Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review
Abstract
:1. Introduction
2. Algal Biopolymers
2.1. Different Algal Biopolymers
2.2. Algal Biopolymer Production
2.3. Typical Applications of Algal Biopolymers
2.3.1. Applications of Algae-Based Biopolymers for Food
- Algae-derived carrageenan in food and beverage industry
- 2.
- Algae-based agarose as a gelling agent
- 3.
- Algae-based biopolymer films for food packaging
2.3.2. Applications of Algae-Based Biopolymers in Pharmaceutics
- Algal polysaccharides in drug delivery systems
- 2.
- Chitosan from algal sources in wound healing
- 3.
- Algal polysaccharides as anticancer agents
2.3.3. Applications of Algae-Based Biopolymers in Biotechnology and Tissue Engineering
- Alginate
- 2.
- Carrageenan
- 3.
- Ulvan
2.3.4. Applications of Algae-Based Biopolymers in Cosmetics
- Alginate
- 2.
- Carrageenan
- 3.
- Spirulina extract
2.3.5. Applications of Algae-Based Biopolymers in Biofuels
- Algal lipids as feedstock for biofuel production
- 2.
- Algal polysaccharides for bioethanol production
- 3.
- Algae-based hydrocarbons for biofuel synthesis
2.3.6. Environmental Applications of Algae-Based Biopolymers
- Algal polysaccharides for heavy metal remediation
- 2.
- Algal biopolymer-based membranes for wastewater treatment
- 3.
- Algae-based biopolymers for soil stabilization
2.3.7. Applications of Algae-Based Biopolymers in Medical Devices
- Alginate hydrogel
- 2.
- Carrageenan-based wound dressings
- 3.
- Spirulina-based scaffolds
3. Bacterial Biopolymers
3.1. Different Bacterial Biopolymers and Their Production
3.2. Typical Applications of Bacterial Biopolymers
4. Algal Biopolymers for Batteries
4.1. Separator Materials
4.2. Electrolyte Materials
5. Bacterial Biopolymers for Batteries
6. Algal Biopolymers for Biofuel
7. Bacterial Biopolymers for Biofuel
8. Discussion
8.1. Advantages and Disadvantages of Algae-Based and Bacterial Biopolymers
8.2. Environmental Suitability of Algae-Based and Bacterial Biopolymers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.-M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable polymers. Nat. Rev. Methods Primers 2022, 2, 46. [Google Scholar] [CrossRef]
- Hottle, T.A.; Bilec, M.M.; Landis, A.E. Sustainability assessments of bio-based polymers. Polym. Degrad. Stab. 2013, 98, 1898–1907. [Google Scholar] [CrossRef]
- Devadas, V.V.; Khoo, K.S.; Chia, W.Y.; Chew, K.W.; Halimatul Munawaroh, H.S.; Lam, M.-K.; Lim, J.-W.; Ho, Y.-C.; Lee, K.T.; Show, P.L. Algae biopolymer towards sustainable circular economy. Bioresour. Technol. 2021, 325, 124702. [Google Scholar] [CrossRef]
- Özcimen, D.; Inan, B.; Morkoc, O.; Efe, A. A Review on Algal Biopolymers. J. Chem. Eng. Res. Updates 2017, 4, 7–14. [Google Scholar] [CrossRef]
- Bourgougnon, N.; Burlot, A.-S.; Jacquin, A.-G. Chapter Five—Algae for global sustainability? Adv. Bot. Res. 2021, 100, 145–212. [Google Scholar]
- Abdelraof, M.; El Saied, H.; Hasanin, M.S. Green Immobilization of Glucanobacter xylinum onto Natural Polymers to Sustainable Bacterial Cellulose Production. Waste Biomass Valorization 2022, 13, 2053–2069. [Google Scholar] [CrossRef]
- Muneer, F.; Rasul, I.; Azeem, F.; Siddique, M.H.; Zubair, M.; Nadeem, H. Microbial Polyhydroxyalkanoates (PHAs): Efficient Replacement of Synthetic Polymers. J. Polym. Environ. 2020, 28, 2301–2323. [Google Scholar] [CrossRef]
- Jose, A.A.; Hazeena, S.H.; Lakshmi, N.M.; Arun, K.B.; Madhavan, A.; Sirohi, R.; Tarafdar, A.; Sindhu, R.; Awasthi, M.K.; Pandey, A.; et al. Bacterial biopolymers: From production to applications in biomedicine. Sustain. Chem. Pharm. 2022, 25, 100582. [Google Scholar] [CrossRef]
- Spicer, C.D. Hydrogel scaffolds for tissue engineering: The importance of polymer choice. Polym. Chem. 2020, 11, 184–219. [Google Scholar] [CrossRef]
- Elizarova, I.S.; Luckham, P.F. Layer-by-layer adsorption: Factors affecting the choice of substrates and polymers. Adv. Colloid Interface Sci. 2018, 262, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Muldoon, J.; Bucur, C.B.; Boaretto, N.; Gregory, T.; di Noto, V. Polymers: Opening Doors to Future Batteries. Polym. Rev. 2015, 55, 208–246. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Q.H.; Hao, S.-M.; Deng, S.; He, Q.M.; Lin, Z.Q.; Yang, Y.K. Polymers in Lithium–Sulfur Batteries. Adv. Sci. 2022, 9, 2103798. [Google Scholar] [CrossRef]
- Costa, C.M.; Lizundia, E.; Lanceros-Méndez, S. Polymers for advanced lithium-ion batteries: State of the art and future needs on polymers for the different battery components. Prog. Energy Combust. Sci. 2020, 79, 100846. [Google Scholar] [CrossRef]
- Long, L.Z.; Wang, S.J.; Xiao, M.; Meng, Y.H. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10039–10069. [Google Scholar] [CrossRef]
- Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically Active Polymers for Rechargeable Batteries. Chem. Rev. 1997, 97, 207–282. [Google Scholar] [CrossRef] [PubMed]
- Mecerreyes, D.; Porcarelli, L.; Casado, N. Innovative Polymers for Next-Generation Batteries. Macromol. Chem. Phys. 2020, 221, 1900490. [Google Scholar] [CrossRef]
- Goujon, N.; Casado, N.; Patil, N.; Marcilla, R.; Mecerreyes, D. Organic batteries based on just redox polymers. Prog. Polym. Sci. 2021, 122, 101449. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. Nanomaterials 2021, 11, 371. [Google Scholar] [CrossRef]
- Riaz, S.; Rhee, K.Y.; Park, S.J. Polyhydroxyalkanoates (PHAs): Biopolymers for Biofuel and Biorefineries. Polymers 2021, 13, 253. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. Polyhydroxyalkanoates as a source of chemicals, polymers, and biofuels. Curr. Opin. Biotechnol. 2011, 22, 768–774. [Google Scholar] [CrossRef]
- Madadi, R.; Maljaee, H.; Serafim, L.; Ventura, S.P.M. Microalgae as Contributors to Produce Biopolymers. Mar. Drugs 2021, 19, 466. [Google Scholar] [CrossRef]
- Raza, Z.A.; Abid, S.; Banat, I.M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. [Google Scholar] [CrossRef]
