadmium. Trends Environ. Anal. Chem. 2022, 33, e00152. [Google Scholar] [CrossRef]
- Šljukić, B.R.; Banks, C.E.; Compton, R.G. Sonoelectroanalysis—Application to lead determination. Hem. Ind. 2009, 63, 529–534. [Google Scholar]
- Savić-Biserčić, M.; Marjanović, B.; Zasońska, B.A.; Stojadinović, S.; Ćirić-Marjanović, G. Novel microporous composites of MOF-5 and polyaniline with high specific surface area. Synth. Met. 2020, 262, 116348. [Google Scholar] [CrossRef]
- Savić-Biserčić, M.; Marjanović, B.; Vasiljević, B.N.; Mentus, S.; Zasońska, B.A.; Ćirić-Marjanović, G. The quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Microporous Mesoporous Mater. 2019, 278, 23–29. [Google Scholar] [CrossRef]
- Ćirić-Marjanović, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Hernandez-Garcia, F.; Alvarez, G.A. Novel applications of metal-organic frameworks (MOFs) as redox-active materials for elaboration of carbon-based electrodes with electroanalytical uses. Coord. Chem. Rev. 2020, 412, 213263. [Google Scholar] [CrossRef]
- Li, G.; Belwal, T.; Luo, Z.; Li, Y.; Li, L.; Xu, Y. Direct detection of Pb2+ and Cd2+ in juice and beverage samples using PDMS modified nanochannels electrochemical sensors. Food Chem. 2021, 356, 129632. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Wang, Q.; Chen, X.; Qiu, W.; Zhan, F.; Gao, F.; Wang, Q. Selective binding of Pb2+ with manganese-terephthalic acid MOF/SWCNTs: Theoretical modeling, experimental study and electroanalytical application. Biosens. Bioelectron. 2017, 98, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Pengou, M.; Ngassa, G.B.P.; Boutianala, M.; Tchakouté, H.K.; Nanseu-Njiki, C.P.; Ngameni, E. Geopolymer cement–modified carbon paste electrode: Application to electroanalysis of traces of lead(II) ions in aqueous solution. J. Solid State Electrochem. 2021, 25, 1183–1195. [Google Scholar] [CrossRef]
- Ding, Y.; Wei, F.; Dong, C.; Li, J.; Zhang, C.; Han, X. UiO-66 based electrochemical sensor for simultaneous detection of Cd(II) and Pb(II). Inorg. Chem. Commun. 2021, 131, 108785. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal—Organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B Chem. 2013, 177, 1161–1166. [Google Scholar] [CrossRef]
- Yadav, D.K.; Ganesan, V.; Sonkar, P.K.; Gupta, R. Electrochimica Acta Electrochemical investigation of gold nanoparticles incorporated zinc based metal-organic framework for selective recognition of nitrite and nitrobenzene. Electrochim. Acta. 2016, 200, 276–282. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Li, C.X.; Ding, X.T.; Yang, Q.; Qi, Y.M.; Zhang, H.M.; Qu, L.T. Detection of dopamine at graphene-ZIF-8 nanocomposite modified electrode. Chin. Chem Lett. 2017, 28, 1473–1478. [Google Scholar] [CrossRef]
- Wang, D.; Ke, Y.; Guo, D.; Guo, H.; Chen, J.; Weng, W. Sensors and Actuators B: Chemical Facile fabrication of cauliflower-like MIL-100 (Cr) and its simultaneous determination of Cd2+, Pb2+, Cu2+ and Hg2+ from aqueous solution. Sens. Actuators B Chem. 2015, 216, 504–510. [Google Scholar] [CrossRef]
- Roushani, M.; Valipour, A.; Saedi, Z. Sensors and Actuators B: Chemical Electroanalytical sensing of Cd2+ based on metal–organic framework modified carbon paste electrode. Sens. Actuators B Chem. 2016, 233, 419–425. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta. 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, Y.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.; Yu, L. Improving the stability of Pb2+ ion-selective electrodes by using 3D polyaniline nanowire arrays as the inner solid-contact transducer. Electrochim. Acta. 2021, 384, 138414. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Tang, L.; Zeng, G.; Zhang, J.; Peng, B.; Xie, X.; Lai, C.; Long, B.; Zhu, J. Determination of Cd2+ and Pb2+ based on mesoporous carbon nitride/self-doped polyaniline nanofibers and squarewave anodic stripping voltammetry. Nanomaterials 2016, 6, 7. [Google Scholar] [CrossRef]