- Dai, Z.; Zou, X.; Chen, G. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as an Injectable Implant System for Prevention of Post-Surgical Tissue Adhesion. Biomaterials 2009, 30, 3075–3083. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, Y.; Wu, Q.; Chen, G. Evaluation of Three-Dimensional Scaffolds Prepared from Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for Growth of Allogeneic Chondrocytes for Cartilage Repair in Rabbits. Biomaterials 2008, 29, 2858–2868. [Google Scholar] [CrossRef]
- Wang, K.; Mandal, A.; Ayton, E.; Hunt, R. Modification of Protein Rich Algal-Biomass to Form Bioplastics and Odor Removal. In Protein Byproducts; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128023914. [Google Scholar]
- Zeller, M.A.; Hunt, R.; Jones, A.; Sharma, S. Bioplastics and their Thermoplastic Blends from Spirulina and Chlorella Microalgae. J. Appl. Polym. Sci. 2013, 103, 3263–3275. [Google Scholar] [CrossRef]
- Zhang, C.; Show, P.; Ho, S. Bioresource Technology Progress and Perspective on Algal Plastics—A Critical Review. Bioresour. Technol. 2019, 289, 121700. [Google Scholar] [CrossRef] [PubMed]
- Prakash, M.M.; Selvakumar, R.; Suresh, K.P.; Ramakrishna, S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv. 2017, 7, 42750–42773. [Google Scholar] [CrossRef]
- Rashidi, B.; Trindade, L.M. Detailed biochemical and morphologic characteristics of the green microalga Neochloris oleoabundans cell wall. Algal Res. 2018, 35, 152–159. [Google Scholar] [CrossRef]
- Siddhanta, A.K.; Chhatbar, M.U.; Mehta, G.K.; Sanandiya, N.D.; Kumar, S.; Oza, M.D.; Prasad, K.; Meena, R. The cellulose contents of Indian seaweeds. J. Appl. Phycol. 2011, 23, 919–923. [Google Scholar] [CrossRef]
- Mihranyan, A. Cellulose from cladophorales green algae: From environmental problem to high-tech composite materials. J. Appl. Polym. Sci. 2011, 119, 2449–2460. [Google Scholar] [CrossRef]
- Cazón, P.; Velazquez, G.; Ramírez, J.A.; Vázquez, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 2017, 68, 136–148. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Sapuan, S.M.; Ishak, M.R.; Zainudin, E.S.; Mahamud, A. Nanocellulose Reinforced Starch Polymer Composites: A Review of Preparation, Properties and Application. In Proceedings of the 5th International Conference on Applied Sciences and Engineering Application (ICASEA 2018), Cameron Highlands, Malaysia, 7–8 April 2018. [Google Scholar]
- Hirayama, S.; Ueda, R. Production of optically pure d-lactic acid by Nannochlorum sp. 26A4. Appl. Biochem. Biotechnol. 2004, 119, 71–77. [Google Scholar] [CrossRef]
- Venkatesan, J.; Anil, S.; Kim, S.K.; Shim, S.M. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers 2016, 8, 30. [Google Scholar] [CrossRef]
- Ruperez, P.; Saura-Calixto, F. Dietary fibre and physicochemical properties of edible Spanish seaweeds. Eur. Food Res. Technol. 2001, 212, 349–354. [Google Scholar] [CrossRef]
- Khanra, A.; Vasistha, S.; Rai, M.P.; Cheah, W.Y.; Khoo, K.S.; Chew, K.W.; Chuah, L.F.; Show, P.L. Green bioprocessing and applications of microalgae-derived biopolymers as a renewable feedstock: Circular bioeconomy approach. Environ. Technol. Innov. 2022, 28, 102872. [Google Scholar] [CrossRef]
- Mohan, A.A.; Antony, A.R.; Greeshma, K.; Yun, J.-H.; Ramanan, R.; Kim, H.-S. Algal biopolymers as sustainable resources for a net-zero carbon bioeconomy. Bioresour. Technol. 2022, 344B, 126397. [Google Scholar]
- Mastropetros, S.G.; Pispas, K.; Zagklis, D.; Ali, S.S.; Kornaros, M. Biopolymers production from microalgae and cyanobacteria cultivated in wastewater: Recent advances. Biotechnol. Adv. 2022, 60, 107999. [Google Scholar] [CrossRef] [PubMed]
- Lutzu, G.A.; Ciurli, A.; Chiellini, C.; di Caprio, F.; Concas, A.; Dunford, N.T. Latest developments in wastewater treatment and biopolymer production by microalgae. J. Environ. Chem. Eng. 2021, 9, 104926. [Google Scholar] [CrossRef]
- Kartik, A.; Akhil, D.; Lakshmi, D.; Gopinath, K.P.; Arun, J.; Sivaramakrishnan, R.; Pugazhendhi, A. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol. 2021, 329, 124868. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Maurya, R.; Mehariya, S.; Karthikeyan, O.P.; Dharani, G.; Arunkumar, K.; Pereda, S.V.; Hernández-González, M.C.; Buschmann, A.H.; Pugazhendhi, A. Feasibility of bioplastic production using micro- and macroalgae—A review. Environ. Res. 2024, 240, 117465. [Google Scholar] [CrossRef]
- Mal, N.; Satpati, G.G.; Raghunathan, S.; Davoodbasha, M.A. Current strategies on algae-based biopolymer production and scale-up. Chemosphere 2022, 289, 133178. [Google Scholar] [CrossRef] [PubMed]
- Dang, B.-T.; Bui, X.-T.; Tran, D.P.H.; Ngo, H.H.; Nghiem, L.D.; Hoang, T.-K.-D.; Nguyen, P.-T.; Nguyen, H.H.; Vo, T.-K.-Q.; Lin, C.S.; et al. Current application of algae derivatives for bioplastic production: A review. Bioresour. Technol. 2022, 347, 126698. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Brice, J.; Toberer, L.; Klein-Seetharaman, J.; Knauss, D.; Sarkar, S.K. Antimicrobial biopolymer formation from sodium alginate and algae extract using aminoglycosides. PLoS ONE 2019, 14, e0214411. [Google Scholar] [CrossRef]
- Morales-Jiménez, M.; Gouveia, L.; Yánez-Fernández, J.; Castro-Munoz, R.; Barragán-Huerta, B.E. Production, Preparation and Characterization of Microalgae-Based Biopolymer as a Potential Bioactive Film. Coatings 2020, 10, 120. [Google Scholar] [CrossRef]
- Zaki, M.; Khalil, A.H.P.S.; Sabaruddin, F.A.; Bairwan, R.D.; Oyekanmi, A.A.; Alfatah, T.; Danish, M.; Mistar, E.M.; Abdullah, C.K. Microbial treatment for nanocellulose extraction from marine algae and its applications as sustainable functional material. Bioresour. Technol. Rep. 2021, 16, 100811. [Google Scholar] [CrossRef]
- Capek, L.; Uhliariková, I.; Kostálová, Z.; Hindáková, A.; Capek, P. Structural properties of the extracellular biopolymer (β-D-xylo-α-D-mannan) produced by the green microalga Gloeocystis vesiculosa Nägeli. Carbohydr. Res. 2023, 525, 108766. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, M.P.; Kumar, B.R.; Mathimani, T.; Arunkumar, K. A Review on Bioenergy and Bioactive Compounds from Microalgae and Macroalgae-Sustainable Energy Perspective. J. Clean. Prod. 2019, 228, 1320–1333. [Google Scholar] [CrossRef]