- Ruecha, N.; Rodthongkum, N.; Cate, D.M.; Volckens, J.; Chailapakul, O.; Henry, C.S. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal. Chim. Acta. 2015, 874, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Huang, S.; Cai, H.; Lin, X.; Mei, R.; Wang, N. In-situ synthesis of bi-metallic metal organic Framework/Polyaniline nanocomposites as ultrasensitive and selective electrodes for electrochemical detection of heavy metal ions. Microchem. J. 2023, 193, 109185. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. [Google Scholar] [CrossRef]
- Hu, Y.H.; Zhang, L. Amorphization of metal-organic framework MOF-5 at unusually low applied pressure. Phys. Rev. B—Condens. Matter. Mater. Phys. 2010, 81, 174103. [Google Scholar] [CrossRef]
- Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Regli, L.; Bonino, F.; Damin, A.; Lillerud, K.-P.; Bjorgen, M.; Zecchina, A. Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. Chem. Commun. 2004, 5, 2300–2301. [Google Scholar] [CrossRef] [PubMed]
- Ćirić-Marjanović, G.; Trchová, M.; Stejskal, J. The chemical oxidative polymerization of aniline in water: Raman spectroscopy. J. Raman Spectrosc. 2008, 39, 1375–1387. [Google Scholar] [CrossRef]
- Saha, D.; Deng, S. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177. J. Colloid Interface Sci. 2010, 348, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; p. 131922. [Google Scholar]
- Trchová, M.; Šeděnková, I.; Konyushenko, E.N.; Stejskal, J.; Ćirić-Marjanović, G. Evolution of polyaniline nanotubes: The oxidation of aniline in water. J. Phys. Chem. B. 2006, 110, 9461–9468. [Google Scholar] [CrossRef] [PubMed]
- Lindfors, T.; Ivaska, A. Raman based pH measurements with polyaniline. J. Electroanal. Chem. 2005, 580, 320–329. [Google Scholar] [CrossRef]
- Tachikawa, T.; Choi, J.R.; Fujitsuka, M.; Majima, T. Photoinduced charge-transfer processes on MOF-5 nanoparticles: Elucidating differences between metal-organic frameworks and semiconductor metal oxides. J. Phys. Chem. C 2008, 112, 14090–14101. [Google Scholar] [CrossRef]
- Le Hai, T.; Hung, L.C.; Phuong TT, B.; Ha BT, T.; Nguyen, B.S.; Hai, T.D.; Nguyen, V.H. Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem. J. 2020, 153, 104456. [Google Scholar] [CrossRef]
- Koudelkova, Z.; Syrovy, T.; Ambrozova, P.; Moravec, Z.; Kubac, L.; Hynek, D.; Richtera, L.; Adam, V. Determination of zinc, cadmium, lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 2017, 17, 1832. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.H.; Lo, H.M.; Wang, J.C.; Yu, S.Y.; De Yan, B. Electrochemical detection of heavy metal pollutant using crosslinked chitosan/carbon nanotubes thin film electrodes. Mater. Express 2017, 7, 15–24. [Google Scholar] [CrossRef]
- Jurewicz, K.; Frackowiak, E.; Béguin, F. Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials. Appl. Phys. A Mater. Sci. Process 2004, 78, 981–987. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, L.; Zhou, J.; Guo, S. Cellulose/chitin beads for adsorption of heavy metals in aqueous solution. Water Res. 2004, 38, 2643–2650. [Google Scholar] [CrossRef]
- Radotić, K.; Djikanović, D.; Simonović Radosavljević, J.; Jović-Jovičić, N.; Mojović, Z. Comparative study of lignocellulosic biomass and its components as electrode modifiers for detection of lead and copper ions. J. Electroanal. Chem. 2020, 862, 114010. [Google Scholar] [CrossRef]