- Lakshmi, D.S.; Sankaranarayanan, S.; Gajaria, T.K.; Li, G.; Kujawski, W.; Kujawa, J.; Navia, R. A Short Review on the Valorization of Green Seaweeds and Ulvan: Feedstock for Chemicals and Biomaterials. Biomolecules 2020, 10, 991. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; van Loey, A.M. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef]
- Bose, I.; Nousheen; Roy, S.; Yaduvanshi, P.; Sharma, S.; Chandel, V.; Biswas, D. Unveiling the Potential of Marine Biopolymers: Sources, Classification, and Diverse Food Applications. Materials 2023, 16, 4840. [Google Scholar] [CrossRef] [PubMed]
- Thiviya, P.; Gamage, A.; Liyanapathiranage, A.; Makehelwala, M.; Dassanayake, R.S.; Manamperi, A.; Merah, O.; Mani, S.; Koduru, J.R.; Madhujith, T. Algal polysaccharides: Structure, preparation and applications in food packaging. Food Chem. 2023, 405, 134903. [Google Scholar] [CrossRef]
- Mahmud, N.; Islam, J.; Tahergorabi, R. Marine Biopolymers: Applications in Food Packaging. Processes 2021, 9, 2245. [Google Scholar] [CrossRef]
- Beaumont, M.; Tran, R.; Vera, G.; Niedrist, D.; Rousset, A.; Pierre, R.; Shastri, V.P.; Forget, A. Hydrogel-Forming Algae Polysaccharides: From Seaweed to Biomedical Applications. Biomacromolecules 2021, 22, 1027–1052. [Google Scholar] [CrossRef]
- Etman, S.M.; Elnaggar, Y.S.R.; Abdallah, O.Y. Fucoidan, a natural biopolymer in cancer combating: From edible algae to nanocarrier tailoring. Int. J. Biol. Macromol. 2020, 147, 799–808. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound Dressings—A Review. Biomed. Neth. 2015, 5, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.J.; Singh, N.; Mishra, S.; Ahirwar, A.; Bast, F.; Varjani, S.; Schoefs, B.; Marchand, J.; Rajendran, K.; Banu, J.R.; et al. Impact of light on microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: Updates, challenges and innovations. Chemosphere 2022, 288, 132589. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Kim, D.K.; Nah, J.-W.; Jeon, Y.-J. Advances in functionalizing fucoidans and alginates (bio)polymers by structural modifications: A review. Chem. Eng. J. 2019, 355, 33–48. [Google Scholar] [CrossRef]
- Mandal, S.; Nagi, G.K.; Corcoran, A.A.; Agrawal, R.; Dubey, M.; Hunt, R.W. Algal polysaccharides for 3D printing: A review. Carbohydr. Polym. 2023, 300, 120267. [Google Scholar] [CrossRef]
- Gomes, M.A.F.; Magalhães, K.T.; de Freitas, A.L.P. Carrageenan: A Food-Grade Biopolymer of Red Seaweed Origin with Potential Use in Food Packaging and Biomedical Applications. Mar. Drugs 2021, 19, 432. [Google Scholar]
- Guilbert, S.; Goycoolea, F.M.; Boisset, C. Agarose and Carrageenan as Gelling agents for Low-Fat and Sugar-Free Food Formulations. In Handbook of Hydrocolloids, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 313–334. [Google Scholar]
- Rhim, J.W.; Park, H.M.; Ha, C.S. Functional biopolymer-based nanocomposites for food packaging applications: A review. Macromol. Mater. Eng. 2019, 304, 1900133. [Google Scholar]
- Ferreira, A.C.; Domingues, C.; Mateus, N.; Coimbra, M.A. Algal Polysaccharides as Therapeutic Agents for Atherosclerosis. Mar. Drugs 2018, 16, 120. [Google Scholar]
- Abidin, S.A.Z.; Chee, C.Y.; Abu Bakar, M.B.; Zaid, H.F.M.; Sajab, M.S.; Mohamed, M.A. Potential of Algae Chitosan and Calcium Alginate Composite Dressing for Chronic Wound Healing: Fabrication, Characterization, In Vitro and In Vivo Evaluation. Polymers 2020, 12, 1985. [Google Scholar]
- Wang, J.; Liu, H.; Chen, L.; Zhao, M.; Zhang, Z.; Liang, L. Fucoidan from Fucus vesiculosus Suppresses Breast Cancer Cell Proliferation through Akt-NF-κB Pathway via Sirt1 Activation In Vitro and In Vivo. Mar. Drugs 2019, 17, 576. [Google Scholar]
- Song, W.; Ma, R.; Wang, Y. Bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2019, 37, 107452. [Google Scholar]
- Ghorbani, F. Applications of carrageenan-based biopolymers in tissue engineering. In Carrageenans; Academic Press: Cambridge, MA, USA, 2021; pp. 183–203. [Google Scholar]
- Cheng, F.; Han, L.; Xu, Q.; Han, Y.; Lu, Y.; Wu, J. Ulvan polysaccharide: A review of its effects on drug/gene delivery and pharmaceutical applications. Carbohydr. Polym. 2020, 229, 115544. [Google Scholar]
- Jeong, H.J.; Lee, J.E.; Han, M.H.; Kim, D.H.; Lim, S.T.; Lee, H.G.; Lee, K.W. Alginate–Polyphenol Composite Microspheres: A Potential Candidate for Cosmetic Ingredients. Polymers 2020, 12, 2555. [Google Scholar]
- Bouissil, S.; Ait Braham, M.; Rhazi, M. Seaweed Polysaccharides as Cosmetic Ingredient: Prospects, and Challenges. MATEC Web Conf. 2019, 295, 04005. [Google Scholar]
- Zinicovscaia, I.; Moroșanu, V.; Gutsul, T. Spirulina platensis—A Source of Nutritional and Bioactive Compounds in Cosmetic Formulations. Polymers 2021, 13, 331. [Google Scholar]
- Chen, Y.; Zhou, W.; Zhang, P.; Yan, D.; Xu, X.; Gao, L. Insights into the Metabolic Mechanisms of Algal Lipid Accumulation: A Case Study of Chlorella sp. Biomolecules 2020, 10, 262. [Google Scholar]
- Ummalyma, S.B.; Gnansounou, E.; Sukumaran, R.K.; Sindhu, R.; Pandey, A. Sustaining bioethanol production from algae by inhibition of contaminating organisms using antibiotics. Bioresour. Technol. 2016, 216, 804–811. [Google Scholar]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’Osto, L. Algal Hydrocarbons for the Production of Renewable Diesel and Jet Fuels. In Advances in Bioenergy; Springer: Berlin/Heidelberg, Germany, 2021; pp. 139–160. [Google Scholar]
- Gupta, V.K.; Nayak, A.; Agarwal, S.; Tyagi, I. Algae as eco-friendly heavy metal biosorbents: A review. J. Mol. Liq. 2017, 242, 1095–1103. [Google Scholar]
- Dhar, P.; Kumar, M.; Verma, V.; Sundaram, S. Development of biopolymer based membranes for water treatment: A review. Mater. Today Proc. 2019, 18, 2286–2292. [Google Scholar]
- Bustamante, M.A.; Paredes, C.; Carrillo, S. Agar-based biopolymer as an alternative for soil erosion control. J. Clean. Prod. 2020, 257, 120598. [Google Scholar]
- Almeida, H.A.; Amaral, I.F.; Lobato, M.; Sousa, R.A. Recent advances in algal-derived polysaccharides for biomedical applications. Carbohydr. Polym. 2020, 241, 116364. [Google Scholar]
- Yegappan, R.; Selvaprithiviraj, V.; Amirthalingam, S.; Jayakumar, R. Carrageenan-based hydrogels for drug delivery, wound healing, and tissue engineering. Carbohydr. Polym. 2018, 198, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Su, H.; Zhang, F.; Wang, D.; Zhou, J.; Cao, Y. Fabrication and in vitro evaluation of three-dimensional printed scaffolds loaded with Spirulina. BioMed Res. Int. 2019, 2019, 6540781. [Google Scholar]
- Yaashikaa, P.R.; Kumar, P.S.; Karishma, S. Review on biopolymers and composites—Evolving material as adsorbents in removal of environmental pollutants. Environ. Res. 2022, 212, 113114. [Google Scholar] [CrossRef] [PubMed]
- Fatehi, H.; Ong, D.E.L.; Yu, J.; Chang, I.H. Biopolymers as Green Binders for Soil Improvement in Geotechnical Applications: A Review. Geosciences 2021, 11, 291. [Google Scholar] [CrossRef]
- Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol. 2020, 18, 195–210. [Google Scholar] [CrossRef]
- Schmid, J.; Sieber, V.; Rehm, B.H.A. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol. 2015, 6, 496. [Google Scholar] [CrossRef] [PubMed]
- Ham, S.-M.; Chang, I.; Noh, D.-H.; Kwon, T.-H.; Muhunthan, B. Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation. J. Geotech. Geoenviron. Eng. 2018, 144, 06018004. [Google Scholar] [CrossRef]
- Garcıa-Ochoa, F.; Santos, V.; Casas, J.; Gómez, E. Xanthan gum: Production, recovery, and properties. Biotechnol. Adv. 2000, 18, 549–579. [Google Scholar] [CrossRef]
- Jansson, P.-E.; Lindberg, B.; Sandford, P.A. Structural studies of gellan gum, an extracellular polysaccharide elaborated by Pseudomonas elodea. Carbohydr. Res. 1983, 124, 135–139. [Google Scholar] [CrossRef]
- Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Kari, Z.A.; Mohd Noor, N.H.; Ray, R.R. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021, 22, 12984. [Google Scholar] [CrossRef] [PubMed]
- Jonas, R.; Farah, L.F. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998, 59, 101–106. [Google Scholar] [CrossRef]
- Wang, S.-S.; Han, Y.-H.; Chen, J.-L.; Zhang, D.-C.; Shi, X.-X.; Ye, Y.-X.; Chen, D.-L.; Li, M. Insights into Bacterial Cellulose Biosynthesis from Different Carbon Sources and the Associated Biochemical Transformation Pathways in Komagataeibacter sp. W1. Polymers 2018, 10, 963. [Google Scholar] [CrossRef]
- Gorgieva, S. Bacterial Cellulose as a Versatile Platform for Research and Development of Biomedical Materials. Processes 2020, 8, 624. [Google Scholar] [CrossRef]
- Brown, J.R.M. The biosynthesis of cellulose. J. Macromol. Sci. A 1996, 33, 1345–1373. [Google Scholar] [CrossRef]
- Abdellatif, F.H.H.; Abdellatif, M.M. Utilization of sustainable biopolymers in textile processing. In Green Chemistry for Sustainable Textiles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 453–469. [Google Scholar]
- Silva, S.S.; Rodrigues, L.C.; Fernandes, E.M.; Reis, R.L. Fundamentals on biopolymers and global demand. In Biopolymer Membranes and Films; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–34. [Google Scholar]
- Mehrpouya, M.; Vahabi, H.; Barletta, M.; Laheurte, P.; Langlois, V. Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. Mater. Sci. Eng. C 2021, 127, 112216. [Google Scholar] [CrossRef]
- Chiulan, I.; Frone, A.N.; Brandabur, C.; Panaitescu, D.M. Recent Advances in 3D Printing of Aliphatic Polyesters. Bioengineering 2018, 5, 2. [Google Scholar] [CrossRef]
- Andreeßen, C.; Steinbüchel, A. Recent developments in non-biodegradable biopolymers: Precursors, production processes, and future perspectives. Appl. Microbiol. Biotechnol. 2019, 103, 143–157. [Google Scholar] [CrossRef]
- Hwang, H.W.; Yoon, J.H.; Min, K.S.; Kim, M.-S.; Kim, S.-J.; Cho, D.H.; Susila, H.; Na, J.-G.; Oh, M.-K.; Kim, Y.H. Two-stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chem. Eng. J. 2020, 389, 124394. [Google Scholar] [CrossRef]
- Amini, M.; Yousefi-Massumabad, H.; Younesi, H.; Abyar, H.; Bahramifar, N. Production of the polyhydroxyalkanoate biopolymer by Cupriavidus necator using beer brewery wastewater containing maltose as a primary carbon source. J. Environ. Chem. Eng. 2020, 8, 103588. [Google Scholar] [CrossRef]
- Ranganathan, S.; Dutta, S.; Moses, J.A.; Anandharamakrishnan, C. Utilization of food waste streams for the production of biopolymers. Heliyon 2020, 6, E04891. [Google Scholar] [CrossRef]
- Aljuraifani, A.A.; Berekaa, M.M.; Ghazwani, A.A. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. MicrobiologyOpen 2019, 8, e00755. [Google Scholar] [CrossRef]
- Ventorino, V.; Nicolaus, B.; Di Donato, P.; Pagliano, G.; Poli, A.; Robertiello, A.; Iavarone, V.; Pepe, O. Bioprospecting of exopolysaccharide-producing bacteria from different natural ecosystems for biopolymer synthesis from vinasse. Chem. Biol. Technol. Agricult. 2019, 6, 18. [Google Scholar] [CrossRef]
- Shima, S.; Matsuoka, H.; Iwamoto, T.; Sakai, H. Antimicrobial action of ε-poly-L-lysine. J. Antibiot. 1984, 37, 1449–1455. [Google Scholar] [CrossRef]
- Yu, Y.; Yan, F.; Chen, Y.; Jin, C.; Guo, J.H.; Chai, Y. Poly-γ-glutamic acids contribute to biofilm formation and plant root colonization in selected environmental isolates of Bacillus subtilis. Front. Microbiol. 2016, 7, 1811. [Google Scholar] [CrossRef]
- Rehm, B.H.A. Bacterial polymers: Biosynthesis, modifications and applications. Nat. Rev. Microbiol. 2010, 8, 578–592. [Google Scholar] [CrossRef]
- Moreno, S.N.; Docampo, R. Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog. 2013, 9, e1003230. [Google Scholar] [CrossRef]
- Imada, K. Bacterial flagellar axial structure and its construction. Biophys. Rev. 2018, 10, 559–570. [Google Scholar] [CrossRef]
- De Andrade Arruda Fernandes, I.; Pedro, A.C.; Rampazzo Ribeiro, V.; Concalves Bortolini, D.; Cabral Ozaki, M.S.; Maciel, G.M.; Isodoro Haminiuk, C.W. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 2020, 164, 2598–2611. [Google Scholar] [CrossRef]
- Jo, Y.K.; Lee, D.Y. Biopolymer Microparticles Prepared by Microfluidics for Biomedical Applications. Small 2019, 16, 1903736. [Google Scholar] [CrossRef]
- Portela, R.; Leal, C.R.; Almeida, P.L.; Sobral, R.G. Bacterial cellulose: A versatile biopolymer for wound dressing applications. Appl. Microbiol. Int. 2019, 12, 586–610. [Google Scholar] [CrossRef]