- Wierzba, S.; Rajfur, M.; Nabrdalik, M.; Kłos, A. The application of electroanalytical methods to determine affinity series of metal cations for functional biosorbent groups. J. Electroanal. Chem. 2018, 809, 8–13. [Google Scholar] [CrossRef]
- Radinović, K.; Milikić, J.; Santos, D.M.F.; Saccone, A.; De Negri, S.; Šljukić, B. Electroanalytical sensing of trace amounts of As(III) in water resources by Gold–Rare Earth alloys. J. Electroanal. Chem. 2020, 872, 114232. [Google Scholar] [CrossRef]
- Somerset, V.S.; Hernandez, L.H.; Iwuoha, E.I. Stripping voltammetric measurement of trace metal ions using screen-printed carbon and modified carbon paste electrodes on river water from the Eerste-Kuils River System. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 17–32. [Google Scholar] [CrossRef]
- Joseph, A.; Subramanian, S.; Ramamurthy, P.C.; Sampath, S.; Kumar, R.V.; Schwandt, C. Amine Functionalized polyaniline grafted to exfoliated graphite oxide: Synthesis, characterization and multi-element sensor studies. J. Electroanal. Chem. 2015, 757, 137–143. [Google Scholar] [CrossRef]
- Salinas, G.; Frontana-Uribe, B.A. Electrochemical Analysis of Heavy Metal Ions Using Conducting Polymer Interfaces. Electrochem 2022, 3, 492–506. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, F.; Gao, F.; Wang, Q. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+, and Cd2+ by ZIF-8 and its electrochemical analytical application. J. Electroanal. Chem. 2019, 835, 293–300. [Google Scholar] [CrossRef]
Samples/Electrodes | Zeta Potential (mV) | Cd2+ | Pb2+ | ||
---|---|---|---|---|---|
Ip/mA | Ep/V | Ip/mA | Ep/V | ||
MOF/ES-1 | 11.73 | 1.478 | −0.62 | 0.574 | −0.45 |
MOF/ES-2 | 9.06 | 1.361 | −0.65 | 0.474 | −0.45 |
MOF/ES-3 | 6.92 | 0.928 | −0.65 | 0.286 | −0.45 |
MOF/EB-1 | 14.93 | 2.235 | −0.68 | 0.733 | −0.46 |
MOF/EB-2 | 12.00 | 0.957 | −0.64 | 0.263 | −0.46 |
MOF/EB-3 | 11.77 | 1.765 | −0.70 | 0.462 | −0.48 |
MOF-5 | −0.12 | 0.894 | −0.67 | 0.251 | −0.48 |
PANI-ES | 13.14 | 1.358 | −0.70 | 0.471 | −0.48 |
PANI-EB | 15.20 | 0.994 | −0.70 | 0.479 | −0.39 |
Vulcan | - | 0.797 | −0.57 | 0.647 | −0.43 |
Electrodes | Cd2+ | Pb2+ | ||
---|---|---|---|---|
Ip/mA | Ep/V | Ip/mA | Ep/V | |
MOF/ES-1 | 0.076 | −0.69 | 0.040 | −0.52 |
MOF/ES-2 | 0.110 | −0.69 | 0.037 | −0.50 |
MOF/ES-3 | 0.111 | −0.69 | 0.033 | −0.51 |
MOF/EB-1 | 0.081 | −0.75 | 0.049 | −0.55 |
MOF/EB-2 | 0.043 | −0.73 | 0.012 | −0.57 |
MOF/EB-3 | 0.062 | −0.75 | 0.032 | −0.54 |
MOF-5 | 0.032 | −0.76 | 0.007 | −0.56 |
PANI-ES | 0.046 | −0.76 | 0.033 | −0.55 |
PANI-EB | 0.028 | −0.76 | 0.027 | −0.55 |
MOF/EB-1 without Vulcan | 0.015 | −0.78 | 0.015 | −0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milikić, J.; Savić, M.; Janošević Ležaić, A.; Šljukić, B.; Ćirić-Marjanović, G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers 2024, 16, 683. https://doi.org/10.3390/polym16050683
Milikić J, Savić M, Janošević Ležaić A, Šljukić B, Ćirić-Marjanović G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers. 2024; 16(5):683. https://doi.org/10.3390/polym16050683
Chicago/Turabian StyleMilikić, Jadranka, Marjetka Savić, Aleksandra Janošević Ležaić, Biljana Šljukić, and Gordana Ćirić-Marjanović. 2024. "Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites" Polymers 16, no. 5: 683. https://doi.org/10.3390/polym16050683
APA StyleMilikić, J., Savić, M., Janošević Ležaić, A., Šljukić, B., & Ćirić-Marjanović, G. (2024). Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers, 16(5), 683. https://doi.org/10.3390/polym16050683