- Nimeskern, L.; Martínez Ávila, H.; Sundberg, J.; Gatenholm, P.; Müller, R.; Stok, K.S. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J. Mech. Behav. Biomed. Mater. 2013, 22, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ul-Islam, M.; Wajid Ullah, M.; Zhu, Y.L.; Narayanan, K.B.; Han, S.S.; Park, J.K. Fabrication strategies and biomedical applications of three-dimensional bacterial cellulose-based scaffolds: A review. Int. J. Biol. Macromol. 2022, 209A, 9–30. [Google Scholar] [CrossRef] [PubMed]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- El-Fakharany, E.M.; Abu-Elreesh, G.M.; Kamoun, E.A.; Zaki, S.; Abd-El-Haleem, D.A. In vitro assessment of the bioactivities of sericin protein extracted from a bacterial silk-like biopolymer. RSC Adv. 2020, 10, 5098–5107. [Google Scholar] [CrossRef]
- Chiaoprakobkij, N.; Suwanmajo, T.; Sanchavanakit, N.; Phisalaphong, M. Curcumin-Loaded Bacterial Cellulose/Alginate/Gelatin as A Multifunctional Biopolymer Composite Film. Molecules 2020, 25, 3800. [Google Scholar] [CrossRef]
- Kamal, T.; Ahmad, I.; Khan, S.B.; Asiri, A.M. Bacterial cellulose as support for biopolymer stabilized catalytic cobalt nanoparticles. Int. J. Biol. Macromol. 2019, 135, 1162–1170. [Google Scholar] [CrossRef]
- Liedel, C. Sustainable Battery Materials from Biomass. ChemSusChem 2020, 13, 2110–2141. [Google Scholar] [CrossRef]
- Costa, C.M.; Lee, Y.-H.; Kim, J.-H.; Lee, S.-Y.; Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Mater. 2019, 22, 346–375. [Google Scholar] [CrossRef]
- Parsimehr, H.; Ehsani, A. Algae-based electrochemical energy storage devices. Green Chem. 2020, 22, 8062–8096. [Google Scholar] [CrossRef]
- Gomaa, M. Biodegradable Plastics Based on Algal Polymers: Recent Advances and Applications. In Handbook of Biodegradable Materials; Springer: Berlin/Heidelberg, Germany, 2023; pp. 501–531. [Google Scholar]
- Lizundia, E.; Kundu, D. Advances in Natural Biopolymer-Based Electrolytes and Separators for Battery Applications. Adv. Funct. Mater. 2021, 31, 2005646. [Google Scholar] [CrossRef]
- Grira, S.; Alkhedher, M.; Khalifeh, H.A.; Ramadan, M.; Ghazal, M. Using algae in Li-ion batteries: A sustainable pathway toward greener energy storage. Bioresour. Technol. 2024, 394, 130225. [Google Scholar] [CrossRef]
- Lim, N.-K.; Kim, E.-K.; Park, J.-J.; Bae, S.-J.; Woo, S.H.; Choi, J.-H.; Song, W.-J. Design of a Bioinspired Robust Three-Dimensional Cross-Linked Polymer Binder for High-Performance Li-Ion Battery Applications. ACS Appl. Mater. Interfaces 2023, 15, 54409–54418. [Google Scholar] [CrossRef]
- Singh, R.; Rhee, H.-W. The rise of bio-inspired energy devices. Energy Storage Mater. 2019, 23, 390–408. [Google Scholar] [CrossRef]
- Jeong, J.Y.; Lee, J.; Kim, J.N.; Chun, J.Y.; Kang, D.G.; Han, S.M.; Jo, C.S.; Lee, J.W. A biopolymer-based functional separator for stable Li metal batteries with an additive-free commercial electrolyte. J. Mater. Chem. A 2021, 9, 7774–7781. [Google Scholar] [CrossRef]
- Song, Q.Q.; Li, A.J.; Shi, L.; Qian, C.; Feric, T.G.; Fu, Y.K.; Zhang, H.R.; Li, Z.Y.; Wang, P.Y.; Li, Z.; et al. Thermally stable, nano-porous and eco-friendly sodium alginate/attapulgite separator for lithium-ion batteries. Energy Storage Mater. 2019, 22, 48–56. [Google Scholar] [CrossRef]
- Tan, L.W.; Li, Z.X.; Shi, R.; Quan, F.Y.; Wang, B.B.; Ma, X.M.; Ji, Q.; Tian, X.; Xia, Y.Z. Preparation and Properties of an Alginate-Based Fiber Separator for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 38175–38182. [Google Scholar] [CrossRef]
- Serra, J.P.; Uranga, J.; Goncalves, R.; Costa, C.M.; de la Caba, K.; Guerrero, P.; Lanceroz-Mendez, S. Sustainable lithium-ion battery separators based on cellulose and soy protein membranes. Electrochim. Acta 2023, 462, 142746. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Nyholm, L.; Stromme, M.; Wang, Z.H. Cladophora Cellulose: Unique Biopolymer Nanofibrils for Emerging Energy, Environmental, and Life Science Applications. Acc. Chem. Res. 2019, 52, 2232–2243. [Google Scholar] [CrossRef]
- Thrisha, K.; Saratha, R. Natural polymer-based electrolytes for energy storage devices—An overview. Ionics 2023. online first. [Google Scholar] [CrossRef]
- Torres, F.G.; de-la-Torre, G.E. Algal-based polysaccharides as polymer electrolytes in modern electrochemical energy conversion and storage systems: A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Lin, A.J.; Yang, X.L. Seaweed extractions as promising polymer electrolytes for lithium batteries. E3S Web Conf. 2021, 308, 01022. [Google Scholar] [CrossRef]
- Xu, T.; Liu, K.; Sheng, N.; Zhang, M.H.; Liu, W.; Liu, H.Y.; Dai, L.; Zhang, X.Y.; Si, C.L.; Du, H.S.; et al. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Mater. 2022, 48, 244–262. [Google Scholar] [CrossRef]
- Zakaria, Z.; Kamarudin, S.K.; Osman, S.H.; Mohamad, A.A.; Razali, H. A Review of Carrageenan as a Polymer Electrolyte in Energy Resource Applications. J. Polym. Environ. 2023, 31, 4127–4142. [Google Scholar] [CrossRef]
- Arockia Mary, I.; Selvanayagam, S.; Selvasekarapandian, S.; Chitra, R.; Leena Chandra, M.V.; Ponraj, T. Lithium ion conducting biopolymer membrane based on K-carrageenan with LiNO3. Ionics 2020, 26, 4311–4326. [Google Scholar] [CrossRef]
- Arockia Mary, I.; Selvanayagam, S.; Selvasekarapandian, S.; Chitra, R.; Vengadesh Krishna, M.; Monisha, S. Lithium ion conducting biopolymer membrane based on kappa carrageenan with LiCl and its application to electrochemical devices. Mater. Today Proc. 2022, 58, 855–861. [Google Scholar] [CrossRef]
- Rudati, P.S.; Dzakiyyah, Y.; Fane, R.; Febriyanti Turnip, M.A.; Pambudi, M.T.; Wulandari, P. Biopolymer Kappa Carrageenan with Ammonium Chloride as Electrolyte for Potential Application in Organic Battery. Key Eng. Mater. 2023, 950, 11–16. [Google Scholar] [CrossRef]
- Nithya, M.; Alagar, M.; Sundaresan, B. Eco-friendly biopolymer kappa carrageenan with NH4Br application in energy saving battery. Mater. Lett. 2020, 263, 127295. [Google Scholar] [CrossRef]
- Nithya, M.; Alagar, M.; Sundaresan, B. Development of Red Seaweed extracted film for energy saving Batteries. J. Int. Sci. Technol. 2020, 8, 1–5. [Google Scholar]
- Perumal, P.; Selvin, P.C. Red algae-derived k-carrageenan-based proton-conducting electrolytes for the wearable electrical devices. J. Solid State Electrochem. 2020, 24, 2249–2260. [Google Scholar] [CrossRef]
- Diana, M.I.; Selvin, P.S.; Selvasekarapandian, S.; Vengadesh Krishna, M. Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. J. Solid State Electrochem. 2021, 25, 2009–2020. [Google Scholar] [CrossRef]
- Tamilisai, R.; Palanisamy, P.N.; Selvasekarapandian, S.; Maheshwari, T. Sodium alginate incorporated with magnesium nitrate as a novel solid biopolymer electrolyte for magnesium-ion batteries. J. Mater. Sci. Mater. Electron. 2021, 32, 22270–22285. [Google Scholar] [CrossRef]
- Fernández-Benito, A.; Martinez-López, J.C.; Jafari, M.J.; Solin, N.; Martinez, J.G.; Garcia-Gimenez, D.; Ederth, T.; Inganäs, O.; Carretero-González, J. Green and Scalable Biopolymer-Based Aqueous Polyelectrolyte Complexes for Zinc-Ion Charge Storage Devices. ChemElectroChem 2023, 10, e202300327. [Google Scholar] [CrossRef]
- García-Gaitán, E.; Morant-Minana, M.C.; Frattini, D.; Maddalena, L.; Fina, A.; Gerbaldi, C.; Cantero, I.; Ortiz-Votoriano, N. Agarose-based Gel Electrolytes for Sustainable Primary and Secondary Zinc-Air Batteries. Chem. Eng. J. 2023, 472, 144870. [Google Scholar] [CrossRef]
- Li, C.B.; Yue, H.Y.; Wang, Q.X.; Li, J.X.; Zhang, J.; Dong, H.Y.; Yin, Y.H.; Yang, S.T. A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries. Solid State Ion. 2018, 321, 8–14. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Kalashgrani, M.Y.; Gholami, A.; Mazaheri, Y.; Riazi, M.; Kurniawan, D.; Arjmand, M.; Madkhali, O.; Aljabri, M.D.; et al. Bioresource Polymer Composite for Energy Generation and Storage: Developments and Trends. Chem. Rec. 2024, 24, e202200266. [Google Scholar] [CrossRef]
- Sturman, J.; Yim, C.-H.; Toupin, M.; Karkar, Z.; Baranova, E.A.; Abu-Lebdeh, Y. Optimizing Aqueous Binders for Next-Generation Lithium-Ion Batteries: A Practical Approach. ECS Meet. Abstr. 2022, MA2022-02, 278. [Google Scholar] [CrossRef]
- Chen, C.J.; Hu, L.B. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. Acc. Chem. Res. 2018, 51, 3154–3165. [Google Scholar] [CrossRef]
- Wang, Z.H.; Lee, Y.-H.; Kim, S.-W.; Seo, J.-Y.; Lee, S.-Y.; Nyholm, L. Why Cellulose-Based Electrochemical Energy Storage Devices? Adv. Mater. 2021, 33, 2000892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, C.J.; Chen, W.S.; Pastel, G.; Guo, X.Y.; Liu, S.X.; Wang, Q.W.; Liu, Y.X.; Li, J.; Yu, H.P.; et al. Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. ACS Appl. Mater. Interfaces 2019, 11, 5919–5927. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-J.; Tang, C.; Song, M.-X.; Guo, X.-Q.; Li, X.-M.; Li, J.-X.; Yan, C.; Kong, Q.-Q.; Sun, G.-H.; Zhang, Q.; et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: A review. J. Energy Chem. 2022, 72, 554–569. [Google Scholar] [CrossRef]
- Anjan, A.; Bharti, V.K.; Sharma, C.S.; Khandelwal, M. Carbonized Bacterial Cellulose-Derived Binder-Free, Flexible, and Free-Standing Cathode Host for High-Performance Stable Potassium–Sulfur Batteries. ACS Appl. Energy Mater. 2023, 6, 3042–3051. [Google Scholar] [CrossRef]
- Lokhande, P.E.; Singh, P.P.; Vo, D.-V.N.; Kumar, D.; Balasubramanian, K.; Mubayi, A.; Srivastava, A.; Sharma, A. Bacterial nanocellulose: Green polymer materials for high performance energy storage applications. J. Environ. Chem. Eng. 2022, 10, 108176. [Google Scholar] [CrossRef]
- Baranwal, R.; Lin, X.Y.; Li, W.Y.; Pan, X.; Wang, S.; Fan, Z.Y. Biopolymer separators from polydopamine-functionalized bacterial cellulose for lithium-sulfur batteries. J. Colloid Interface Sci. 2024, 656, 556–565. [Google Scholar] [CrossRef]
- Baranwal, R.; Lin, X.Y.; Wang, S.; Fan, Z.Y. Polydopamine-Functionalized Bacterial Cellulose As Biopolymer Separator for Lithium-Sulfur Batteries. ECS Meet. Abstr. 2023, MA2023-01, 1623. [Google Scholar] [CrossRef]
- Yuan, H.D.; Liu, T.F.; Liu, Y.J.; Nai, J.W.; Wang, Y.; Zhang, W.K.; Tao, X.Y. A review of biomass materials for advanced lithium–sulfur batteries. Chem. Sci. 2019, 10, 7484–7495. [Google Scholar] [CrossRef]
- Ulfa, M.; Noviani, I.; Yuanita, E.; Dharmayani, N.K.T. Synthesis and Characterization of Composites-Based Bacterial Cellulose by Ex-Situ Method as Separator Battery. J. Penelit. Pendidik. IPA 2023, 9, 4647–4651. [Google Scholar] [CrossRef]
- Heydorn, R.L.; Niebusch, J.; Lammers, D.; Görke, M.; Garnweitner, G.; Dohnt, K.; Krull, R. Production and Characterization of Bacterial Cellulose Separators for Nickel-Zinc Batteries. Energies 2022, 15, 5727. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, R.D.; Wang, Y.; Fu, D.N.; Sheng, J.; Guo, X.H. A bacterial cellulose-based separator with tunable pore size for lithium-ion batteries. Carbohydr. Polym. 2023, 304, 120489. [Google Scholar] [CrossRef]
- Huang, Q.M.; Zhao, C.S.; Li, X. Enhanced electrolyte retention capability of separator for lithium-ion battery constructed by decorating ZIF-67 on bacterial cellulose nanofiber. Cellulose 2021, 28, 3097–3112. [Google Scholar] [CrossRef]
- Ajkidkarn, P.; Manuspiya, H. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries. Int. J. Biol. Macromol. 2020, 164, 3580–3588. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, G.; Li, J.; Wu, M.F.; Wen, Z.Y. Sulfonated Bacterial Cellulose-Based Functional Gel Polymer Electrolyte for Li–O2 Batteries with LiI as a Redox Mediator. ACS Sustain. Chem. Eng. 2021, 9, 13883–13892. [Google Scholar] [CrossRef]
- Zhao, N.; Wu, F.; Xing, Y.; Qu, W.J.; Chen, N.; Shang, Y.X.; Yan, M.X.; Li, Y.J.; Li, L.; Chen, R.J. Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 2019, 11, 15537–15542. [Google Scholar] [CrossRef] [PubMed]
- Buvaneshwari, P.; Mathavan, T.; Selvasekarapandian, S.; Vengadesh Krishna, M.; Meera Naachiyar, R. Preparation and characterization of biopolymer electrolyte based on gellan gum with magnesium perchlorate for magnesium battery. Ionics 2022, 28, 3843–3854. [Google Scholar] [CrossRef]
- Ajay Babu, M.K.; Jayabalakrishnan, S.S.; Selvasekarapandian, S.; Hazaana, S.A.; Meera Naachiyar, R.; Muniraj Vignesh, N. Development and characterization of biopolymer electrolyte based on gellan gum for the fabrication of solid-state sodium-ion battery. Ionics 2023, 29, 5249–5265. [Google Scholar] [CrossRef]
- Meera Nachiyar, R.; Ragam, M.; Selvasekarapandian, S.; Vengadesh Krishna, M.; Buvaneshwari, P. Development of biopolymer electrolyte membrane using Gellan gum biopolymer incorporated with NH4SCN for electro-chemical application. Ionics 2021, 27, 3415–3429. [Google Scholar] [CrossRef]
- Srinithi, R.; Sangavi, P.; Nachammai, K.T.; Gowtham Kumar, S.; Langeswaran, K. Perspective of algae materials 2.0. In Algae Materials; Elsevier: Amsterdam, The Netherlands, 2023; pp. 383–397. [Google Scholar]
- Kumar, A.; Kaushal, S.; Saraf, S.A.; Singh, J.S. Microbial bio-fuels: A solution to carbon emissions and energy crisis. Front. Biosci. 2018, 23, 1789–1802. [Google Scholar]
- Zheng, X.; Wang, H.; Yan, Q.; Zhang, G.; Chen, C. Simultaneous nitrogen removal and methane production from Taihu blue algae against ammonia inhibition using integrated bioelectrochemical system (BES). Sci. Total Environ. 2021, 777, 146144. [Google Scholar] [CrossRef]
- Biller, P.; Friedman, C.; Ross, A.B. Hydrothermal microwave processing of microalgae as a pre-treatment and extraction technique for bio-fuels and bio-products. Bioresour. Technol. 2013, 136, 188–195. [Google Scholar] [CrossRef]
- Homburg, S.V.; Kruse, O.; Patel, A.V. Growth and photosynthetic activity of Chlamydomonas reinhardtii entrapped in lens-shaped silica hydrogels. J. Biotechnol. 2019, 302, 58–66. [Google Scholar] [CrossRef]
- De Obeso Fernandez del Valle, A.; Scheckhuber, C.Q. From past to present: Biotechnology in Mexico using algae and fungi. Plants 2021, 10, 2530. [Google Scholar] [CrossRef]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Vaccari, M.; Bonilla-Petriciolet, A.; Prasad, S.; van Hullebusch, E.D.; Rtimi, S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. J. Environ. Manag. 2021, 290, 112627. [Google Scholar] [CrossRef]
- Rajkumar, R.; Yaakob, Z.; Takriff, M.S. Potential of Micro and Macro Algae for Biofuel Production: A Brief Review. BioResources 2014, 9, 1606–1633. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, P. Industrial and biotechnological applications of algae: A review. J. Adv. Plant Biol. 2017, 1, 1–25. [Google Scholar] [CrossRef]
- Tan, J.S.; Lee, Z.Y.; Chew, K.W.; Lam, M.K.; Lim, J.W.; Ho, S.-H.; Show, P.L. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2019, 11, 116–129. [Google Scholar] [CrossRef]
- Kumar, L.; Bharadvaja, N. A review on microalgae biofuel and biorefinery: Challenges and way forward. Energy Sources A 2020. online first. [Google Scholar] [CrossRef]
- Leong, H.Y.; Chang, C.-K.; Khoo, K.S.; Chew, K.W.; Chia, S.R.; Lim, J.W.; Chang, J.-S.; Show, P.L. Waste biorefinery towards a sustainable circular bioeconomy: A solution to global issues. Biotechnol. Biofuels 2021, 14, 87. [Google Scholar] [CrossRef]
- Kumar, A.N.; Yoon, J.-J.; Kumar, G.; Kim, S.-H. Biotechnological valorization of algal biomass: An overview. Syst. Microbiol. Biomanuf. 2021, 1, 131–141. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Kavitha, S.; Karthikeyan, O.P.; Rene, E.R.; Kumar, G.; Banu, J.R. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Biosource Technol. 2021, 332, 125055. [Google Scholar] [CrossRef]
- Sarwer, A.; Hamed, S.M.; Osman, A.I.; Jamil, F.; Al-Muhtaseb, A.; Alhajeri, N.S.; Rooney, D.W. Algal biomass valorization for biofuel production and carbon sequestration: A review. Environ. Chem. Lett. 2022, 20, 2797–2851. [Google Scholar] [CrossRef]
- Dahman, Y.; Syed, K.; Begum, S.; Roy, P.; Mohtasebi, B. Biofuels: Their characteristics and analysis. In Biomass, Biopolymer-Based Materials, and Bioenergy; Woodhead Publishing Series in Composites Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 277–325. [Google Scholar]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.-S.-L. Microalgae disruption techniques for product recovery: Influence of cell wall composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Kavitha, S.; Gondi, R.; Kannah, R.Y.; Kumar, G.; Banu, J.R. A review on current advances in the energy and cost effective pretreatments of algal biomass: Enhancement in liquefaction and biofuel recovery. Bioresour. Technol. 2023, 369, 128383. [Google Scholar] [CrossRef]
- Bhushan, S.; Jayakrishnan, U.; Shree, B.; Bhatt, P.; Eshkabilov, S.; Simsek, H. Biological pretreatment for algal biomass feedstock for biofuel production. J. Environ. Chem. Eng. 2023, 11, 109870. [Google Scholar] [CrossRef]
- Arun, J.; Vigneshwar, S.S.; Swetha, A.; Gopinath, K.P.; Basha, S.; Brindhadevi, K.; Pugazhendhi, A. Bio-based algal (Chlorella vulgaris) refinery on de-oiled algae biomass cake: A study on biopolymer and biodiesel production. Sci. Total Environ. 2022, 816, 151579. [Google Scholar] [CrossRef]
- Das, S.K.; Sathish, A.; Stanley, J. Production of Biofuel and Bioplastic from Chlorella pyrenoidosa. Mater. Today Proc. 2018, 5, 16774–16781. [Google Scholar] [CrossRef]
- AlMomani, F.; Shawaqfah, M.; Alsarayreh, M.; Khraisheh, M.; Hameed, B.H.; Naqvi, S.R.; Berkani, M.; Varjani, S. Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Res. 2022, 68, 102895. [Google Scholar] [CrossRef]
- Kumar, A.N.; Chatterjee, S.; Hemalatha, M.; Althuri, A.; Min, B.; Kim, S.-H.; Mohan, S.V. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour. Technol. 2020, 296, 122315. [Google Scholar]
- Vickram, A.S.; Saravanan, A.; Senthil Kumar, P.; Thamarai, P.; Yasodha, S.; Jamuna, G.; Rangasamy, G. An integrated approach to the sustainable development and production of biofuel from biopolymers and algal biomass derived from wastewater. Fuel 2023, 349, 128691. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Valencia, C.; Franco, J.M. Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers 2022, 14, 881. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.H.; Zhang, G.Y.; Awad, F.N.; Qi, X.H.; Sahu, J.N. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sustain. Energy Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Lu, H.D.; Yadav, V.; Bilal, M.; Iqbal, H.M.N. Bioprospecting microbial hosts to valorize lignocellulose biomass—Environmental perspectives and value-added bioproducts. Chemosphere 2022, 288, 132574. [Google Scholar] [CrossRef]
- Sharma, S.; Tsai, M.-L.; Sharma, V.; Sun, P.-P.; Nargotra, P.; Bajaj, B.K.; Chen, C.-W.; Dong, C.-D. Environment Friendly Pretreatment Approaches for the Bioconversion of Lignocellulosic Biomass into Biofuels and Value-Added Products. Environments 2023, 10, 6. [Google Scholar] [CrossRef]
- Klai, N.; Yadav, B.; El Hachimi, O.; Pandey, A.; Sellamuthu, B.; Dayal Tyagi, R. Agro-Industrial Waste Valorization for Biopolymer Production and Life-Cycle Assessment toward Circular Bioeconomy. In Biomass, Biofuels, Biochemicals; Elsevier: Amsterdam, The Netherlands, 2021; pp. 515–555. [Google Scholar]
- Sharma, S.; Tsai, M.-L.; Nargotra, P.; Chen, C.-W.; Sun, P.-P.; Singhania, R.R.; Patel, A.K.; Dong, C.-D. Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. Sci. Total Environ. 2023, 861, 160560. [Google Scholar] [CrossRef]
- Banu, J.R.; Sharmila, V.G.; Kavitha, S.; Rajajothi, R.; Gunasekaran, M.; Angappane, S.; Kumar, G. TiO2-chitosan thin film induced solar photocatalytic deflocculation of sludge for profitable bacterial pretreatment and biofuel production. Fuel 2020, 273, 117741. [Google Scholar] [CrossRef]
- Sharma, H.K.; Xu, C.B.; Qin, W.S. Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valorization 2019, 10, 235–251. [Google Scholar] [CrossRef]
- De Paula, F.C.; Kakazu, S.; de Paula, C.B.C.; de Almeida, A.F.; Cabrera Gomez, J.G.; Contiero, J. Burkholderia glumae MA13: A newly isolated bacterial strain suitable for polyhydroxyalkanoate production from crude glycerol. Biocatal. Agric. Biotechnol. 2019, 20, 101268. [Google Scholar]
- Li, M.J.; Ning, P.; Sun, Y.; Luo, J.; Yang, J.M. Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. Front. Bioeng. Biotechnol. 2022, 10, 897003. [Google Scholar] [CrossRef]
- Brindha, K.; Mohanraj, S.; Rajaguru, P.; Pugalenthi, V. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. Sci. Total Environ. 2023, 859, 160002. [Google Scholar] [CrossRef]
- Cantera, S.; Bordel, S.; Lebrero, R.; Gancedo, J.; García-Encina, P.A.; Munoz, R. Bio-conversion of methane into high profit margin compounds: An innovative, environmentally friendly and cost-effective platform for methane abatement. World J. Microbiol. Biotechnol. 2019, 35, 16. [Google Scholar] [CrossRef]
- Brigham, C. Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria. Appl. Microbiol. Biotechnol. 2019, 103, 2113–2120. [Google Scholar] [CrossRef]
- Mitra, S.; Ghosh, A.; Ghosh, A. Algal Polymers as Advanced Electrode Materials: Challenges and Opportunities. In Polymers for Energy Storage and Conversion; Springer: Berlin/Heidelberg, Germany, 2020; pp. 47–62. [Google Scholar]
- Kapoor, R.; Singh, D.; Thakur, L.S. A review on environmental and economical aspects of algal biopolymer composites. Environ. Prog. Sustain. Energy 2019, 38, 805–823. [Google Scholar]
- Fukui, T.; Doi, Y. Chapter Four—Biosynthesis, Structure, and Properties of Bacterial Polyhydroxyalkanoate. In Biopolymers; Elsevier: Amsterdam, The Netherlands, 2019; pp. 155–185. [Google Scholar]
- Kourmentza, C.; Triantafyllidou, I.; Aggelis, G. Microbial conversion of waste and surplus materials into high value added products: The case of biodiesel and PHA production. In Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 315–346. [Google Scholar]
- Jia, Z.; Huang, T.; Guo, C.; Yang, S.; Liu, Z. Techno-economic assessment of microalgae-based biorefinery for co-production of fuels and high-value bioproducts. Energy Convers. Manag. 2021, 226, 113734. [Google Scholar]
- Sawant, S.; Hossain, N.; Zhang, Y.; Tsavalas, J.G. Electrocatalytic Performance of Algal Biopolymers as Battery Electrode Materials. ACS Sustain. Chem. Eng. 2020, 8, 15527–15535. [Google Scholar]
- Gan, S.; Lau, N.S.; Ng, H.K.; Chen, C.Y.; Ngoh, G.C. Polyhydroxyalkanoates (PHAs) production from organic waste and surplus biomass: Recent advancement on its pilot and scale-up processes. Bioresour. Technol. 2019, 291, 121919. [Google Scholar]
- Nduko, J.M.; Miheso, M.K.; Kim, J.R. Polyhydroxyalkanoates for Advanced Biofuels Production: Current Perspectives and Future Prospects. Bioengineering 2020, 7, 51. [Google Scholar]
- Tredici, M.R. Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels 2010, 1, 143–162. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Coleman, A.M.; Skaggs, R.J.; Huesemann, M.H.; Lane, L.J. National microalgae biofuel production potential and resource demand. Water Resour. Res. 2011, 47, W00H04. [Google Scholar] [CrossRef]
- Chen, G.Q. Plastics completely synthesized by bacteria: Polyhydroxyalkanoates. In Reference Module in Biomedical Sciences; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sudesh, K.; Bhubalan, K.; Chuah, J.A.; Kek, Y.K.; Kamilah, H.; Sridewi, N. Synthesis of polyhydroxyalkanoate from palm oil and some new applications. Appl. Microbiol. Biotechnol. 2011, 89, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Kourmentza, C.; Plácido, J.; Venetsaneas, N.; Burniol-Figols, A.; Varrone, C.; Gavala, H.N.; Reis, M.A. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering 2017, 4, 55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, J.S.; Langwald, S.V.; Ehrmann, A.; Sabantina, L. Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review. Polymers 2024, 16, 610. https://doi.org/10.3390/polym16050610
Joshi JS, Langwald SV, Ehrmann A, Sabantina L. Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review. Polymers. 2024; 16(5):610. https://doi.org/10.3390/polym16050610
Chicago/Turabian StyleJoshi, Jnanada Shrikant, Sarah Vanessa Langwald, Andrea Ehrmann, and Lilia Sabantina. 2024. "Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review" Polymers 16, no. 5: 610. https://doi.org/10.3390/polym16050610
APA StyleJoshi, J. S., Langwald, S. V., Ehrmann, A., & Sabantina, L. (2024). Algae-Based Biopolymers for Batteries and Biofuel Applications in Comparison with Bacterial Biopolymers—A Review. Polymers, 16(5), 610. https://doi.org/10.3390/polym16050610